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1 Introduction

The goal of this chapter is to generalize RP2 to RP3 so that we see how things
work in the higher-dimensional case.

We will proceed without as much rigor as RP2 because many of the calculations
are similar and produce fairly intuitive results.

2 Real Projective 3-Space

2.1 Definition

Definition 2.1.1. Define real projective 3-space denoted RP3 as the set of
nonzero vectors [X;Y ;Z;W ] in R4 with the condition that two vectors are
considered to be equivalent if they are nonzero multiples of one another.

�

Definition 2.1.2. We then say that a projective point (or just a point when
the context is clear) P in RP3 is an equivalence class of vectors. Typically we
will give just one vector but don’t forget that any other equivalent vector is the
same point.

�

Example 2.1. The point P = [1; 2; 3; 4] represents the set

{λ[1; 2; 3; 4] |λ 6= 0}

Thus P = [6; 12; 18; 24] and P = [−1;−2;−3;−4].

�

Exercise 2.1. List some vectors which are in the equivalence class of P =
[4; 2; 1; 7] and some which are not.

�

2.2 Euclidean Space is Inside

Definition 2.2.1. Consider the subset of RP3 defined by:

E3 = {[X;Y ;Z;W ] |W 6= 0}

We call this the Euclidean patch.

�

Notice that considering equivalence we have:
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E3 = {[X;Y ;Z; 1]}

Since all such projective points are distinct when written this way we see that
E3 is essentially a copy of R3 existing inside RP3.

Thus we have a mapping from R3 to E3 ⊂ RP3:

R3 → E3 ⊂ RP3

[x; y; z] 7→ [x; y; z; 1] = {[xW ; yW ; zW ;W ] |W 6= 0}

And we have a mapping from E3 ⊂ RP3 to R3:

E3 ⊂ RP3 → R3

[X;Y ;Z;W ] ≡ [X/W ;Y/W ;Z/W ; 1] 7→
[
X
W ; Y

W ; Z
W

]
Example 2.2. The Euclidean point [5; 7; 3] ∈ R3 correponds to the projective
point [5; 7; 3; 1] ∈ RP3 which consists of the set of vectors {[5W ; 7W ; 3W ;W ] |W 6= 0}

�

Example 2.3. The projective point [3; 5; 4; 2] ≡ [3/2; 5/2; 2; 1] ∈ E3 ⊂ RP3

corresponds to the Euclidean point
[
3
2 ; 5

2 ; 2
]
∈ R3.

�

Example 2.4. The projective point [−1; 7;−5; 0] ∈ RP3 doesn’t correspond to
any point in R3 because [−1; 7;−5; 0] 6∈ E3.

�

Exercise 2.2. Which projective points correspond to each of the following
points in R3.

(a) [2; 1; 6]

(b) [1; 6; 2]

(c) [0.1; 0.7; 1.2]

�

Exercise 2.3. Which Euclidean points correspond to each of the following
points in RP3. One is a trick.

(a) [0; 2; 5;−2]

(b) [1; 10; 5; 7]

(c) [7; 7; 2; 0]

(d) [8.1; 6; 0.2; 0.15]

�

It’s worth noting that there are other ways we could have selected a copy of R3

inside RP3, including fixing X 6= 0, Y 6= 0 or Z 6= 0.
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2.3 More Than Euclidean Space

Notice that nothing in R3 ≡ E3 matches up with vectors in RP3 which have the
form [X;Y ;Z; 0]. This means that we’ve enlarged E3 ≡ R3 by adding on these
vectors, even given the equivalences.

These vectors themselves form a copy of RP2 and so it follows that the points at
infinity for RP3 look like RP2, meaning they form a sphere with opposite points
identified.

Another intuitive way to see this is to recall that one way to visualize RP2 is as
R2 with a point at infinity for each direction in the plane (opposite directions
are considered the same) and one way to visualize RP3 is as R3 with a point at
infinity for each direction in space (opposite directions are considered the same).
This is precisely the same, a sphere with opposite points identified.

2.4 Compatibility with Euclidean Space

It’s important to note that in RP3 objects must behave as espected when we
focus on the Euclidean patch. For example a plane in RP3 must look like a
plane when we restrict our view to the Euclidean patch, otherwise we’ve just
built something completely new and useless. We’ll see how this works as we
move forward.

3 Standard Transformations of Points

3.1 Rotations

Consider rotation. In our earlier case we initially took our concept of rotation
in R2 and extended it to RP2. The result transformed RP2 in a way which
behaved like a rotation on the Euclidean patch.

