
Math 406 Section 11.1: Quadratic Residues and Nonresidues

1. Introduction: There’s a reasonable reason to jump from Chapter 9 to Chaper 11 which is
that both sections concern themselves with solutions to equations. Chapter 11 is much more
specific and essentially attempts to address the question:

Which integers are perfect squares mod m?

For example if p = 7 which integers are perfect squares? We could of course work backwards,
squaring everything:

{0, 1, 2, 3, 4, 5, 6}2 ≡ {0, 1, 4, 2, 2, 4, 1} mod 7

Then we’d know that {0, 1, 2, 4} are all perfect squares. But how could we approach this in
general?

2. Quadratic Residues and Nonresidues

The following definitions do not correspond exactly with the concept of being a perfect square
but they’re the simplest approach that allows us to develop some formulas.

Definition:

Suppose gcd (a,m) = 1. We say that a ∈ Z is a quadratic residue (QR) mod m if x2 ≡ a mod m
has a solution, meaning a is a perfect square.

Definition

Otherwise we say a is a quadratic nonresidue (QNR) mod m. Sometimes I’ll abbreviate QR
and QNR.

Note:

If gcd (a,m) 6= 1 then a is neither a QR nor a QNR. The definitions simply don’t apply.

Example:

The quadratic residues mod 7 are {1, 2, 4} while the quadratic nonresidues are {3, 5, 6}. Ac-
cording to our definition 0 is neither because it’s not coprime to 7.

Example:

Mod m = 10 we have:

{02, 12, 22, 32, 42, 52, 62, 72, 82, 92} ≡ {0, 1, 4, 9, 6, 5, 6, 9, 4, 1} mod 10

The quadratic residues mod 10 are {1, 9} while the quadratic nonresidues are {3, 7}. According
to our definition {0, 2, 4, 5, 6, 8} are neither because they’re not coprime to 10.

3. Primes v Composites

The previous example is slightly annoying because we’d think of 4 as a perfect square mod 10,
which it is, but it’s not a quadratic residue.

However when the modulus is a prime p then because all of {1, ..., p − 1} are coprime to p
the concept of being a quadratic residue and being a perfect square correspond, except for
a ≡ 0 mod p which is neither.



4. Quadratic Residues and Nonresidues for Primes - Some Theorems

(a) Theorem:

If p is an odd prime and a ∈ Z with p - a (so gcd (p, a) = 1), then x2 ≡ a mod p either
has no solutions or two incongruent solutions mod p.

Proof:

If there are no solutions we are done. If x is one solution then x2 ≡ a mod p and
then note that (−x)2 ≡ a mod p and so −x is another solution. It is different because
x ≡ −x mod p would imply that p | 2x but since p - 2 this means that p | x and so p | x2

and so x2 ≡ 0 mod p and so a ≡ 0 mod p which contradicts p - a.

But what if there are more than two? Suppose x1 and x2 are any two solutions, then
x2
1 ≡ a ≡ x2

2 mod p and so p | (x2
1 − x2

2) = (x1 − x2)(x1 + x2) which tells us that either
p | (x1 − x2) or p | (x1 + x2). The first gives us x1 ≡ x2 mod p and the second gives us
x1 ≡ −x2 mod p. Thus there can only be the two which are the negatives of one another.
QED

(b) Theorem:

If p is an odd prime then there are exactly (p − 1)/2 quadratic residues and (p − 1)/2
quadratic nonresidues mod p.

Proof:

If we square all of {1, 2, ..., p − 1} mod p we will get values in {1, 2, ..., p − 1} (only 02

yields 0 mod p). We know that each result will occur twice and so there will (p − 1)/2
quadratic residues. The remaining will be the quadratic nonresidues. QED

(c) Theorem:

Let p be an odd prime and r be a primitive root of p (primes always have primitive roots).
Then any a with p - a is a quadratic residue of p iff indra is even.

Proof:

⇐=: If indra is even then observe that
(
r

1
2 indra

)2
≡ a mod p and so a is a quadratic

residue mod p.

=⇒: Suppose a is a quadratic residue mod p so there exists some x with x2 ≡ a mod p.
Then we take the index of both sides to get indrx

2 ≡ indra mod p − 1 and so 2indrx ≡
indra mod p−1. From here we see indra = 2indrx+k(p−1) for some k ∈ Z and so since
p− 1 is even we know indra is even. QED
Example:

Here is a table of indices for r = 6, a primitive root of p = 11:

x 1 2 3 4 5 6 7 8 9 10
ind6x 0 9 2 8 6 1 3 7 4 5

The theorem tells us that mod 11 the quadratic residues are {1, 3, 4, 5, 9} (even indices)
while the quadratic nonresidues are {2, 6, 7, 8, 10} (odd indices).



