Math 411 Exam 2 Spring 2013

- 1. Find the first-order approximation for $\bar{F}(x,y) = (x^2y, xy + y)$ at (-1,2) and use it to approximate the value of $\bar{F}(-0.9, 2.1)$.
- 2. (a) Given a transformation $T : \mathbb{R}^n \to \mathbb{R}^m$, what is logically incorrect about finding the matrix $[T(\bar{e}_1) \dots T(\bar{e}_n)]$ and then using this matrix to show that the transformation is linear?
 - (b) Let A be the set of all linear transformations and B be the set of all invertible transformations. Give two transformations, one which proves that $A \not\subseteq B$ and one which proves that $B \not\subseteq A$.
- 3. Let $f(x, y) = xy + y^2$ and $\bar{p} = (-1, 2)$. Find $\frac{\partial f}{\partial \bar{p}}(1, 1)$ using the limit definition of the directional derivative and also using the inner product calculation.
- 4. Suppose $\overline{F}(x,y) = (x^2y, y 3x^2)$ and $\overline{G}(x,y) = (xy + y, y xy)$. Use the matrix form of the chain rule to evaluate $D(\overline{F} \circ \overline{G})(x, y)$.
- 5. Define $f(x, y) = 2x^2 2xy y^2$. Find the only critical point (x_0, y_0) and show that the Hessian at (x_0, y_0) is neither positive definite nor negative definite. Moreover show that there is at least one direction \bar{h}_1 in which $\langle \nabla^2 f(x_0, y_0) \bar{h}_1, \bar{h}_1 \rangle > 0$ and another direction \bar{h}_2 in which $\langle \nabla^2 f(x_0, y_0) \bar{h}_2, \bar{h}_2 \rangle < 0$.
- 6. Define

$$f(x,y) = \begin{cases} \frac{x\sqrt{x^2 + y^2}}{|y|} & \text{if } y \neq 0\\ 0 & \text{if } y = 0 \end{cases}$$

Show that f has directional derivatives in all directions at (0,0).

7. Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is continuously differentiable with f(0,0) = 1 and f(x,y) = 1 for all ||(x,y)|| = 1. Show that there is some point (x_0, y_0) such that $\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0)$. Hint: Use the MVT for an appropriate \bar{h} .