Math 403 Chapter 5 Permutation Groups:

1. Introduction: We now jump in some sense from the simplest type of group (a cylic group)
to the most complicated.

2. Definition: Given a set A, a permutation of A is a function f : A — A which is 1-1 and onto.
A permutation group of A is a set of permutations of A that forms a group under function
composition.

3. Note: We'll focus specifically on the case when A = {1,...,n} for some fixed integer n.
This means each group element will permute this set. For example if A = {1,2,3} then a
permutation « might have a(1) = 2, «(2) =1, and «(3) = 3. We can write this as:

123
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We will eventually have a better way to write these but this suffices for now.
4. The Symmetric Groups S,

(a) Definition: The symmetric group Sy, is the group of all permutations of the set {1, 2, ...,n}.

Example: The group S5 consists of six elements. There are 6 because there are 3 choices
as to where to send 1 and 2 choices as to where to send 2 and 1 choices as to where to
send 3. These six elements are:
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When we compose elements we read the permutations from right to left. For example if
« is the second element above and if 3 is the third element above then:
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So notice that this group is not Abelian.
(b) Cycle Notation: We now write down a more compact notation for S,,. Consider the

following element in S7:
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What is going on here is:



We write:
a=(13)(257)

notice that each parenthetical closes up as a cycle (a loop) and neither 4 nor 6 are
mentioned because they are left alone. Within each cycle we read from left-to-right and
then cycle back to the start.

Using this notation we can write:

S3 =1{0,(12),(23),(13),(123),(132)}

The notation is not unique, for example (21) = (21) and (123) = (231) = (312).
The inverse of such an element can be obtained simply by reversing each of the disjoint
cycles, for example:

((1532)(476)) ' =(2351)(674)

When we compose elements in this notation we could just put them adjacent but the goal
is to get them in disjoint cycle form, meaning rewritten as a product of cycles within no
overlap.

For example suppose o« = (12)(45) and 5 = (153)(24). Suppose we wish to find a5. We
know a5 = (12)(45)(153)(24) but we’d like to write this in disjoint cycle form.

First we start with 1 and trace it through the element taking the cycles from right-to-left
but within each cycle working left-to-right:

(12) (45) (153) (24)
S N N
4—4 5—4 1—-5 1-—1

1—4

Then since we ended with 4 we trace that through:

(12)(45)(153) (24)
N N
2—1 252 252 42

4—1

Since 1 — 4 — 1 we have (14) so far. Then we do the same with the next smallest number
(or any number) which we haven’t checked yet. If we try 2 we find 2 - 5 — 3 — 2 and
so we have (253). There are no numbers left so we are done.
Thus:

af =(12)(45)(153)(24) = (14)(253)

Similarly we have:
Ba=(153)(24)(12)(45) = (143)(25)

5. Properties of Permutations:

(a) Theorem: Every permutation in S,, may be written as a cycle or as a product of disjoint
cycles.
Outline of Proof: The general idea is to formalize the process we just did. QED



(b) Theorem: Disjoint cycles commute.
Outline of Proof: If cycles are disjoint they do not affect any common numbers. Con-
sequently it does not matter the order in which we do them. QED

(¢c) Theorem: If o € S,, then the order of « is the least common multiple of the lengths of
the cycles when written in disjoint cycle form.
Outline of Proof: Clearly the we achieve the identity when the power of the element
is a multiple of the lengths of the cycles and hence the lem will achieve e = (). Showing
that nothing smaller works takes a bit more work. QED
Example: In S;y we have |[(15 10 2)(398476)| = lcm (4,6) = 12.
Note: If the element is not in disjoint cycle form then we must rewrite it, otherwise the
order is not at all obvious.

(d) Theorem: Every permutation in S, is a product of 2-cycles.
Proof: Notice that for a cycle:

(a1aza3...a,) = (a1 an)(a1 an—1)...(a1 az) (a1 az)

Products of cycles are just then products of 2-cycles. QED
Example: We have (1537)(264) = (17)(13)(15)(24)(26).

(e) Theorem: If () = ajas...«, where the a; are 2-cycles then r is even.
Proof: If r = 1 then we cannot have () = a1, a single 2-cycle. Thus assume

() = 1...0p

for r > 2. Consider ,._j,. This can have only one of the following forms: (ab)(ab) or
(ac)(ab) or (be)(ab) or (cd)(ab). Focusing on the a, each of these forms can be rewritten:

(ab)(ab) = ()

In the first case we delete the final two 2-cycles and start the process again at the right
end.

In the other three cases notice that the a has moved from the final 2-cycle to the one
before. We then repeat the procedure with a1y until either we get cancelation case
(and we start the process again at the right end) or else we get an a in the first 2-cycle
but nowhere else. However this cannot happen since then this element would not fix a
and would not be (). QED

(f) Theorem: Given o € S,,. If we write a as a product of 2-cycles then whether the number
of 2-cycles is even or odd depends only on « and not on how we write it. In other words
a given « can either be done only using an odd number of 2-cycles or only using an even
number of 2-cycles.
Proof: Suppose a = A = B where A is a product of an even number of 2-cycles and B
is a product of an odd number of 2-cycles. Then AB~! = (), a contradiction. QED

(g) Definition: An element a € S, is even if it can be written using an even number of
2-cycles and odd if it can be written using an odd number of 2-cycles.
Example: The element (1537)(264) is odd because

(1537)(264) = (17)(13)(15)(24)(26)



and this is an odd number of 2-cycles.

(h) Definition/Theorem: The set A,, = {{« € S,, | ais even} forms a subgroup of S,, called
the alternating group on n elements.
Outline of Proof: This is fairly straightfoward just looking at the requirements of a
group. QED
Note: The odd permutations do not form a subgroup not least because the identity is
not in the set because the identity is even.

6. Closing Note: We can think of symmetric groups as “complicated” because there is a lot
going on inside them. For example it turns out (and we will prove this) that every group
basically sits inside a symmetric group, where “sits inside” means “is structurally equivalent
to a subgroup of”. For example consider Zg. This is a cyclic group of order 6. Well in Sg we
have ((123456)) which is a cyclic subgroup of Sg of order 6 so we can think of “something
that looks like Zg” sitting inside Sg.



