Math 406 Section 8.4: Public Key Encryption and RSA

1. Introduction: The primary problem with a technique like an exponentiation cipher is that
given (p,e) it’s easy to find (p,d) (recall ged (e,p — 1) guarantees we can find d with ed =
1 mod p — 1 via the Euclidean Algorithm, which is fast). Likewise given (p, d) it’s easy to find
(p,€).
The primary reason this is a problem is:
If Bob wants to receive messages and decrypt them using (p, d) then anyone who wants to send
them to him must use (p, ¢) but then any of those people can find d and therefore can decrypt
anything else that’s sent to him.

It would be great if Bob could make (p,e) publicly available so anyone could use it to send
him messages and yet still have it difficult to calculate (p,d) so that messages sent to him are
only decryptable by him.

We can do this but we have to stop using a prime p and tweak the approach a bit.
2. RSA Algorithm

(a) Encryption: Bob picks two distinct large primes p and ¢ and calculates n = pq. This
will be his modulus. He then chooses e with ged (¢(n), e) = 1. Note that ¢p(n) = ¢(pq) =
(p—1)(¢—1) so he can choose an e pretty easily via the Euclidean Algorithm. Bob makes
the pair (n,e) publicly available.

Alice takes her message and breaks it up just like with the exponentiation cipher, breaking
it into blocks with numerical value not possibly more than n. For each plaintext block P
she calculates the ciphertext block as the least nonnegative residue:

C =P°modn

She then sends all the ciphertext blocks to Bob.

Example: Suppose Bob chooses p = 59 and ¢ = 73. Then n = (59)(73) = 4307 and
o(n) = (58)(72) = 4176. He then chooses e = 7 with ged (e, ¢(n)) = 1.

Alice wishes to encrypt and send WORD. She divides it into blocks of length 2 and does:

WO RD
2214 1703
22147 17037

= 3918 1655 mod 4307

She sends 3918 1655.

(b) Decryption: Since Bob knows ¢(n) = (p — 1)(¢ — 1) he can easily find d with ed =
1 mod ¢(n) (so ed =1+ k¢(n) for some k € Z) Then for each ciphertext block C' he can
decrypt by calculating the least nonnegative residue C% mod n.

The reason for this is as follows:

If P =0 mod p then:
Cl=(P)Y=0= P mod p

whereas if P # 0 mod p then

04 = (pe)? = pkem+l = pké(m) p = pkp-Da-Dp — (pr=)ka=Dp = ()*a=Dp = P mod p



where PP~! =1 mod p by Fermat’s Little Theorem since p { P.

The same holds for ¢, mutatis mutandi, and so we have C¢ = P mod p and C? = P mod ¢
and so together we have:
C*=Pmodn

Example: Using the above knowledge Bob has calculated d = 2983 which satisfies
de = 1 mod ¢(n).
Bob receives the message 1611 0430 2088 from Alice. He does:

1611 0430 2088
1611293 04302953 20882983

= 0704 2401 1401 mod 4307
HE YB 0B

So the message is HEY BOB.

Security: Can anyone else find d easily? Well to find d means to solve ed = 1 mod ¢(n)
which is done by the Euclidean Algorithm. The Euclidean Algorithm is easy but finding
@(n) is not.

Why not? Well (n,e) are public so how hard can it be to find ¢(n)? We know that
¢(n) = (p —1)(¢ — 1) so factoring n would be sufficient, and this is where the problem
lies. Factoring large numbers is very difficult, and so even given n, finding p and ¢ is no
easy task.

You might ask, however, if there is a way of finding ¢(n) without finding p and ¢q. Well
consider that if you did know n and ¢(n) then observe that:

pta=pg—(p-1)(g-1)+1=n—-¢n)+1

and observe that:

p—a=vVp—-a2=V+9?2—4pg=+/(n—¢(n)+1)2 —4n

It follows that since:

p=%((l’+@)+(p—(1))

and

QZ%((P—Q)—(P—Q))

we can find both p and ¢ in terms of n and ¢(n).

The practical upshot of this is that finding ¢(n) is algebraically equivalent to finding p
and q. Since factoring is hard, the problem is hard.

Digital Signatures: Suppose Alice has public key (n4,e4) and private key (na,da)
while Bob has public key (np, ep) and private key (np,dg).

If Alice just wants to send a message to Bob she uses (np,ep) as discussed, but what if
she wants to sign it so that Bob knows that she sent it, and that nobody else could have.
What she does is first she calculates the least nonnegative residue:

S = P% mod ny



to produce a signed plaintext. Since only she possesses d 4, only she can do this. She then

encrypts:
C = 5°8 mod ng

and sends C' to Bob.
When Bob receives it he first calculates S via:

S =C% mod ng
which results in a signed message. He then “unsigns it” using Alice’s encryption key:
P =5 modny

Assuming he gets something sensible he knows for sure that Alice signed it.

Note: Alice may need to re-block the text here. This is because the result of signing a
block might result in a signed block with a numerical value larger than Bob’s encryption
modulus.

3. Closing Notes

(a) This is a very simplistic description of RSA and signatures. In real-world implementation
there are various other stages involving padding, cryptographic hashes and certificates
involved.

(b) The primes are usally very large.

(¢) In trying to find large primes, how do we know we have primes when we’re arguing that it’s
hard to factor large numbers? The answer is that generally numbers are analyzed using
certainly probabilistic techniques until it seems highly probable that we have primes.