Consider first the rotation:

RZ(θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1


Since this matrix is acting on vectors of the form [X;Y ;Z;W ] it’s a bit unclear
exactly what’s going on. However we can observe that this matrix will fix
projective points of the form [0; 0;Z;W ], so in in some sense we could argue
that it’s a rotation around (meaning it fixes) the ZW -plane, hence the notation.
However projective points of this form actually form a circle so the action is more
of a rotation “about” a circle as far as RP3 is concerned.
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However this matrix, when applied to R3 ≡ E3 ⊂ RP3, does in fact fix the
z-axis, and rotates around it according to the right-hand rule where the thumb
points in the direction of the positive z-axis.

The notation RZ is used for this reason, even though as far as RP3 is concerned
it’s a bit dishonest.

Likewise the following matrix fixes points of the form [X; 0; 0;W ] and effectively
rotates about the x-axis in the Euclidean patch.

RX(θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1


And the following matrix fixes points of the form [0;Y ; 0;W ] and effectively
rotates about the Y -axis in the Euclidean patch.

RY (θ) =


cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1


Notice the order of the signs here. It might be tempting to have the − sin θ in
the upper right nonzero entry as with the other two. We can see why this one
is a little different by considering: Rotation about the z-axis takes the positive
x-axis to the positive y-axis via the right-hand rule. Rotation about the x-axis
takes the positive y-axis to the positive z-axis via the right-hand rule. However
rotation about the y-axis takes the positive z-axis to the positive x-axis. If
we had casually placed the negative sign in the tempting position we would
have ended up with a rotation taking the positive x-axis to the positive z-axis,
not the desired rotation. The sign change results from replacing θ by −θ and
simplifying.

Example 3.1. To rotate the point [51; 106; 21] by 3.02 radians about the y-axis
we calculate:

RY (3.02)[51; 106; 21; 1] ≈ [−48.07; 106;−27.03; 1]

�

Exercise 3.1. Calculate the result when the two points [30; 10; 5] and [100;−20; 50]
are rotated by 8.3 radians about the x-axis.

�
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3.2 Translations

We cannot translate all four coordinates in RP3 simultaneously because such a
transformation is not linear. However we can translate in any three of them.

The following matrix is a shear which translates points in the Euclidean patch
by [x; y; z; 1] 7→ [x+ a; y + b; z + c; 1.

T (a; b; c) =


1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1


3.3 Reflections

There are three standard reflections, one in each of the coordinate planes

This flips in the xy-plane, negating z:

FXY =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


This flips in the xz-plane, negating y:

FXZ =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


This flips in the yz-plane, negating x:

FY Z =


−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


3.4 Combinations

As in RP3 and E3 the fact that these are linear and represented by matrices
implies that we can multiply these together to get combinations of these.

Example 3.2. For example to rotate Ee ≡ R3 by 1.2 radians about the vertical
axis consisting of the line x = 2, y = 3 we use the matrix:

T (2; 3; 0)RZ(1.2)T (−2;−3; 0)
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And so for example to rotate the point [4;−2; 5] ∈ R3 this way we would do:

T (2; 3; 0)RZ(1.2)T (−2;−3; 0)[4;−2; 5; 1] ≈ [7.39; 3.05; 5; 1]

�

Exercise 3.2. Find the result when the point [102;−54; 82] is rotated by 31
radians about the the line x = −5, z = 1.

�

Of course if we wish to rotate about an axis which is not so simple then this be-
comes quite difficult using projective methods. Instead this is what quaternions
were for.

However in simple cases we can shift the axis of rotation to a familiar axis.

Example 3.3. To rotate by 0.7 radians about the axis y = x, z = 0 we rotate
by π/4 about the z-axis to move this axis to the y-axis, then rotate, then rotate
back. In other words we use the matrix:

RZ(−π/4)RY (0.7)RZ(π/4)

So if we wished to rotate the point [20; 30; 40] we would do:

RZ(−π/4)RY (θ)RZ(π/4)[20; 30; 40; 1] ≈ [39.40; 10.60; 35.15; 1]

�

Exercise 3.3. Find the result when the two points [5; 8; 10] and [−5;−8; 10]
are rotated by 3.3 radians about the axis x = z, y = 0.

�

3.5 Projective Projection

Projecting an object in R3 means imagining the object below the xy-plane,
imagining your eye at the point [0; 0; d] with d > 0, and projecting the object
to the xy-plane with perspective.

