Math 403 Chapter 5 Permutation Groups:

1. Introduction: We now jump in some sense from the simplest type of group (a cylic group) to the most complicated.
2. Definition: Given a set A, a permutation of A is a function $f: A \rightarrow A$ which is $1-1$ and onto. A permutation group of A is a set of permutations of A that forms a group under function composition.
3. Note: We'll focus specifically on the case when $A=\{1, \ldots, n\}$ for some fixed integer n. This means each group element will permute this set. For example if $A=\{1,2,3\}$ then a permutation α might have $\alpha(1)=2, \alpha(2)=1$, and $\alpha(3)=3$. We can write this as:

$$
\alpha=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right]
$$

We will eventually have a better way to write these but this suffices for now.

4. The Symmetric Groups $\mathbf{S}_{\mathbf{n}}$

(a) Definition: The symmetric group S_{n} is the group of all permutations of the set $\{1,2, \ldots, n\}$. Example: The group S_{3} consists of six elements. There are 6 because there are 3 choices as to where to send 1 and 2 choices as to where to send 2 and 1 choices as to where to send 3. These six elements are:

$$
S_{3}=\left\{\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right]\right\}
$$

When we compose elements we read the permutations from right to left. For example if α is the second element above and if β is the third element above then:

$$
\begin{aligned}
& \alpha \beta=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right] \\
& \beta \alpha=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right]
\end{aligned}
$$

So notice that this group is not Abelian.
(b) Cycle Notation: We now write down a more compact notation for S_{n}. Consider the following element in S_{7} :

$$
\alpha=\left[\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 5 & 1 & 4 & 7 & 6 & 2
\end{array}\right]
$$

What is going on here is:

$$
\begin{gathered}
1 \rightarrow 3 \rightarrow 1 \\
2 \rightarrow 5 \rightarrow 7 \rightarrow 2 \\
4 \rightarrow 4 \\
6 \rightarrow 6
\end{gathered}
$$

We write:

$$
\alpha=(13)(257)
$$

notice that each parenthetical closes up as a cycle (a loop) and neither 4 nor 6 are mentioned because they are left alone. Within each cycle we read from left-to-right and then cycle back to the start.
Using this notation we can write:

$$
S_{3}=\{(),(12),(23),(13),(123),(132)\}
$$

The notation is not unique, for example $(21)=(21)$ and $(123)=(231)=(312)$.
The inverse of such an element can be obtained simply by reversing each of the disjoint cycles, for example:

$$
((1532)(476))^{-1}=(2351)(674)
$$

When we compose elements in this notation we could just put them adjacent but the goal is to get them in disjoint cycle form, meaning rewritten as a product of cycles within no overlap.
For example suppose $\alpha=(12)(45)$ and $\beta=(153)(24)$. Suppose we wish to find $\alpha \beta$. We know $\alpha \beta=(12)(45)(153)(24)$ but we'd like to write this in disjoint cycle form.
First we start with 1 and trace it through the element taking the cycles from right-to-left but within each cycle working left-to-right:

Then since we ended with 4 we trace that through:

$$
\underbrace{\underbrace{(12)}_{2 \rightarrow 1} \underbrace{(45)}_{2 \rightarrow 2} \underbrace{(153)}_{2 \rightarrow 2} \underbrace{(24)}_{4 \rightarrow 2}}_{4 \rightarrow 1}
$$

Since $1 \rightarrow 4 \rightarrow 1$ we have (14) so far. Then we do the same with the next smallest number (or any number) which we haven't checked yet. If we try 2 we find $2 \rightarrow 5 \rightarrow 3 \rightarrow 2$ and so we have (253). There are no numbers left so we are done.
Thus:

$$
\alpha \beta=(12)(45)(153)(24)=(14)(253)
$$

Similarly we have:

$$
\beta \alpha=(153)(24)(12)(45)=(143)(25)
$$

5. Properties of Permutations:

(a) Theorem: Every permutation in S_{n} may be written as a cycle or as a product of disjoint cycles.
Outline of Proof: The general idea is to formalize the process we just did. $\mathcal{Q E D}$
(b) Theorem: Disjoint cycles commute.

