
MATH 406 Exam 2 Summer 2021
Due by Saturday August 7 at 3:00pm

Exam Logistics:

1. From the moment you download this exam you have three hours to take the exam and submit
to Gradescope. This includes the entire upload and tag procedure so do not wait until the last
minute to do these things.

2. Tag your problems! Please! Pretty please!

3. You may print the exam, write on it, scan and upload.

4. Or you may just write on it on a tablet and upload.

5. Or you are welcome to write the answers on separate pieces of paper if other options don’t
appeal to you, then scan and upload.

Exam Rules:

1. You may ask for clarification on questions but you may not ask for help on questions!

2. You are permitted to use official class resources which means your own written notes, class
recordings and the textbook.

3. You are not permitted to use other resources. Thus no friends, internet, calculators, Wolfram
Alpha, etc.

4. By taking this exam you agree that if you are found in violation of these rules that the minimum
penalty will be a grade of 0 on this exam.

Exam Work:

1. Show all work as appropriate for and using techniques learned in this course.

2. Any pictures, work and scribbles which are legible and relevant will be considered for partial
credit.

3. Arithmetic calculations do not need to be simplified unless specified.



1. Consider the linear congruence:
20x ≡ 15 mod 75

(a) Use the Euclidean Algorithm and its follow-up to find one solution. Find the least non- [10 pts]
negative residue mod 75 of this solution.

Solution:

We have:

75 = 3(20) + 15

20 = 1(15) + 5

Thus we have:

5 = 20− 1(15)

5 = 20− 1(75− 3(20))

5 = 4(20)− 1(75)

Therefore we have:

4(20)− 1(75) = 5

20(4) ≡ 5 mod 75

20(12) ≡ 15 mod 75

Thus we have a solution x0 ≡ 12 mod 75.

(b) Find a formula for all incongruent solutions mod 75. [5 pts]

Solution:

The set of all solutions mod 75 is:

x ≡ 12 +
75

gcd(75, 20)
k mod 75 k = 0, 1, ..., gcd(75, 20)− 1

x ≡ 12 + 15k mod 75 k = 0, 1, ..., 5− 1

(c) Find the set of least nonnegative residues of all the incongruent solutions mod 75. [5 pts]

Solution:

We have:
x ∈ {12, 27, 42, 57, 72}



2. Suppose the linear congruence 40x ≡ 12 mod m does not have any solutions. What must the [10 pts]
prime factorization of m look like?

Solution:

There are solutions iff gcd(40,m) | 12 and therefore no solutions if gcd(40,m) - 12.

Since gcd(40,m) = 2a5b for 0 ≤ a ≤ 3 and 0 ≤ b ≤ 1 and since 2a5b - 12 when a ≥ 3 or b = 1,
this will happen precisely when a = 3 or b = 1, meaning m must either be divisible by 8 or by
5 (or both).

Thus m = 2α5βQ where α ≥ 3 or β ≥ 1.

3. Calculate each of the following:

(a) φ(6 · 10 · 20) [5 pts]

Solution:

We have:

φ(6 · 10 · 20) = φ(24 · 3 · 52) = 24 · 3 · 52
(

1− 1

2

)(
1− 1

3

)(
1− 1

5

)
(b) τ(5!) [5 pts]

Solution:

We have 5! = 5 · 4 · 3 · 2 · 1 = 23 · 3 · 5 and so:

τ(5!) = (3 + 1)(1 + 1)(1 + 1)



4. Use the Chinese Remainder Theorem to find the three smallest nonnegative solutions to the [10 pts]
system:

x ≡ 3 mod 5

x ≡ 1 mod 6

x ≡ 4 mod 7

Solution:

Let M = (5)(6)(7) = 210 and then m1 = 42, m2 = 35 and m3 = 30. We then solve:

• 42y1 ≡ 1 mod 5 so 2y1 ≡ 1 mod 5 so y1 = 3.

• 35y2 ≡ 1 mod 6 so 5y2 ≡ 1 mod 6 so y2 = 5.

• 30y3 ≡ 1 mod 7 so 2y3 ≡ 1 mod 7 so y3 = 4.

Thus there is a unique solution mod 210 which is:

x ≡ (3)(3)(42) + (1)(5)(35) + (4)(4)(30) mod 210

≡ 193 mod 210

Thus the three smallest nonnegative solutions are 193, 193 + 210, and 193 + 420.



