Math 406 Section 7.1: Multiplicative Functions and ¢

1. Introduction: We see that Euler’s Theorem is useful for doing modular exponentiation but
it relies upon us calculating ¢(m) and it may not be clear how we can do this easily.

2. Function Definitions:

(a) Definition: A function is arithmetic if it is defined for all positive integers.

(b) Definition: An arithmetic function f is multiplicative if f(mn) = f(m)f(n) whenever
ged (m,n) = 1.

(¢) Definition: An arithmetic function f is completely multiplicative if f(mn) = f(m)f(n)
for all m,n.
Obviously a completely multiplicative function is multiplicative.

(d) Notes and Examples:
The function f(x) = x is completely multiplicative and hence multiplicative as is f(x) =
2" for any r. For example if f(z) = 2 then f(mn) = (mn)3 = m3n3 = f(m)f(n).
Most functions are not multiplicative or even completely multiplicative, for example
f(x) =2+ 1 is not, since f(3-5) # f(3)f(5).
Consider that it is difficult to think of a function which is multiplicative but not completely
multiplicative.

3. Theorem: If f is multiplicative then if n = p{"...pp* is the prime factorization of n then

fn) = f o1 o) = fF(01) - f (")

Proof: Follows from the definition of multiplicative. QED
4. All About ¢

(a) Theorem: For a prime p we have ¢(p) =p — 1.
Proof: All of 1,2,....,p — 1 are coprime to p. QED

(b) Theorem: For a prime p we have ¢(p®) = p® — p®~1 = p° (1 - %)
Proof: Out of the integers 1,2, 3, ..., p® the only ones not coprime to p are the multiples
of p itself. Those are p,2p, 3p, ...,p> 'p and so there are p®~! of these. The remaining
ones are coprime and there are p® — p®~! of these. QED

Example: We have ¢(125) = ¢(5%) = 5% — 52 = 100.
Example: We have ¢(256) = ¢(28) = 2% — 27 = 256 — 128 = 128.



()

Theorem: ¢ is multiplicative.

Proof: We wish to show that ¢(mn) = ¢(m)p(n) when ged (m,n) = 1. Basically what
we’ll do is count which of 1,2,3,...,mn are coprime to mn. To do this let’s write these
numbers out as a table:

Rowl= Om+1 1m+1 2m+1 ... (n—1)m+1
Row2= O0m+2 1Im+2 2m+2 ... (n—1)m+2
Rowm = Om+m 1lm+m 2m+m ... (n—1)m+m=mn

Consider a particular row, say row r with 1 <r < m:

Rowr = Om+r,Im+r2m+r,..,(n—1)m+r

An entry in this row looks like km +r for 0 < k <n — 1.

If ged (r,m) # 1 then ged (km + 7, m) = ged (r,m) # 1 and then ged (km + r,mn) # 1.
This means if ged (r,m) # 1 we would not count any entry in that row since none of them
are coprime to mn.

Thus we can ignore all rows with ged (r,m) # 1.

Let R with 1 < R < m be a row with ged (R, m) = 1. Notice that every entry in such a
row is coprime to m since ged (km + R, m) = ged (R, m) = 1.

There are ¢(m) such rows with ged (R,m) =1

In such a row R consider that the set {0,1,2,...,n — 1} forms a complete set of residues
mod n and since ged (m,n) = 1 so does the set {Om+ R, 1m+R,2m+R, ...,(n—1)m+R}
by a Theorem from class. It follows that out of these n integers ¢(n) of them are coprime
to n. Since (by being in this row) they are coprime to m as well, they are coprime to mn.
In conclusion ¢(m) rows with ¢(n) entries per row gives us a total number coprime to

mn of ¢(m)¢(n) and thus ¢p(mn) = ¢(m)d(n). QED
Corollary: If n = p{"...pp* then:

(n) =f[ (e —pi") =ﬁp§“_1 (pi—1) = ﬁpa (1— 1) Z”ﬁ (1— 1)

i=1 =1 i=1

® (i)

Proof: Follows immediately by calculation. QED
Note: Each of these forms is useful in its own way, especially (i) and (ii).
Example: To find ¢(432) we find 432 = 24 - 3% and so by (ii):

$(432) = 432 (1 - ;) (1 - ;) =144

Example: To find ¢(45375) we find 45375 = 3 - 53 - 112 and so by (ii):

1 1 1
¢(45375) = 45375 (1 - 3> (1 - 5) (1 - 11) = 22000



Example: Let’s find all n with ¢(n) = 6. If p* appears in the prime factorization of
n then by (i) we have p — 1 | ¢(n) and p®~! | ¢(n). Since ¢(n) = 6 in order to have
p—1|6 we can only have p—1 = 1,2, 3,6 with p prime so only p = 2,3,7. Thus we have
n=2%.3".7°

e Since 2¢ | n if a > 0 then we have 2%~ | ¢(n) = 6 and so possibilities are a = 0,1,2

e Since 3° | n if b > 0 then we have 3°~! | ¢(n) = 6 and so possibilities are b = 0,1, 2.

e Since 7¢ | n if ¢ > 0 then we have 771 | ¢(n) = 6 and so possibilities are ¢ = 0, 1.
Now then, not all of these will work since they’re necessary but not sufficient. it’s possible
to argue further but it’s easier to just check the cases now:
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Thus n =17,9,14, 18 are all that work.



5. Definition: For an arithmetic function f we define the divisor summatory function

F(n)=> f(d)
d

Example: For a function f we would have f(12) = f(1) + f(2) + f(3) + f(4) + f(6) + f(12).

6. Theorem: If ® is the divisor summatory function for ¢:

®(n) =Y ¢(d)

d|n
then ®(n) = n.
Proof: For each d | n we define:
Cqg={m|1<m <n,ged (m,n) =d}

By definition each 1 < m < n is in one and only one Cy and in fact m € Cy iff ged (m,n) =d
iff ged (m/d,n/d) =1 and hence |Cy| = ¢(n/d) and so:

n=> |Cal=Y_d|ng(n/d)
d|n

However as d runs over all divisors of n so does n/d and so:
n=3"d|né(n/d) =3 d|ns(d) = @(n)

QED

This is less confusing than it may look. Consider n = 20. The divisors of 20 are 1, 2,4, 5, 10, 20.
If we take all of 1,2,3,...,20 and separate them according to their gcd with 20 into divisor
buckets:

Divisor d  Cy (20/d)
1 Ci=11,3,7,9,11,13,17,197 _ $(20/1) = (20) = 8
2 Cy = {2,6,14,18} $(20/2) = $(10) = 4
4 Cy = {4,8,12,16 $(20/4) = ¢(5) = 4
5 Cs = {515} 6(20/5) = H(1) = 2
10 Cio = {10} $(20/10) = ¢(2) = 1
2 Coo = {20} 6(20/20) = 6(1) = 1
®(20) = Total = 20