Outline of Proof: If cycles are disjoint they do not affect any common numbers. Consequently it does not matter the order in which we do them. $\mathcal{Q E D}$
(c) Theorem: If $\alpha \in S_{n}$ then the order of α is the least common multiple of the lengths of the cycles when written in disjoint cycle form.
Outline of Proof: Clearly the we achieve the identity when the power of the element is a multiple of the lengths of the cycles and hence the lcm will achieve $e=()$. Showing that nothing smaller works takes a bit more work.
$\mathcal{Q E D}$
Example: In S_{10} we have $|(15102)(398476)|=\operatorname{lcm}(4,6)=12$.
Note: If the element is not in disjoint cycle form then we must rewrite it, otherwise the order is not at all obvious.
(d) Theorem: Every permutation in S_{n} is a product of 2-cycles.

Proof: Notice that for a cycle:

$$
\left(a_{1} a_{2} a_{3} \ldots a_{n}\right)=\left(a_{1} a_{n}\right)\left(a_{1} a_{n-1}\right) \ldots\left(a_{1} a_{3}\right)\left(a_{1} a_{2}\right)
$$

Products of cycles are just then products of 2-cycles.
$\mathcal{Q E D}$
Example: We have $(1537)(264)=(17)(13)(15)(24)(26)$.
(e) Theorem: If ()$=\alpha_{1} \alpha_{2} \ldots \alpha_{r}$ where the α_{i} are 2-cycles then r is even.

Proof: If $r=1$ then we cannot have ()$=\alpha_{1}$, a single 2-cycle. Thus assume

$$
()=\alpha_{1} \ldots \alpha_{r}
$$

for $r \geq 2$. Consider $\alpha_{r-1} \alpha_{r}$. This can have only one of the following forms: $(a b)(a b)$ or $(a c)(a b)$ or $(b c)(a b)$ or $(c d)(a b)$. Focusing on the a, each of these forms can be rewritten:

$$
\begin{aligned}
(a b)(a b) & =() \\
(a c)(a b) & =(a b)(b c) \\
(b c)(a b) & =(a c)(c b) \\
(c d)(a b) & =(a b)(c d)
\end{aligned}
$$

In the first case we delete the final two 2-cycles and start the process again at the right end.
In the other three cases notice that the a has moved from the final 2-cycle to the one before. We then repeat the procedure with $\alpha_{k-1} \alpha_{k}$ until either we get cancelation case (and we start the process again at the right end) or else we get an a in the first 2-cycle but nowhere else. However this cannot happen since then this element would not fix a and would not be ().
$\mathcal{Q E D}$
(f) Theorem: Given $\alpha \in S_{n}$. If we write α as a product of 2 -cycles then whether the number of 2 -cycles is even or odd depends only on α and not on how we write it. In other words a given α can either be done only using an odd number of 2 -cycles or only using an even number of 2-cycles.
Proof: Suppose $\alpha=A=B$ where A is a product of an even number of 2 -cycles and B is a product of an odd number of 2-cycles. Then $A B^{-1}=()$, a contradiction. $\mathcal{Q E D}$
(g) Definition: An element $\alpha \in S_{n}$ is even if it can be written using an even number of 2-cycles and odd if it can be written using an odd number of 2-cycles.
Example: The element (1537)(264) is odd because

$$
(1537)(264)=(17)(13)(15)(24)(26)
$$

and this is an odd number of 2-cycles.
(h) Definition/Theorem: The set $A_{n}=\left\{\left\{\alpha \in S_{n} \mid \alpha\right.\right.$ is even $\}$ forms a subgroup of S_{n} called the alternating group on n elements.
Outline of Proof: This is fairly straightfoward just looking at the requirements of a group. $\mathcal{Q E D}$
Note: The odd permutations do not form a subgroup not least because the identity is not in the set because the identity is even.
6. Closing Note: We can think of symmetric groups as "complicated" because there is a lot going on inside them. For example it turns out (and we will prove this) that every group basically sits inside a symmetric group, where "sits inside" means "is structurally equivalent to a subgroup of". For example consider \mathbb{Z}_{6}. This is a cyclic group of order 6 . Well in S_{6} we have $\langle(123456)\rangle$ which is a cyclic subgroup of S_{6} of order 6 so we can think of "something that looks like $\mathbb{Z}_{6} "$ sitting inside S_{6}.

