
Math 406 Section 6.1: Inverses, Wilson’s Theorem and Fermat’s Little Theorem

1. Inverses: Notice that 2 ·3 ≡ 1 mod 5. We say that 2 and 3 are (multiplicative) inverses of one another
mod 5. Similarly 3 · 3 ≡ 1 mod 8 so 3 is its own inverse mod 8.

Existence of Inverses: For a modulus m the integer a has an inverse iff gcd (a,m) = 1.

Proof

Well, a has an inverse iff ax ≡ 1 mod m has a solution which will only occur if gcd (a,m) = 1. Note
that this inverse is unique mod m because there will be only one solution. QED
Example: If m = 20 then a = 1, 3, 7, 9, 11, 13, 17, 19 have inverses. In fact 1, 9, 11, 19 are their own
inverses 3, 7 are inverses of one another and 13, 17 are inverses of one another:

1 · 1 ≡ 9 · 9 ≡ 11 · 11 ≡ 19 · 19 ≡ 3 · 7 ≡ 13 · 17 ≡ 1 mod 20

Inverses mod primes: For a prime modulus p every one of 1, ..., p− 1 has an inverse and 1 and p− 1
are the only two which are their own inverses.

Proof: The first follows because all of 1, ..., p − 1 are coprime to p and the second was proved on a
homework. More specifically if a2 ≡ 1 mod p then a ≡ ±1 mod p. QED

2. Wilson’s Theorem: If p is prime then (p− 1)! ≡ −1 mod p.

Proof:

The case where p = 2 is trivial to show so let’s look at primes p ≥ 3.

Consider the numbers 1, 2, 3, ..., p − 1. We’ve seen that 1 and p − 1 are their own inverses and all of
2, ..., p− 2 pair up as inverses.

(p− 1)! = 1 · 2 · 3 · ... · (p− 2)︸ ︷︷ ︸
Pair as inverses

·(p− 1) ≡ 1 · (products of 1s) · (p− 1) ≡ −1 mod p

QED
Wilson’s Theorem can be used to simply other factorials.

Example: To find the least nonnegative residie of 20! mod 23 note that:

22! ≡ −1 mod 23

(22)(21)20! ≡ −1 mod 23

(−1)(−2)20! ≡ −1 mod 23

(−1)(−1)(−2)20! ≡ (−1)(−1) mod 23

(−2)20! ≡ 1 mod 23

(−12)(−2)20! ≡ (−12) mod 23

20! ≡ 11 mod 23



3. Fermat’s Little Theorem: If p is a prime and a ∈ Z with p - a then ap−1 ≡ 1 mod p.

Proof:

The set {0, 1, 2, 3, ..., p− 1} is a complete set of residues mod p. Since p - a we know gcd (a, p) = 1 and
so (by an earlier theorem) the set {0, a, 2a, 3a, ..., (p− 1)a} is also a complete set of residues mod p.

There is then a 1-1 matching of these via congruence mod p. Since the 0s are congruent to one another,
the remaining values must be congruent in some order. We don’t know what the order is but we do
know that if we multiply the remaining values we will get the same result mod p:

a · 2a · ... · (p− 1)a ≡ 1 · 2 · ... · (p− 1) mod p

ap−1 · 1 · 2 · ... · (p− 1) ≡ 1 · 2 · ... · (p− 1) mod p

ap−1 ≡ 1 mod p

Notice that we can cancel all of the 1, 2, ..., p−1 without affecting the modulus because they are coprime
to p. QED
Example: Suppose we wanted the least nonnegative residue of 5123 mod 13. Since 13 - 5 we have
512 ≡ 1 mod 13 and so

5123 ≡ 512(10)+3 ≡ (512)1053 ≡ (1)1053 ≡ 53 ≡ 125 ≡ 8 mod 5

Theorem: If p is a prime and a ∈ Z then ap ≡ a mod p.
Proof: If p - a then we take FLiT and multiply both sides by a. If p | a then both sides are 0 mod p
and the result follows. QED


