Math 406 Section 11.2: Quadratic Reciprocity and Calculation Examples

- 1. **Introduction:** The Law of Quadratic reciprocity establishes that for primes p and q there is a connection between when p is quadratic residue mod q and when q is a quadratic residue mod p.
- Theorem (Law of Quadratic Reciprocity): Suppose p and q are distinct odd primes, then:

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)}$$

Note: In terms of practical computational application this can be better stated as:

$$\left(\frac{p}{q}\right) = \begin{cases} \left(\frac{q}{p}\right) & \text{if } p \equiv 1 \mod 4 \text{ or } q \equiv 1 \mod 4 \\ -\left(\frac{q}{p}\right) & \text{if } p \equiv 3 \mod 4 \text{ and } q \equiv 3 \mod 4 \end{cases}$$

Note: Both the numerator and denominator must be prime in order to use this.

Proof: Omitted due to length.

QED

- 3. Calculation: If we combine this along with a few facts from before:
 - (a) For simple values we can just trial-and-error.
 - (b) If $a \equiv b \mod p$ then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$. This states that we can reduce the numerator mod the denominator. Call this "reducing".
 - (c) $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$ Call this "splitting".
 - (d) $\left(\frac{a^2}{p}\right) = 1$ Call this the "square rule".
 - (e) If p is an odd prime then:

$$\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \mod 4\\ -1 & \text{if } p \equiv 3 \mod 4 \end{cases}$$

Call this the "-1 rule".

(f) If p is an odd prime then:

Call this the "2 rule".

We can then go on to calculate a fairly large number of Legendre symbols:

Example: Let's calculate $\left(\frac{48}{29}\right)$:

$$\left(\frac{48}{19}\right) = \left(\frac{19}{29}\right)$$
 by reducing

$${48 \choose 19} = {19 \choose 29}$$
 by reducing.
 ${19 \choose 29} = {29 \choose 19}$ by the LoQR since $29 \equiv 1 \mod 4$.
 ${29 \choose 19} = {10 \choose 19}$ by reducing.
 ${10 \choose 19} = {2 \choose 19} \left({5 \over 19}\right)$ by splitting.

$$\left(\frac{29}{19}\right) = \left(\frac{10}{19}\right)$$
 by reducing

$$\begin{pmatrix} \frac{19}{19} \end{pmatrix} = \begin{pmatrix} \frac{29}{19} \end{pmatrix} \begin{pmatrix} \frac{5}{19} \end{pmatrix}$$
 by splitting.

We then do these separately. First:

$$\left(\frac{2}{19}\right) = -1$$
 by the 2 rule because $19 \equiv 3 \mod 8$.

Second:

$$\left(\frac{5}{19}\right) = \left(\frac{19}{5}\right)$$
 by the LoQR since $5 \equiv 1 \mod 4$. $\left(\frac{19}{5}\right) = \left(\frac{4}{5}\right)$ by reducing. $\left(\frac{4}{5}\right) = 1$ by the square rule.

$$\left(\frac{19}{5}\right) = \left(\frac{4}{5}\right)$$
 by reducing

$$\left(\frac{4}{5}\right) = 1$$
 by the square rule

Thus
$$\left(\frac{48}{29}\right) = (-1)(1) = -1$$
.

Example: Let's calculate $\left(\frac{105}{1009}\right)$. Note that 105 is not prime so we cannot use the LoQR

$$\left(\frac{105}{1009}\right) = \left(\frac{3}{1009}\right) \left(\frac{5}{1009}\right) \left(\frac{7}{1009}\right)$$
 by splitting.

We then do these separately. First:

We then do these separately. First,
$$\left(\frac{3}{1009}\right) = \left(\frac{1009}{3}\right)$$
 by LoQR since $1009 \equiv 1 \mod 4$. $\left(\frac{1009}{3}\right) = \left(\frac{1}{3}\right)$ by reducing. $\left(\frac{1}{3}\right) = 1$

Second:

$$\left(\frac{5}{1009}\right) = \left(\frac{1009}{5}\right)$$
 by LoQR since $1009 \equiv 1 \mod 4$. $\left(\frac{1009}{5}\right) = \left(\frac{4}{5}\right)$ by reducing. $\left(\frac{4}{5}\right) = 1$ by the square rule.

$$\left(\frac{1009}{5}\right) = \left(\frac{4}{5}\right)$$
 by reducing.

$$\left(\frac{-7}{7}\right) = \left(\frac{7}{7}\right)$$

Thus
$$\left(\frac{105}{1009}\right) = (1)(1)(1) = 1$$
.