
Math 406 Section 9.4: Discrete Logarithms

1. Introduction:

We know in regular (non-modulus) arithmetic that:

rx = a ⇐⇒ logr a = x

If we tried to write this in modular arithmetic what would it be?

rx ≡ a mod m ⇐⇒ ???

It turns out this isn’t quite as easy and we can only do this in very specific circumstances.

2. Indices:

(a) Introduction:

Given a primitive root r of a modulus m we know that {r, r2, ..., rφ(m)} lists, up to
congruence mod m, all integers coprime to m.

Example:

We see that r = 3 is a primitive root of the modulus m = 14 (with φ(14) = 6):

{31, 32, 33, 34, 35, 36} ≡ {3, 9, 13, 11, 5, 1} mod 14

We can then see that rx ≡ a mod m has a solution iff a ∈ Z is coprime to m. For example
in the above we can solve 3a ≡ 11 mod 14 but we can’t solve 3a ≡ 6 mod 14.

This leads to the following general definition:

(b) Definition:

If r is a primitive root of m and if gcd (a,m) = 1 then the unique exponent x with
1 ≤ x ≤ φ(m) satisfying rx ≡ a mod m is called the index of a mod m (with base r). This
is sometimes also called the discrete logarithm of a mod m (with base r) and often the
“with base r” is omitted when it’s clear what the base is. This is denoted indra which
is awkward because there’s no m mentioned in the notation, as it’s usually clear from
context.

Example: The above example can then clarify:

31 ≡ 3 mod 14 ... and so ind33 = 1
32 ≡ 9 mod 14 ... and so ind39 = 2

33 ≡ 13 mod 14 ... and so ind313 = 3
34 ≡ 11 mod 14 ... and so ind311 = 4
35 ≡ 5 mod 14 ... and so ind35 = 5
36 ≡ 1 mod 14 ... and so ind31 = 6

Note that, for example, 37 ≡ 3 mod 14 as well but we wouldn’t say that the index is 7
because the index has to be between 1 and φ(14) = 6 inclusive.

Immediately from the definition we have the following:

(c) Theorem:

If a, b are coprime to m and r is a primitive root mod m then:

(i) rindra = a

(ii) a ≡ b mod m ⇐⇒ indra = indrb ⇐⇒ indra ≡ indrb mod φ(m).

Proof:

Immediate. QED



(d) Index Rules: Indices behave like logarithms except for a quirk. To see why this is
consider the logarithm rule:

logr(ab) = logr a+ logr b

It would be tempting to write:

indr(ab) = indra+ indrb ⇐ Tempting!

However this is not quite right. Consider that with m = 14 and r = 3 if we put a = 13
and b = 5 then ab = 9 mod 14 and the Tempting statement would say:

ind39 = ind313 + ind35

2 = 3 + 5

Which is clearly false. However note that 2 ≡ 3 + 5 mod 6 = φ(m).

In general we get the following:

Theorem:

Let r be a primitive root mod m and let a, b be coprime to m. Then we have:

(i) indr1 = φ(m) ≡ 0 mod φ(m)

(ii) indr(ab) ≡ indra+ indrb mod φ(m)

(iii) indr
(
ak

)
≡ k · indra mod φ(m)

Note that there is no obvious version equivalent to logr(a/b) = .... Can you think of one?

Proof:

For (i) By Euler’s Theorem we know rφ(m) ≡ 1 mod m and so indr1 = φ(m) ≡ 0 mod φ(m).

For (ii) note first that by the definition of index:

rindr(ab) ≡ ab mod m

And also:

rindra+indrb = rindrarindrb ≡ ab mod m

So that:

rindr(ab) ≡ rindra+indrb mod m

Then by a Theorem from Section 9.1 (ax ≡ ay mod m iff x ≡ y mod ordma) we get:

indr(ab) ≡ indra+ indrb mod φ(m)

For (iii) note first that by the definition of index:

rindr(a
k) ≡ ak mod m

And also:

rk·indra =
(
rindra

)k ≡ ak mod m

So that:

rindr(a
k) ≡ rk·indra mod m

Then by the same theorem we get:

indr(a
k) ≡ k · indra mod φ(m)

QED



3. The Discrete Logarithm Problem and Tables:

Given a modulus r and some a with gcd (a,m) = 1 how difficult is it to find indra? In other
words how can we find x with rx ≡ a mod m? It turns out that it’s basically as difficult as
trying all of 1, 2, 3, ..., φ(m). There’s no real shortcut and in fact methods of encryption are
based on the fact that it’s easy to do powers and hard to do indices.

So for the examples we do we’ll simply have to make up a table so that we have the indices
are our disposal. For example the table for m = 14 and r = 3 would be:

a 1 3 5 9 11 13
ind3a 6 1 5 2 4 3

4. Index Arithmetic: We can use indices to solve modular problems involving exponents.
These work pretty smoothly as long as we are careful about the moduli we’re dealing with.
Remember the insanely important theorem from earlier:

a ≡ b mod m ⇐⇒ indra = indrb mod φ(m)

Example: Let’s solve 3x10 ≡ 12 mod 17. First we obtain a primitive root for m = 17. Some
work shows us that r = 3 works. Next we construct a table which has 16 entries because all
1 ≤ a ≤ 16 are coprime to 17. This also takes a lot of work, it’s not obvious:

a mod 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ind3a 16 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8

We then proceed as follows:

3x10 ≡ 12 mod 17

ind3(3x10) ≡ ind312 mod 16

ind33 + 10ind3x ≡ ind312 mod 16

1 + 10ind3x ≡ 13 mod 16

10ind3x ≡ 12 mod 16

This is a linear system if we treat ind3x as the variable. Since gcd (10, 16) = 2 | 12 there are 2
incongruent solutions mod 16. Work omitted these are:

ind3x ≡ 6, 14 mod 16

And so we can un-index:
x ≡ 15, 2 mod 17

Example: Let’s solve 4x ≡ 16 mod 17. Don’t just eyeball and assume the only answer is
x = 2! We have a primitive root for m = 17 and a table already so we just go for it:

4x ≡ 16 mod 17

ind3(4x) ≡ ind316 mod 16

xind34 ≡ ind316 mod 16

x(12) ≡ 8 mod 16

12x ≡ 8 mod 16

3x ≡ 2 mod 4

This is also a linear system but it’s more familiar since x is the variable. Since gcd (3, 4) =
1 mod 4 there is 1 incongruent solution mod 4 and that is x = 2.

So it did turn out that x = 2 is the solution but that is only true mod 4. There are lots of
solutions, x = ...,−6,−2, 2, 6, 10, ...


