Math 403 Chapter 4: Cyclic Groups

1. Introduction: The simplest type of group (where the word “type” doesn’t have a clear
meaning just yet) is a cyclic group.

2. Definition: A group G is cyclic if there is some g € G with G = (g). Here g is a generator
of the group G. Recall that (g) means all “powers” of g which can mean addition if that’s the
operation.

(a) Example: Zg is cyclic with generator 1. Are there other generators?

(b) Example: Z, is cyclic with generator 1.
(
(d

(e) Example: U(10) is cylic with generator 3.

)
)
¢) Example: Z is cyclic with generator 1.
) Example: R* is not cyclic.

)

3. Important Note: Given any group G at all and any g € G we know that (g) is a cyclic
subgroup of G and hence any statements about cyclic groups applies to any (g).

4. Properties Related to Cyclic Groups Part 1:

(a) Intuition: If |g| = 10 then (g) = {1, 9, 9%, ..., ¢°} and the elements cycle back again. For
example we have g? = ¢g'2 and in general g* = ¢7 iff 10 | (i — 7).
(b) Theorem: Let G be a group and g € G.
(i) If |g| = oo then ¢* = ¢ iff i = j.
(i) if |g| = n then (g) = {1,9,9%,,,,.9" '} and ¢ = ¢/ iff n | (i — 7).
(iii) In both cases we have |g| = |{(g}|-
Proof:
For (i), if |g| = co then by definition we never have g* = e unless i = 0. Thus ¢* = ¢ iff
g7 =eiff i —j=0.
For (ii), If |g| = n < oo first note that {1, g, ¢°, ...,g”_l}]»C C {g) by definition of the right

side. To show that (g) C {1,g,9¢? ...,g" '}, suppose g* € (g). Write k = gqn + r with
0 <7 < n and then ¢g* = (¢")9g" = e%g" = g" so ¢g* is one of those elements.

Now for the iff. If g¢ = ¢/ then ¢~/ = e. Write i — j = gn + r with 0 < 7 < n. Then

e = g?"g" = g". Since n (the order) is the least positive but r < n we must have r = 0

and so n | (i — j).

If n | (i — j) then i — j = gn and then ¢* = g7g9" = ¢7.

For (iii), it follows immediately.

QED

(c) Corollary: For any g € G with |g| =n, ¢' = e iff n | .

Proof: This is the theorem with j = 0. QED

Example: If |g| = 10 then if g° = e then 10 | 4, meaning we only get e when the powers
are multiples of 10.



5. Properties Related to Cyclic Groups Part 2:

(a)

Intuition: If |g| = 30 then if we examine something like (g?*) we find:

g¥ = g

(924)2 = g18 = 418
(924)3 — g = g2
(g24)4 — g% = 46
<924)5 —g20 =0 =

We then see that <g24> = {e, g%, 92,98, 9%} = <gG>. which is a bit nicer since the 6 is
easier to work with. Note that 6 = ged (30, 24).

From this we also see |g%*] = |g8cd (30:24)|,

Likewise we can easily compute the order of g*. We see it cycles every 5, just like gb,
and observe that 5 = 30/gcd (30, 24).

Theorem: Let g € G with |g| = n and let k € Z* then

(i) (g*) = (geed ()
(i) 9| = g2 )
(iii) |g*| = n/ged (n, k)
Proof: For (i) since ged (n, k) | k we know that aged (n, k) = k for some o € Z and so

gk — <ggcd (n,k)) c <ggcd (n,k)>
and so:
<gk> C <ggcd (n,k)>

Then write ged (n, k) = an + Sk and observe that
g=d k) = (gM)* 4 (g%)7 = (g*)F € (g")
so that
<ggcd (n,k)> C <gk>
Thus the two are equal.

Then (ii) follows immediately from the previous theorem.

For (iii) first observe that

:gn:e

n/ged (n,k)
cd (n,k)
()
so that:
ged (n,k) <
S e Yy



On the other hand if we had |8 ("F)| = b < n/ged (n, k) then we have e = (g8°d (mF))b =
gb&ed (k) with bged (n, k) < n, contradicting |g| = n. Thus we have:

|g8ed (k)] = _n
ged (n, k)
Thus we have: n
k — ged (n,k)‘ —
1971 ’g ged (n, k)

QED

Corollary: In a finite cyclic group the order of an element divides the order of a group.
Proof: Follows since every element looks like g* and we have |g*| ged (n, k) =n. QED

Example: In a cyclic group of order 200 the order of every element must divide 200. In
such a group an element could not have order 17, for example.

