
Math 406 Section 9.1: The Order of an Integer and Primitive Roots

1. Introduction (to Chapter 9):

Consider in basic algebra:

3x = 7 ⇔ x = log3 7

How might this function, if at all, in modular arithmetic, say mod 10?

3x ≡ 7 mod 10 ⇔ Hmmm...

In this example we can find a solution x = 3 by trial-and-error. But a different example fails
to have a solution:

9x ≡ 7 mod 10 ⇔ Hmmm...no such x...

This notion, of determining when we can find powers in modular arithmetic and what those
powers are, is important in mathematics and computer science and is known as the discrete
logarithm problem. It is extremely difficult when the modulus is large. For example 35x ≡
14536 mod 34571 has solution x = 458 but that’s not obvious at all.

The approach to understanding these problems is to go back to Euler’s Theorem to see, for a
given base, what sorts of results we can achieve by raising that base to different powers.

2. Nonpositive Powers

It’s worth pausing to note that if gcd (a,m) = 1 then we know that a has a multiplicative
inverse mod m and so we can write the notation a−1 to refer to that inverse. In other words:

aa−1 ≡ 1 mod m

From here we can use all sorts of negative powers as long as we understand we mean inverses.
So for example a−3 can be thought of either as (a−1)3 (the cube of the inverse of a) or (a3)−1

(the inverse of the cube of a). These are the same thing.

Everything is as expected with this notation.

In addition if we say that a0 ≡ 1 mod m then we can make sense of all exponents when
gcd (a,m) = 1.



3. The Order of an Integer:

Given a modulus m and an integer a with gcd (a,m) = 1 Euler’s Theorem tells us that
aφ(m) ≡ 1 mod m. It does not however tell us that φ(m) is the lowest power which yields 1.
This leads to the following:

(a) Definition:

Given a modulus m and an integer a with gcd (a,m) = 1 we define the order of a mod
m, denoted ordma to be the smallest positive integer n such that an ≡ 1 mod m.

Note:

The order of a depends not just on a but also on the modulus m. Sometimes we say
simply “The order of a” when the modulus is clear but it’s always relevant.

Example:

Consider a = 3 and m = 11. Euler’s Theorem (and Fermat’s Little Theorem) tell us that
310 ≡ 1 mod 11 but observe that 10 is not the first power for which we get 1.

To find the order of 3 mod 11 we observe:

31 ≡ 1 mod 11

32 ≡ 9 mod 11

33 ≡ 5 mod 11

34 ≡ 4 mod 11

35 ≡ 1 mod 11

Thus ord113 = 5.

The order of an integer underlies the pattern under which powers of the integer repeat.
For example since ord113 = 5 this means that 3x repeats when x repeats mod 5, for
example 34 ≡ 39 mod 11 because 4 ≡ 9 mod 5.

This idea leads to the following theorems. For all of the following assume gcd (a,m) = 1.



(b) Theorem 1:

For x ∈ Z+ and gcd (a,m) = 1 we have:

ax ≡ 1 mod m ⇐⇒ x ≡ 0 mod ordma ⇐⇒ ordma | x.

Example:

We have 3x ≡ 1 mod 11 iff x ≡ 0 mod 5 iff 5 | x, so x = ...,−15,−10, 5, 0, 5, 10, 15, ....

Proof:

The second ⇐⇒ is just the defintion. For the first...

⇒ Assume ax ≡ 1 mod m use the Division Algorithm to write x = q(ordma)+r and then
we have:

1 ≡ ax =
(
aordma

)q
ar ≡ ar mod m

and since 0 ≤ r < ordma we have r = 0.

⇐ If ordma | x then x = α · ordma for some α ∈ Z and then ax =
(
aordma

)α ≡ 1 mod m.
QED

(c) Corollary:

We have ordma | φ(m).

Proof:

Since aφ(m) ≡ 1 mod m this follows from the previous theorem. QED
Note:

This can be used to help find orders more quickly. For example if want to know ordma
we need only check the divisors of φ(m).

Example:

To find ord112 we note φ(11) = 10 so we only need to check 21, 22 and 25 since if none of
those work then it must be 210.

(d) Theorem 2:

We have ax ≡ ay mod m iff x ≡ y mod ordma.

Proof:

⇒ If ax ≡ ay mod m then WLOG assume x > y and then cancel ay (coprimality guar-
antees we can) to get ax−y ≡ 1 mod m and so then ordma | (x− y).

⇐ If ordma | (x − y) then WLOG assume x > y and then x = y + α · ordma for some
α ∈ Z+ and then:

ax = ay
(
aordma

)α ≡ ay mod m

QED
Understanding:

This tells us that although the base works mod m, the exponent works mod ordma.