In the following picture the eye is above the xy-plane and a single point is
projected with perspective to the xy-plane:
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As with R3 using similar triangles it’s straighforward to show that this mapping
must act as follows:  x

y
z

 7→
 dx/(d− z)
dy/(d− z)

0


As with the R2 case this is not linear but can be represented by a matrix acting
on RP3 with R3 as a subset.

That matrix is:

P (d) =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 −1/d 1


Observe that it works as follows:

1 0 0 0
0 1 0 0
0 0 0 0
0 0 −1/d 1



X
Y
Z
1

 =


X
Y
0

1− Z/d

 =


X
Y
0

(d− Z)/d

 ≡

dX/(d− Z)
dY/(d− Z)

0
1


Thus treating the Euclidean patch as R3 we have the desired:

[x, y; z]→
[
dx

d− z
;
dy

d− z
; 0

]
Example 3.4. To project the point [20; 50;−40] with z = 25 we calculate:

P (25)[20; 50;−40; 1] = [20; 50; 0; 13/5] ≡ [7.69; 19.23; 0; 1]

yielding a result of [7.69; 19.23; 0] in the xy-plane.
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�

Exercise 3.4. Find the result when the points [34; 45;−100] and [−46; 50;−50]
are projected with z = 50.

�

For a visual example with many more points:

Example 3.5. Consider the box of side length 6 aligned with the axes and with
center at [0; 0;−6]. Here is this box drawn with seven points per side (points at
integer positions).

−10

0

10−10
−5

0
5

10

−10

0

10

If we place our eye at [0; 0; 7]; treat these points as vectors [x; y; z; 1] ∈ RP3 and
project these points using the above matrix calculation with d = 7 we get the
following result with the original points in black, the resulting points in red,
and the eye point in blue:

−10

0

10−10
−5

0
5

10

−10

0

10
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By itself in the xy-plane we see the result, a cube projected with perspective:

−4 −2 0 2 4

−4

−2

0

2

4

�

3.6 Other Perspective Viewpoints

It is restrictive that we can only view our objects from the positive z-axis. In
order to view objects from other positions the standard approach would be to
rotate space so that the viewpoint is on the positive z-axis and then view. This
has the bonus of yielding a result in the xy-plane (rather than some other plane)
which makes for easy plotting.

4 Points, Planes, Duality and Standard Trans-
formations

4.1 Points

As we’ve seen, a point in RP3 is defined by the equivalence class of a triple
P = [X;Y ;Z;W ]. For simplicity we’ll just say “the point” P = [X;Y ;Z;W ]
when we mean the entire equivalence class.

Definition 4.1.1. We say that points of the form P = [X;Y ;Z; 0] are points
at infinity . These are points which are not in E3 ≡ R3.

�

4.2 Planes

In order to define a plane in RP3 we need to establish exactly what a plane
is. There are many ways to approach this but one common-sense one (which is
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perfect for us) would be to define a plane in RP3 to be a set of points P such
that the restriction of P to E3 ≡ R3 is a plane in the normal sense.

Definition 4.2.1. A plane in projective space or a projective plane P in RP3 is
defined by giving a nonzero vector P = [a; b; c; d] ∈ RP3 and looking at all those
x = [X;Y ;Z;W ] satisfying P · x = PTx = 0. That is:

L = {[X;Y ;Z;W ] | aX + bY + cZ + dW = 0}

Equivalently [a, b, c, d][X;Y ;Z;W ] = 0 or [a; b; c; d] · [X;Y ;Z;W ] = 0.

�

Notice that any nonzero multiple of [a; b; c; d] defines the same plane. In this
way planes behave a bit like points. This is more true than we might realize
right now.

Theorem 4.2.1. When at least one of a, b, and c is nonzero this definition
of a plane matches our intuition in the sense that a plane in projective space
is a Euclidean plane when restricted to E3 ≡ R3 and every Euclidean plane in
R3 ≡ E3 arises from this definition.

Proof. Given [a; b; c; d] consider the set

P = {[X;Y ;Z;W ] | aX + bY + cZ + dW = 0}

If a = b = c = 0 then d 6= 0 and

P = {[X;Y ;Z;W ] | (0)X + (0)Y + (0)Z + dW = 0}
= {[X;Y ;Z; 0] |X,Y, Z ∈ R} − {[0; 0; 0; 0]}

which is precisely the set of points at infinity.

