Math 406 Exam 2 Solutions Justin Wyss-Gallifent

1. Use the CRT to find the second smallest positive integer solution to the following system:

3x = 6 mod 15
52 =4 mod 6
r+1=2mod?7

Solution: We rewrite and solve these individually as:

z =2modbH
z =2mod6
rz=1mod7

Then M = (5)(6)(7) = 210, My = 42, M5 = 35 and M3 = 30. We then solve:

42y; = 1 mod 5 which is 2y; =1 mod 5 so y; = 3.
35y2 = 1 mod 6 which is 5y =1 mod 6 so y2 = 5.
30y3 = 1 mod 7 which is 2y3 =1 mod 7 so y3 = 4.

So all solutions are given by
x = (42)(3)(2) + (35)(5)(2) + (30)(4)(1) = 722 = 92 mod 210
So that the second smallest solution is x = 92 + 210 = 302.

2. Find each of the following.

4371

(a) The least nonnegative residue of (14!) modulo 17.

Solution: By Wilson’s Theorem:

16! = —1 mod 17
(16)(15)14! = —1 mod 17
(-1)(=2)14! = —1 mod 17
(—2)
(—2)

»—
b
\

=1 mod 17
(—=9)(—2)14! = =9 mod 17
14! = 8 mod 17

By Fermat’s Little Theorem 4'® = 1 mod 17 so then:
437 = (416)2343 = 43 = 64 = 13 mod 17

Thus
(14143 = (8)(13) = 2 mod 17
(b) The least nonnegative residue of 1234° modulo 1236.

Solution: We have:
1234° = (—2)° = —32 = 1204 mod 1236



3. Find all incongruent solutions, if any, modulo the original modulus, to the following;:
(a) 5z =6 mod 16
Solution: Since ged (5,16) = 1| 6 there is one solution. By testing we find it is x = 14.
(b) 2z = 18 mod 46

Solution: Since ged (2,46) = 2 | 18 there are two solutions. By testing one is z = 9 so all
are x =9+ %kj for £k = 0,1, or specifically z = 9 and = = 32.

(c) 1312z =2 mod 13163
Solution: Since ged (1316%,13163) 1 2 there are no solutions.

4. Calculate the following. Answers do not need to be simplified!

(a) ¢(6!7!)

Solution: The prime factors involved in 6! and 7! are only 2,3,5,7 and so
1 1 1 1
M =67 {1-=)(1-=](1—-=)(1-=
som =om (1=3) (1-5) (1=5) (1-3)
(b) o(10')

Solution: Since 101° = 219510 we have

211_1511_1
2—1 5-1

0(10') = ¢(2")0(5'%) =
(¢) 7(10!)
Solution: Since 10! = (10)(9)(8)(7)(6)(5)(4)(3)(2)(1) = 283%5%7! we have
T(10) =@+ 1)@+ 1)(2+1)(1+1)

5. Show that 91 is a Fermat Pseudoprime to the base 3. Note that 91 is not prime!

Solution: Since ged (3,91) = 1, Euler’s Theorem tells us that 3?(°) = 1 mod 91. We find
#(91) = ¢(7-13) = (6)(12) = 72 so then to check it’s a Pseudoprime:

39171 =390 = 37318 = 31% mod 91

A bit more work to do. Note:

3' = 3 mod 91
32 =9 mod 91
3* = 81 mod 91

3% = 81? = (—10?) = 100 = 9 mod 91
3'% = 81 mod 91
and so finally
391-1 = 318 = 31632 = (81)(9) = (—10)(9) = —90 = 1 mod 91
6. Prove that if n > 2 and ged (6,n) = 1 then ¢(3n) = 2¢(2n).
Solution: If ged (6,n) = 1 then ged (2,n) = 1 and ged (3,n) = 1 and so then
¢(3n) = ¢(3)¢(n) = 2¢(n)

and
2¢(2n) = 2¢(2)¢(n) = 2¢(n)
So they’re equal.



7.

10.

Classify all numbers n for which 7(n) = 12.

Solution: If n = p{*..p2* then 7(n) = (a1 + 1)...(css + 1). For this to equal 12 it must be a
factorization of 12 and thus could only be (12) or (2)(6) or (3)(4) or (2)(2)(3).

If it’s (12) then n = pil.

If it’s (2)(6) then n = p1p}.
If it’s (3)(4) then n = p3p3.
If it’s (2)(2)(3) then n = pipap3.

Prove (using the definition of congruence) or disprove (by counterexample) each of the following.
Hint: One is true, two are false.

(a) If ac = bc mod m with ¢ # 0 mod m then a = b mod m.
Solution: False, for example (2)(2) = (5)(2) mod 6 but 2 # 5 mod 6.

(b) If a = b mod m and b = ¢ mod m then a = ¢ mod m.
Solution: True. If a = b mod m and b = ¢ mod m then m | (a — b) and m | (b — ¢) and so
m | (a—b)+ (b—c)som| (a—c) yielding a = ¢ mod m.

(¢) If a = b mod m then m | (a + b).
Solution: False. For example 1 =1 mod 7 but 7¢ (1 + 1).

Suppose n is a perfect number and p is a prime such that pn is also perfect. Prove ged (p,n) # 1.
Solution: Since n and pn are perfect, o(n) = 2n and o(pn) = 2pn.

We proceed by contradition: If ged (p,n) =1 then
o(pn) =o(p)o(n) = (p+ 1)2n = 2pn + 2n # o(pn)
a contradiction.

Prove that for a fixed &k that ¢(n) = k can have at most a finite number of solutions.

Solution: Since it’s easier we’ll show that ¢(n) < k can have at most a finite number of solutions,
since clearly if ¢(n) = k then ¢(n) < k.

Suppose p® appears in the prime factorization of n, so then n = p® N where N is the rest. Then:

p(n) = d(p*N) = d(p*)d(N) > ¢(p*) =p* ' (p— 1)

First note that this is greater than or equal to p — 1, so in order to guarantee that ¢(n) < k we
must have p — 1 < k or p < k 4+ 1 which means there are only a finite number of different primes
which can appear in the prime factorization of n.

Second observe that this is greater than or equal to p*~!, so in order to guarantee that ¢(n) < k

we must have p"‘_1 <kora—1< 1ogpk ora <1 +logpk.

Therefore there are only a finite number of primes available and each can be only to a finite
number of powers, yielding only a finite number of possible n.

Explanatory Note: If you're interested in how this works by example, consider ¢(n) < 10. The
first part states that the primes in the prime factorization of n must be less than or equal to 11,
meaning we can only use 2,3,5,7,11. The second part states that the exponent of 2 must be less
than 1+log,(10) a2 4.32 (so either 1,2, 3,4), the exponent of 3 must be less than 14+log;(10) & 3.10
(so either 1,2, 3), the exponent of 5 must be less than 1 4 log;(10) = 2.43 (so 1,2), the exponent
of 7 must be less than 1 + log,(10) ~ 2.18 (so 1,2), the exponent of 11 must be less than
1+ logy;(10) ~ 1.96 (so 1).