5. Use Wilson’s Theorem and Fermat’s Little Theorem to find to the least nonnegative residue: [10 pts]

25! · 886 mod 29

Solution:

First observe that by Wilson’s Theorem:

28! ≡ −1 mod 29

(28)(27)(26)25! ≡ −1 mod 29

(−1)(−2)(−3)25! ≡ −1 mod 29

(−6)25! ≡ −1 mod 29

(6)25! ≡ 1 mod 29

(5)(6)25! ≡ 5 mod 29

25! ≡ 5 mod 29

Then observe by Fermat’s Little Theorem since 29 is prime that 828 ≡ 1 mod 29 and so:

886 = 828(3)+2 =
(
828

)3
82 ≡ (1)382 ≡ 64 ≡ 6 mod 29

Together then:

25! · 886 ≡ 5 · 6 ≡ 30 ≡ 1 mod 29



6. Find, with evidence, all n with φ(n) = 10. [10 pts]

Note: If you’re getting loads of things to check then you’re doing something wrong. This is
quite manageable!

Solution:

If pk appears in the PF of n then (p− 1) | φ(n) = 10 so p− 1 = 1, 2, 5, 10 and so p = 2, 3, 6, 11,
but p must be prime so that p = 2, 3, 11. Thus so far we have n = 2a · 3b · 11c with a, b, c ≥ 0.

(a) If a > 0 then 2a−1 | φ(n) = 10 so 2a−1 = 1, 2 so a− 1 = 0, 1, 2 so a = 1, 2. Thus we could
have a = 0, 1, 2.

(b) If b > 0 then 3b−1 | φ(n) = 10 so 3b−1 = 1 so b − 1 = 0 so b = 1. Thus we could have
b = 0, 1.

(c) If c > 0 then 11c−1 | φ(n) = 10 so 11c−1 = 1 so c − 1 = 0 so c = 1. Thus we could have
c = 0, 1.

Thus there are 12 to check:

φ(20 · 30 · 110) = 1

φ(20 · 30 · 111) = 10

φ(20 · 31 · 110) = 2

φ(20 · 31 · 111) = 20

φ(21 · 30 · 110) = 1

φ(21 · 30 · 111) = 10

φ(21 · 31 · 110) = 2

φ(21 · 31 · 111) = 20

φ(22 · 30 · 110) = 2

φ(22 · 30 · 111) = 20

φ(22 · 31 · 110) = 4

φ(22 · 31 · 111) = 40

The only possibilities are then 11 and 22.



7. Suppose a ∈ Z+ and n = 2a. If 2a+1 − 1 is prime, prove that σ(σ(n)) = 2τ(n). [10 pts]

Note: Don’t overcomplicate, just calculate!

Solution:

Observe that:

σ(n) = σ(2a) =
2a+1 − 1

2− 1
= 2a+1 − 1

Then since 2a+1 − 1 is prime we have:

σ(σ(n)) = σ(2a+1 − 1) = 1 + 2a+1 − 1 = 2a+1

Also then consider that:

τ(n) = a+ 1

The result follows.



8. Prove that there are infinitely many even abundant numbers by finding one abundant number [10 pts]
and by proving that if n is abundant and a prime p satisfies p - n then pn is also abundant.

Solution:

For example 12 is abundant since σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28 > 2(12).

If p - n then gcd(p, n) = 1 and so

σ(pn) = σ(p)σ(n) = (p+ 1)σ(n) > (p+ 1)2n = 2np+ 2n > 2pn

thus pn is abundant.



9. Prove that if p is an odd prime then: [10 pts]

12 · 32 · 52 · ... · (p− 2)2 ≡ (−1)(p+1)/2 mod p

Note: This is not obvious, so definitely do this problem last!

Solution:

By Wilson’s Theorem we have:

(p− 1)! ≡ −1 mod p

W write this out:

1 · 2 · 3 · 4... · (p− 3) · (p− 2) · (p− 1) ≡ −1 mod p

Note that there are p − 1 values total. If we rewrite the (p − 1)/2 even values (every other
value):

2 ≡ −(p− 2)

4 ≡ −(p− 4)

...
...

p− 3 ≡ −(p− (p− 3)) ≡ −3

p− 1 ≡ −(p− (p− 1)) ≡ −1

We get:

1 · (−(p− 2)) · 3 · (−(p− 4))... · (−3) · (p− 2) · (−1) ≡ −1 mod p

Then we collect all the negatives and construct squares:

(−1)(p−1)/212 · 22 · 32 · ... · (p− 2)2 ≡ −1 mod p

Then collect the −1s on the right:

12 · 32 · 52 · ... · (p− 2)2 ≡ (−1)(p+1)/2 mod p


