
Math 406 Section 3.5: The Fundamental Theorem of Arithmetic

1. Theorem (The Fundamental Theorem of Arithmetic): Every positive integer greater than 1
can be written uniquely as a product of powers of primes Here ”uniquely” means up to the order of
the multiplication.

Example: 20 = 22 · 5 and that’s the only way. Writing 20 = 5 · 22 is equivalent.

(a) Lemma: If a, b, c ∈ Z+ and gcd (a, b) = 1 then if a | bc then a | c
Proof: Put 1 = αa+ βb then c = cαa+ cβb. Since a | bc we have a | c. QED

(b) Lemma: If p | a1...an where p is prime, then ∃i such that p | ai.
Proof: By induction on n. QED

(c) Proof of FToA: We prove that each positive integer greater than 1 can be written as a product
of powers of primes and then we show it is unique.

For the first part we use contradiction. Suppose there are positive integers greater than 1 which
cannot be written as a product of powers of primes. Let n be the smallest such integer by well-
ordering. If n is prime then we’re done. If n is not prime then n = ab with 1 < a < n and
1 < b < n. But then a and b are products of powers of primes and so n = ab is, a contradiction.

For uniqueness suppose we have an integer n > 1 with two distinct factorizations into powers of
primes. Expanding out the powers we have:

n = p1p2...pi = q1q2...qj

We can cancel any common primes so suppose we have done so to get products of distinct primes
which we’ll denote using the same notation in a real abuse of notation for convenience:

p1p2...pi = q1q2...qj

But now p1 | q1...qj so that p1 divides one of the qj , a contradiction. QED

2. Uses:

(a) Theorem: For a, b ∈ Z we have a | b iff whenever pα appears in the prime factorization of a then
pβ with β ≥ α appears in the prime factorization of b.
Proof: For the backwards direction suppose we have a = pα1
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k B with βi ≥ αi for each i and with B being any primes in b but not in a. Then
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and so a | b. For the forward direction suppose a | b. Suppose pα appears in the prime factorization
of a and pβ appears (or doesn’t) in the prime factorization of b with 0 ≤ β < α. We can write
a = pαA and b = pβB where A and B are all the other prime powers. Then we have some c ∈ Z
with:

ac = b

pαAc = pβB

pα−βAc = B

These two numbers are identical and therefore must have the same prime factorization. However
there are p on the left (since α− β > 0) but not on the right. This is a contradiction. QED



(b) Theorem: The positive divisors of n are those integers whose prime power factorizations have
the same primes as n with powers less than or equal to those powers occuring in n.
Proof: This follows from the previous theorem. QED
Example: Suppose n = 23 · 52 · 7. Then the positive divisors of n are those integers of the form
2a · 5b · 7c with 0 ≤ a ≤ 3 and 0 ≤ b ≤ 2 and 0 ≤ c ≤ 1. Notice that there are (4)(3)(2) = 24 such
choices and therefore 24 such factors.

(c) Theorem: The greatest common divisor of two integers equals the integer whose prime power
factorization contains primes common to both prime power factorizations each with a power equal
to the minimum power occurring in those two.
Proof: The greatest common divisor is a divisor of both and therefore the prime factorization of
the gcd can contain only primes that appear in both and those primes can only appear with at
most the minimum power appearing in both. The greatest common divisor will then be obtained
by choosing as many primes as possible with the minimum power appearing. QED
Example: If a = 23 · 74 · 11 and b = 22 · 75 · 132 then gcd (a, b) = 22 · 74.

(d) Theorem: The least common multiple of two integers equals the integer whose prime power
factorization contains primes occurring in either prime power factorization each with a power
equal to the maximum power occurring in those two.
Proof: The least common multiple is a multiple of both and therefore the prime factorization of
the lcm must contain all the primes that appear in both and those primes must appear with at
least the minimum power appearing in each. The least common multiple will then be obtained
by choosing as few primes as possible with the maximum power appearing. QED
Example: If a = 23 · 74 · 11 and b = 22 · 75 · 132 then gcd (a, b) = 23 · 75 · 11 · 132.

(e) Theorem: For integers a, b not both zero we have ab = gcd (a, b)lcm (a, b).
Proof: This follows from the previous two theorems since for each prime the sum of the powers
equals the maximum plus the minimum. QED

(f) Theorem: Suppose n1, n2 ∈ Z with gcd (n1, n2) = 1. Suppose d | n1n2. Then d = d1d2 with
gcd (d1, d2) = 1 and d1 | n1 and d2 | n2.
Outline of Proof: For the first part: If a prime power pa occurs in d then it occurs in n1n2 to
the same power or higher. Since n1 and n2 are relatively prime we put pa in d1 iff p occurs in n1
and in d2 iff p occurs in n2. QED
Note: This is not true without the relative primality. For example if n1 = 10 and n2 = 4 and
d = 20 then d | n1n2 but there is no way to allocate the primes in 20 into those in n1 and those
in n2.


