- 1. **Intro:** This representation of continuity is very often used as an alternate definition. There are actually two such criteria; One matches continuity and the other matches uniform continuity.
- 2. (a) **Definition:** We say that $f: D \to \mathbb{R}$ satisfies the ϵ - δ criterion at $x_0 \in D$ if:

$$\forall \epsilon > 0, \exists \delta > 0 \text{ st } \forall x \in D \text{ if } |x - x_0| < \delta \text{ then } |f(x) - f(x_0)| < \epsilon$$

- (b) **Intuition:** The idea is that we can make f(x) arbitrarily close to $f(x_0)$ by making x appropriately close to x_0 .
- (c) Examples:
 - i. Example: Consider $f: \mathbb{R} \to \mathbb{R}$ by f(x) = 3x at $x_0 = 2$. Because the function is a line with slope 3 we can see that for the f(x)-values to be within ϵ of f(2) we must have the x-values within $\epsilon/3$ of 2. This is borne out in the proof:

Formal Proof: Suppose $\epsilon > 0$. Let $\delta = \epsilon/3$. Then if $|x-2| < \epsilon/3$ then

$$|f(x) - f(2)| = |3x - 6| = 3|x - 2| < 3(\epsilon/3) = \epsilon$$

ii. Example: Consider $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$ at $x_0 = 2$. This isn't as nice as the previous problem because the slope is not constant. Instead the goal is, given $\epsilon > 0$, to choose δ so that if $|x-2| < \delta$ then $|x^2-4| < \epsilon$. We can see that $|x^2-4| = |(x+2)(x-2)|$ and we can make |x-2| small but how about |x+2|? Well since we can make x close to 2 we can certainly force an upper bound for |x+2| by choosing an appropriate δ . For example suppose $\delta \leq 1$, then if $|x-2| < \delta \leq 1$ then -1 < x-2 < 1 and so 1 < x+2 < 5 and so |x+2| < 5. If this is the case then |(x+2)(x-2)| < 5|x-2| and then to make $5|x-2| < \epsilon$ we just make $|x-2| < \epsilon/5$.

Formal Proof: Suppose $\epsilon > 0$. Let $\delta = \min\{1, \epsilon/5\}$. Then if $|x-2| < \delta$ then

$$|x^2 - 4| = |(x+2)(x-2)| < 5|x-2| < 5(\epsilon/5) = \epsilon$$

(d) **Theorem:** Given $f: D \to \mathbb{R}$ and $x_0 \in D$, f is continuous at D iff f satisfies the ϵ - δ criterion at x_0 .

Proof of \Longrightarrow : Assume that f is continuous at $x_0 \in D$. We claim that f satisfies the ϵ - δ criterion at x_0 . Suppose not, meaning that:

$$\exists \epsilon > 0, \forall \delta > 0, \exists x \in D \text{ with } |x - x_0| < \delta \text{ and } |f(x) - f(x_0)| \ge \epsilon.$$

Let $\epsilon_0 > 0$ be this ϵ . Then for each $n \in \mathbb{N}$ for $\delta = 1/n$ this give us $x_n \in D$ with $|x_n - x_0| < 1/n$ and $|f(x_n) - f(x_0)| \ge \epsilon_0 > 0$.

We then have $\{x_n\} \to x_0$ by the Comparison Lemma and so by continuity we have $\{f(x_n)\} \to f(x_0)$ and so $\{f(x_n) - f(x_0)\} \to 0$. but this contradicts $|f(x_n) - f(x_0)| \ge \epsilon_0 > 0$ (since this is true for all x).

Proof of \Leftarrow : Assume that f satisfies the ϵ - δ criterion at x_0 . We claim that f is continuous at x_0 . Suppose $\{x_n\} \to x_0$. We claim $\{f(x_n)\} \to f(x_0)$. Let $\epsilon > 0$. Using the ϵ - δ criterion choose the corresponding δ . Since $\{x_n\} \to x_0$ there is some N such that if $n \geq N$ then $|x_n - x_0| < \delta$ and then $|x_n - x_0| < \delta$ implies $|f(x_n) - f(x_0)| < \epsilon$.

QED

3. (a) **Definition:** We say that $f: D \to \mathbb{R}$ satisfies the $\epsilon - \delta$ criterion on D if:

$$\forall \epsilon > 0, \exists \delta > 0 \text{ st } \forall u, v \in D \text{ if } |u - v| < \delta \text{ then } |f(u) - f(v)| < \epsilon$$

(b) **Theorem:** Given $f: D \to \mathbb{R}$. f is uniformly continuous on D iff f satisfies the ϵ - δ criterion on D.

Proof: Omit.