Math 406 Section 4.2: Solving Linear Congruences

1. Introduction:

Solving congruences is hard and so we will begin with linear congruences:

ar = b mod m

2. Do Solutions Exist:
Consider that for x € Z we have ax = b mod m iff there is some y € Z such that
ar+my =2>

in other words if b is a linear combination of @ and m, and this will happen exactly when ged (a,m) | b.

So for starters we can say that ax = b mod m has solutions iff ged (a, m) | b.

3. Finding One Solution:

Once we know this, how can we find one solution for starters? Well we can use the Euclidean Algorithm
to solve az’ + my’ = ged (a, m) and then scale both sides to get b on the right and then the coefficient
of a will be our z. We'll typically call this zy and write it as the least nonnegative residue mod m.

Example:

Consider 4z = 6 mod 50. We have ged (4,50) = 2 | 6 so that solutions exist. First we use the Euclidean
Algorithm to solve:

4z’ + 50y =2
This gives us '’ = —12 and y’ = 1, in other words:
4(—12) +50(1) = 2

and hence:

4(—36) +50(3) =6
So one solution is x = —36 and we can see this:
4(—36) = 6 mod 50

We’ll replace this by the least nonnegative residue xg = 14 mod 50.



4. Finding All Solutions:

So now we need to ask if there are other solutions. Suppose we have one, so we have axg = b mod m.
What can we say if = is another solution?

Well suppose x € Z is another solution, then we can say:

ar =bmod m

which by subtracting implies:

a(x — x9) = 0 mod m

This then implies that:

x — x9 = 0 mod m/ged (m, a)

And this implies that:

m:xo—i—k( ))forkEZ.
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So we know that if we have another solution then the solution must look like this. However are all
these solutions and do they differ?

Well, suppose that we choose k € Z and let:
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Then observe that:
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= b+ k(lem (m,a)) mod m

= b+ k(0) mod m
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Thus all of these are in fact solutions.



5. Incongruent solutions mod m
Lastly, when are they unique mod m?

Well first suppose that we have two solutions, one with k£ and one with k3. Then if the solutions are
congruent mod m then:
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k1 = ko mod ged (m, a)

(Note that ged (m, m/ged(m,a)) = m/ged(m, a) since m/ged(m,a) divides both.)
On the other hand if k1 = k2 mod ged (m, a) then k; = ko + aged (m, a) for some « € Z and then:
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It follows that solutions differ iff k; #Z ks mod ged (m, a).



6. Summary Theorem:

The linear congruence ax = b mod m has solutions iff ged (a,m) | b. If it does then one solution xy can
be found via the Euclidean Algorithm and then there are ged (m, a) distinct solutions mod m which
are given by:

xzxo—i—k(m) mod m for k=0,1,...,ged (m,a) — 1

It’s typical that for small lists of solutions we will explicitly list each and replace each with its least
nonnegative residue if necessary. For large lists of solutions this can get a bit unwieldy.

(a)

Example:

Our example from earlier, 4¢ = 6 mod 50, has ged (4,50) = 2 | 6 and so there are exactly two
distinct solutions mod 50. We found one to be xy = 14 and therefore all solutions have the form:

x514+k<m) mod 50 for k =0, 1

That is * = 14 4 25k mod 50 for k£ = 0,1, or z = 14, 39 mod 50.

Example:

Consider the linear congruence 20z = 15 mod 65. Since ged (20,65) = 5 | 15 there are exactly 5
distinct solutions mod 65.

We can obtain one by first using the Euclidean Algorithm to solve:
20z’ + 65y =5

This gives us:

20(—3) +65(1) =5

Hence:

20(—9) + 65(3) = 15

Thus we have 20(—9) = 15 mod 65 and so xg = —9 mod 65 is one solution but we could use the
least nonnegative residue solution xy = 56 mod 65.

Therefore all solutions have the form:

xz56+k(god(6675572m) mod 65 for k = 0,1,2,3,4

That is x = 56 + 13k mod 65 for £ = 0,1,2,3,4. If we did want to replace these by their least
nonnegative residues we would need to list them as x = 56,69, 82,95,108 mod 65 and replace
them to get x = 56,4, 17, 30,43 mod 65.



