
Math 403 Chapter 5 Permutation Groups:

1. Introduction: We now jump in some sense from the simplest type of group (a cylic group)
to the most complicated.

2. Definition: Given a set A, a permutation of A is a function f : A→ A which is 1-1 and onto.
A permutation group of A is a set of permutations of A that forms a group under function
composition.

3. Note: We’ll focus specifically on the case when A = {1, ..., n} for some fixed integer n.
This means each group element will permute this set. For example if A = {1, 2, 3} then a
permutation α might have α(1) = 2, α(2) = 1, and α(3) = 3. We can write this as:

α =

[
1 2 3
2 1 3

]
We will eventually have a better way to write these but this suffices for now.

4. The Symmetric Groups Sn

(a) Definition: The symmetric group Sn is the group of all permutations of the set {1, 2, ..., n}.
Example: The group S3 consists of six elements. There are 6 because there are 3 choices
as to where to send 1 and 2 choices as to where to send 2 and 1 choices as to where to
send 3. These six elements are:

S3 =

{[
1 2 3
1 2 3

]
,

[
1 2 3
2 1 3

]
,

[
1 2 3
1 3 2

]
,

[
1 2 3
3 2 1

]
,

[
1 2 3
2 3 1

]
,

[
1 2 3
3 1 2

]}
When we compose elements we read the permutations from right to left. For example if
α is the second element above and if β is the third element above then:

αβ =

[
1 2 3
2 1 3

] [
1 2 3
1 3 2

]
=

[
1 2 3
2 3 1

]
βα =

[
1 2 3
1 3 2

] [
1 2 3
2 1 3

]
=

[
1 2 3
3 2 1

]
So notice that this group is not Abelian.

(b) Cycle Notation: We now write down a more compact notation for Sn. Consider the
following element in S7:

α =

[
1 2 3 4 5 6 7
3 5 1 4 7 6 2

]
What is going on here is:

1→ 3→ 1
2→ 5→ 7→ 2

4→ 4
6→ 6



We write:
α = (1 3)(2 5 7)

notice that each parenthetical closes up as a cycle (a loop) and neither 4 nor 6 are
mentioned because they are left alone. Within each cycle we read from left-to-right and
then cycle back to the start.

Using this notation we can write:

S3 = {(), (1 2), (2 3), (1 3), (1 2 3), (1 3 2)}

The notation is not unique, for example (2 1) = (2 1) and (1 2 3) = (2 3 1) = (3 1 2).

The inverse of such an element can be obtained simply by reversing each of the disjoint
cycles, for example:

((1 5 3 2)(4 7 6))
−1

= (2 3 5 1)(6 7 4)

When we compose elements in this notation we could just put them adjacent but the goal
is to get them in disjoint cycle form, meaning rewritten as a product of cycles within no
overlap.

For example suppose α = (1 2)(4 5) and β = (1 5 3)(2 4). Suppose we wish to find αβ. We
know αβ = (1 2)(4 5)(1 5 3)(2 4) but we’d like to write this in disjoint cycle form.

First we start with 1 and trace it through the element taking the cycles from right-to-left
but within each cycle working left-to-right:

←−−−−−−−−−−−−−−
(1 2)︸︷︷︸
4→4

(4 5)︸︷︷︸
5→4

(1 5 3)︸ ︷︷ ︸
1→5

(2 4)︸︷︷︸
1→1︸ ︷︷ ︸

1→4

Then since we ended with 4 we trace that through:

←−−−−−−−−−−−−−−
(1 2)︸︷︷︸
2→1

(4 5)︸︷︷︸
2→2

(1 5 3)︸ ︷︷ ︸
2→2

(2 4)︸︷︷︸
4→2︸ ︷︷ ︸

4→1

Since 1→ 4→ 1 we have (1 4) so far. Then we do the same with the next smallest number
(or any number) which we haven’t checked yet. If we try 2 we find 2 → 5 → 3 → 2 and
so we have (2 5 3). There are no numbers left so we are done.