Corollary: Suppose g € G and |g| =n < co. Then:
(a') = (a?) iff ged (n, i) = ged (n, §) iff |a’| = |af]

Proof: Follows immediately. QED
Example: If |g| = 18 then the fact that ged (18,12) = 6 = ged (18,6) guarantees that
9% =19°-

Corollary: Suppose g € G and |g| = n < co. Then:

(a) = (a?) iff ged (n, j) = 1iff |a] = |/
Proof: Follows immediately. QED
Example: If |g| = 32 then the fact that ged (15,32) = 1 guarantees that <g15> = (g),
meaning g'% is a generator of {g).
Corollary: Suppose g € G and |g| = n < co. Then there are ¢(n) generators of (g).
Proof: The generators are g* with ged (n, k) = 1. QED
Corollary: An integer k € Z,, is a generator of Z,, iff ged (n, k) = 1.
Proof: Follows immediately. QED
Example: The generators of Zjg are 1,3,7,9.



6. Classification of Subgroups of Cyclic Groups:

(a) Theorem (Fundamental Theorem of Cyclic Groups):

Suppose G = (g) is cyclic.

(i)
(i)
(iii)

Every subgroup of G is cyclic.
If |G| = n then the order of any subgroup of G divides n.
If |G| = n then for any k | n the subgroup <g”/k> is the unique subgroup of order k.

Proof:

(i)

(i)

(iii)

Let H < G. If H = {e} then we’re done so assume H # {e}. Choose ¢™ € H with
minimal m € Z% by well-ordering. Clearly (¢™) C H. If some g¥ € H then put
k=gm+rwith0<r <msor=k—qgmand then g" = g*(¢™) 7€ Handsor =0
by minimality of m and so g¥ = (¢™)? and hence g* € (g™).

Take a subgroup H < G. We know H is cyclic by (i) with H = (¢™) with minimal
m € Z* by well-ordering. Write n = gm +r with 0 < r < m so r = n — ¢gm and then
g" =g"(¢g™)"% € H and so r = 0 by minimality of m and so n = gm and then

n n

H: m = m - =
|H| = [(¢g™)] = 9" scd(mm) —m

and so m|H| =n and so |H| | n.
Observe first that for any & | n we have

() -

Thus certainly <g”/ k > is a subgroup of order k. We must show that it is unique.

Let H < G with |H| =k | n. Since H < G by (i) and (ii) we have H = (¢™) with
m | n. Then we have:

P [ S

ged (n,n/k)  n/k

n n
k= = m\| — | — —
HI = (g™ = lg" =
Thus m = n/k and so H = (g™) = (g"/*).

QED

Example: This categorizes cyclic groups completely. For example suppose a cyclic group
has order 20. Every subgroup is cyclic and there are unique subgroups of each order
1,2,4,5,10,20. If G has generator g then generators of these subgroups can be chosen to

be g

20/1 — 20 420/2 _ 410 (20/4 _ g5 20/5 _ g4 20/10 _ o2 120/20 _ g regpectively.

(b) Corollary: For each positive divisor k of n € Z*, the set (n/k) is the unique subgroup
of Z,, of order k. Moreover these are the only subgroups of Zj.
Proof: Follows immediately. QED
Example: In Z;o = (1) the subgroup (1) is the unique subgroup of order 10/1 = 10, the
subgroup (2) is the unique subgroup of order 10/2 = 5, the subgroup (5) is the unique
subgroup of order 10/1 = 2, the subgroup (10) = (0) is the unique subgroup of order
10/10 = 1.

(¢) Definition: Define ¢(1) = 1 and for any n € Z with n > 1 define ¢(n) to be the number
of positive integers less than n and coprime to n.
Example: We have ¢(20) = 8 since 1,3,7,9,11,13,17,19 are coprime.



(d)

Theorem: Suppose G is cyclic of order n. If d | n then there are ¢(d) elements of order
d in G.

Proof: Every element of order d generates a cyclic subgroup of order d but there is only
one such cyclic subgroup, thus every element of order d is in that single cyclic subgroup
of order d. If that cyclic subgroup is (g) with |g| = d then note that the only elements of
order d in it are those g* with ged (d, k) = 1 and there are ¢(d) of those. QED
Example: In a cyclic group of order 100 noting that 20 | 100 we then know there are
¢(20) = 8 elements of order 20.

Theorem: If G is a finite group then the number of elements of order d is a multiple of

o(d).
Outline of Proof: Elements of order d can be collected ¢(d) at a time into subgroups
of order d. QED

Example: If G is an arbitrary finite group then the number of elements of order 20 is a
multiple of 8. Keep in mind that this might be zero!