5. The Legendre Symbol and Properties

(a) Notation:

If p is an odd prime and a ∈ Z with p - a. We define the Legendre symbol :(
a

p

)
=

{
1 iff a is a quadratic residue mod p iff x2 ≡ a mod p has (two) solutions

−1 iff a is a quadratic nonresidue mod p iff x2 ≡ a mod p has no solutions

Note:

We’ll use the terms numerator and denominator even though these aren’t fractions.

Example:

We have: (
1

7

)
=

(
2

7

)
=

(
4

7

)
= 1 and

(
3

7

)
=

(
5

7

)
=

(
6

7

)
= −1

(b) Theorem (Euler’s Criterion):

If p is an odd prime and a ∈ Z with p - a then:(
a

p

)
≡ a(p−1)/2 mod p

Proof:

Suppose
(

a
p

)
= 1 and so let x satisfy x2 ≡ a mod p. Then we also have:

a(p−1)/2 ≡
(
x2
)(p−1)/2

= xp−1 ≡ 1 mod p

The last equality is by Fermat’s Little Theorem. Thus they are equal.

On the other hand suppose
(

a
p

)
= −1. First note that for each x ∈ {1, 2, ..., p− 1} there

is some unique y ∈ {1, 2, ..., p− 1} with xy ≡ a mod p (because it is a linear congruence
with variable y and gcd (x, p) = 1 | a). Moreover y 6≡ x mod p otherwise we would have

x2 ≡ a mod p, contradicting
(

a
p

)
= −1.

Therefore the values 1, 2, ..., p−1 group into (p−1)/2 pairs each of which have a product
of a taken mod p. That is:

(1)(2)...(p− 1) ≡ a(p−1)/2 mod p

But Wilson’s Theorem states that:

(p− 1)! ≡ −1 mod p

The result follows. QED
Example:

We have: (
6

11

)
≡ 6(11−1)/2 ≡ 65 ≡ 10 ≡ −1 mod 11

and so 6 is a quadratic residue mod 11.



(c) Theorem (Properties):

If p is an odd prime and a ∈ Z with p - a and p - b, then:

i. If a ≡ b mod p then
(

a
p

)
=
(

b
p

)
. This states that we can reduce the numerator mod

the denominator.

ii.
(

ab
p

)
=
(

a
p

)(
b
p

)
iii.

(
a2

p

)
= 1

Proof:

i. Clear because x2 ≡ a mod p iff x2 ≡ b mod p because a ≡ b mod p.

ii. We have: (
ab

p

)
≡ (ab)(p−1)/2 mod p

≡ a(p−1)/2b(p−1)/2 mod p

≡
(
a

p

)(
b

p

)
mod p

Now then since p ≥ 3 and p |
[(

ab
p

)
−
(

a
p

)(
b
p

)]
but that difference can only be −2,

0 or 2 (because the two terms can only be ±1) we must have that difference being 0.

iii. Follows immediately from ii.

(d) Gauss’ Lemma:

Suppose p is an odd prime and a ∈ Z with p - a. If s is the number of least positive residues

of {a, 2a, 3a, ..., ((p− 1)/2)a} mod p which are greater than p/2 then
(

a
p

)
= (−1)s.

Proof:

Omit. This proof is fairly lengthy. QED
Note:

This is a fairly bizarre theorem devoid of much intuition but it’s good to do an example.

Example:

Consider p = 13 with a = 8. We have (p− 1)/2 = 6 and so we examine:

{a, 2a, 3a, 4a, 5a, 6a} = {8, 16, 24, 32, 40, 48} ≡ {8, 3, 11, 6, 1, 9} mod 13

Since 3 of these are greater than p/2 = 6.5 we have
(

8
13

)
= (−1)3 = −1. Thus 8 is a

quadratic nonresidue mod 13.



6. Special Cases: -1 and 2

(a) Theorem (When is −1 a QR mod p?):

If p is an odd prime then: (
−1

p

)
=

{
1 if p ≡ 1 mod 4

−1 if p ≡ 3 mod 4

Proof:

By Euler’s Criterion we have: (
−1

p

)
≡ (−1)(p−1)/2 mod p

If p ≡ 1 mod 4 then p = 4k + 1 for some k ∈ Z and so:

(−1)(p−1)/2 = (−1)(4k+1−1)/2 = (−1)2k = 1

If p ≡ 3 mod 4 then p = 4k + 3 for some k ∈ Z and so:

(−1)(p−1)/2 = (−1)(4k+3−1)/2 = (−1)2k+1 = −1

QED
(b) Theorem (When is 2 a QR mod p?):

If p is an odd prime then: (
2

p

)
=

{
1 if p ≡ 1, 7 mod 8

−1 if p ≡ 3, 5 mod 8

Proof:

Omitted as it’s fairly lengthy.

Note:

This is equivalent to: (
2

p

)
= (−1)(p

2−1)/8