Thus:
αβ = (1 2)(4 5)(1 5 3)(2 4) = (1 4)(2 5 3)

Similarly we have:
βα = (1 5 3)(2 4)(1 2)(4 5) = (1 4 3)(2 5)

5. Properties of Permutations:

(a) Theorem: Every permutation in Sn may be written as a cycle or as a product of disjoint
cycles.
Outline of Proof: The general idea is to formalize the process we just did. QED



(b) Theorem: Disjoint cycles commute.
Outline of Proof: If cycles are disjoint they do not affect any common numbers. Con-
sequently it does not matter the order in which we do them. QED

(c) Theorem: If α ∈ Sn then the order of α is the least common multiple of the lengths of
the cycles when written in disjoint cycle form.
Outline of Proof: Clearly the we achieve the identity when the power of the element
is a multiple of the lengths of the cycles and hence the lcm will achieve e = (). Showing
that nothing smaller works takes a bit more work. QED
Example: In S10 we have |(1 5 10 2)(3 9 8 4 7 6)| = lcm (4, 6) = 12.
Note: If the element is not in disjoint cycle form then we must rewrite it, otherwise the
order is not at all obvious.

(d) Theorem: Every permutation in Sn is a product of 2-cycles.
Proof: Notice that for a cycle:

(a1 a2 a3 ... an) = (a1 an)(a1 an−1)...(a1 a3)(a1 a2)

Products of cycles are just then products of 2-cycles. QED
Example: We have (1 5 3 7)(2 6 4) = (1 7)(1 3)(1 5)(2 4)(2 6).

(e) Theorem: If () = α1α2...αr where the αi are 2-cycles then r is even.
Proof: If r = 1 then we cannot have () = α1, a single 2-cycle. Thus assume

() = α1...αr

for r ≥ 2. Consider αr−1αr. This can have only one of the following forms: (a b)(a b) or
(a c)(a b) or (b c)(a b) or (c d)(a b). Focusing on the a, each of these forms can be rewritten:

(a b)(a b) = ()

(a c)(a b) = (a b)(b c)

(b c)(a b) = (a c)(c b)

(c d)(a b) = (a b)(c d)

In the first case we delete the final two 2-cycles and start the process again at the right
end.

In the other three cases notice that the a has moved from the final 2-cycle to the one
before. We then repeat the procedure with αk−1αk until either we get cancelation case
(and we start the process again at the right end) or else we get an a in the first 2-cycle
but nowhere else. However this cannot happen since then this element would not fix a
and would not be (). QED

(f) Theorem: Given α ∈ Sn. If we write α as a product of 2-cycles then whether the number
of 2-cycles is even or odd depends only on α and not on how we write it. In other words
a given α can either be done only using an odd number of 2-cycles or only using an even
number of 2-cycles.
Proof: Suppose α = A = B where A is a product of an even number of 2-cycles and B
is a product of an odd number of 2-cycles. Then AB−1 = (), a contradiction. QED

(g) Definition: An element α ∈ Sn is even if it can be written using an even number of
2-cycles and odd if it can be written using an odd number of 2-cycles.
Example: The element (1 5 3 7)(2 6 4) is odd because

(1 5 3 7)(2 6 4) = (1 7)(1 3)(1 5)(2 4)(2 6)



and this is an odd number of 2-cycles.

(h) Definition/Theorem: The set An = {{α ∈ Sn |αis even} forms a subgroup of Sn called
the alternating group on n elements.
Outline of Proof: This is fairly straightfoward just looking at the requirements of a
group. QED
Note: The odd permutations do not form a subgroup not least because the identity is
not in the set because the identity is even.

6. Closing Note: We can think of symmetric groups as “complicated” because there is a lot
going on inside them. For example it turns out (and we will prove this) that every group
basically sits inside a symmetric group, where “sits inside” means “is structurally equivalent
to a subgroup of”. For example consider Z6. This is a cyclic group of order 6. Well in S6 we
have 〈(1 2 3 4 5 6)〉 which is a cyclic subgroup of S6 of order 6 so we can think of “something
that looks like Z6” sitting inside S6.