Example:

For example when m = 20 noting that ord203 = 4 and ord209 = 2 we can write:

63102 · 10983 ≡ 3102 · 983 ≡ 32 · 91 mod 20

Here the bases 63 and 109 reduce mod 20, the exponent 102 reduces mod ord203 = 4 and
the exponent 83 reduces mod ord209 = 2.



4. Primitive Roots:

We know that given a modulus m and an integer a with gcd (a,m) = 1 we have ordma ≤ φ(m)
(in fact it divides φ(m)) but we are especially lucky when we have ordma = φ(m). The reason
why this is lucky will be explained soon.

(a) Definition:

Given a modulus m and an integer a with gcd (a,m) = 1 we say that a is a primitive root
mod m if ordma = φ(m).

Example:

If m = 11 then a = 6 is a primitive root mod 11 because ord116 = 10 = φ(11) which can
be verified by noting that 61 ≡ 6, 62 ≡ 3 and 65 ≡ 10. Remember why we only need to
check these, it’s because we know the order divides φ(11) = 10 and so since it’s not 1,2
or 5 it must be 10.

(b) Importance:

Think of a primitive root as a “best possible” base in that powers of a primitive root will
achieve all values coprime to m.

Example:

We saw that 6 is a primitive root mod 11 and observe that:

{61, 62, 63, 64, 65, 66, 67, 68, 69, 610} ≡ {6, 3, 7, 9, 10, 5, 8, 4, 2, 1}︸ ︷︷ ︸
Got all the coprimes!

mod 11

This is clarified in the following theorem:

(c) Theorem:

If r is a primitive rood mod m then the set
{
r, r2, r3, ..., rφ(m)

}
is a reduced residue set

mod m.

Note:

Recall this means that this set contains φ(m) integers all of which are coprime to m and
none of which are equivalent to each other mod m.

Proof:

They are all coprime to m since if gcd (m, rk) 6= 1 for some k then if some prime p divided
both then it would divide rk and hence it would divide r, contradicting gcd (r,m) = 1.
If we had ri ≡ rj mod m then i ≡ j mod ordmr = φ(m) so that i = j because each is
nonstrictly between 1 and φ(m). QED



(d) Existence of Primitive Roots:

Interestingly if we start with a modulus m there may or may not be any primitive roots
mod m. For example m = 8 has no primitive roots since it can be easily checked that
φ(8) = 4 but ord81 = 1, ord83 = 2, ord85 = 2 and ord87 = 1 and so we never get
ord8a = φ(8).

However if there is a primitive root then usually there are several. We’ll show how many
in steps:

(e) Theorem:

Given a modulus m and an integer a with gcd (a,m) = 1 We have:

ordm(ak) =
ordma

gcd (ordma, k)

Obscure Note:

For those in MATH403 this is the same as the result from cyclic groups which states that

|ak| = |a|
gcd (|a|,k) .

Proof:

First, note that: (
ak
)ordma/gcd (ordma,k)

=
(
aordma

)k/gcd (ordma,k)

≡ 1k/gcd (ordma,k) mod m

≡ 1 mod m

This tells us that:

ordm(ak) ≤ ordma

gcd (ordma, k)

Second, note that by definition of the order of ak we have:

ak ordm(ak) =
(
ak
)ordm(ak) ≡ 1 mod m

and so:
ordma

∣∣k ordm
(
ak
)

From whence it follows that:

ordma

gcd (ordma, k)

∣∣∣ k

gcd (ordma, k)
ordm

(
ak
)

Since the gcd of the two fractions is 1 we then know that:

ordma

gcd (ordma, k)

∣∣∣ordm(ak)

and so
ordma

gcd (ordma, k)
≤ ordm(ak)

The two results together give us... QED



(f) Corollary:

Suppose r is a primitive root mod m, then rk is a primitive root mod m iff gcd (k, φ(m)) =
1.

Example:

We saw that r = 6 is a primitive root mod 11. Thus we know that since φ(11) = 10
that all primitive roots can be found using 6k with gcd (k, φ(11)) = gcd (k, 10) = 1.
This yields k = 1, 3, 7, 9 and thus the set of primitive roots mod 11 are {61, 63, 67, 69} ≡
{6, 7, 8, 2} mod 11.

Proof:

Well rk is a primitive root iff ordm
(
rk
)

= φ(m) = ordmr and by the theorem this is iff
gcd (ordmr, k) = 1 which is iff gcd (φ(m), k) = 1. QED

(g) Corollary:

If there is a primitive root mod m then there are φ(φ(m)) of them.

Example:

There are φ(φ(11)) = φ(10) = 4 primitive roots mod 11.

Proof:

Let r be one primitive root. Since powers of r form a reduced residue set mod m we
know that all other integers coprime to m may be written as rk for some k then by the
previous corollary we know that rk is also a primitive root iff gcd (k, φ(m)) = 1 and there
are φ(φ(m)) such k. QED