If one of a, b, and c is nonzero then if we isolate our view to the Euclidean
patch. The point [x; y; z] ∈ R3 corresponds to [x; y; z; 1] ∈ E3 ⊂ RP3 so for this
point to be on the line we must have

a(x) + b(y) + c(z) + d(1) = 0

This is a plane in R3.

Likewise every plane in R3 ≡ E3 may be written in the form ax+by+cz+d = 0
and hence in RP3 may be represented by [a; b; c; d].

Theorem 4.2.2. A plane in RP3 represented by [a; b; c; d] with at least one of
a, b, and c nonzero contains infinitely many points at infinity.
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Proof. To identify these points, note that they must have the form [X;Y ;Z; 0]
not all zero and must satisfy aX + bY + cZ + d(0) = 0.

However this is precisely a projective line in RP2 ⊂ RP3. It follows that a
plane in RP3 consists of a plane in E3 as well as a projective line of points at
infinity.

Example 4.1. For example the vector P = [1; 2; 3; 4] defines the plane consist-
ing of the set of points [X;Y ;Z;W ] satisfying:

[1, 2, 3, 4][X;Y ;Z;W ] = 0

X + 2Y + 3Z + 4Z = 0

In R3 ≡ E3 the points which lie on this projective plane satisfy the equation:

x+ 2y + 3z + 4 = 0

The points at infinity on this plane are those nonzero [X;Y ;Z; 0] with X+2Y +
3Z = 0. This is a projective line.

�

Exercise 4.1. Consider the plane represented by the vector P = [5; 0;−2; 1].
Find the points in E3 and the points at infinity on this plane.

�

If we start with a Euclidean plane and move it into projective space we pick up
a projective line at infinity. Intuitively it extends to pick up those additional
points.

Example 4.2. Consider the Euclidean plane with equation 2x + y − 5z = 10
Suppose the projective point [X;Y ;Z;W ] satisfied this equation. If Z 6= 0 then
since [X;Y ;Z;W ] ≡ [X/W ;Y/W ;Z/W ; 1] we know that 2(X/W ) + (Y/W ) −
5(Z/W ) = 10 so 2X + Y − 5Z − 10W = 0 and so in projective space this plane
is represented by the vector [2; 1;−5;−10].

We also pick up the projective line at infinity consisting of points [X;Y ;Z; 0]
satisfying 2X + Y − 5Z = 0.

�

Exercise 4.2. If the Euclidean plane with equation x + y = 5 is moved into
RP3, which vector represents it and which points at infinity are picked up?

�

Exercise 4.3. Find the vector which represented the plane containing the
points [1; 1; 2], [0; 2; 2] and [5; 3;−2]. Which points at infinity does it contain?

�

We close with a small theorem which will be useful later:
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Theorem 4.2.3. The plane with normal n and passing through p is represented
by the vector:

[n;−n · p]

Proof. Suppose n = [a; b; c] and p = [x0; y0; z0]. Then the plane has equation:

a(x− x0) + b(y − y0) + c(z − z0) = 0

ax+ by + cz − (ax0 + by0 + cz0) = 0

ax+ by + cz − (ax0 + by0 + cz0)(1) = 0

Hence the vector representing these points is:

[a; b; c;−(ax0 + by0 + cz0)]

which is precisely:
[n;−n · p]

4.3 Duality

What happens here is that a duality appears but it is a duality between points
and planes rather than points and lines. Ignoring special cases the intuition
emerges from the fact that three points determine a plane and three planes
intersect at a point. From here a duality emerges.

Lines have no such duality. Ignoring special cases again we see that two points
make a line but it’s generally not the case that two lines must intersect at a
point and two planes intersect in a line but it’s generally not the case that two
lines form a plane.

To see how this point-plane duality manifests in intersections from a computa-
tional standpoint we need to understand what to do with cross products in R4.
It turns out that the cross product between two vectors in R3 is actually the
determinant of a matrix. If we represent the vector [X;Y ;Z] by X ı̂+ Y ̂+Zk̂
then we have:

[X1;Y1;Z1]× [X2;Y2;Z2] =

∣∣∣∣∣∣
ı̂ ̂ k̂

X1 Y1 Z1

X2 Y2 Z2

∣∣∣∣∣∣
When we move to R4 we need three vectors in order to take a cross product.
If we represent the vector [X;Y ;Z;W ] by X ı̂ + Y ̂ + Zk̂ + W l̂ Then if we
have three such vectors: V1 = [X1;Y1;Z1;W1], V2 = [X2;Y2;Z2;W2], and
V3 = [X3;Y3;Z3;W3] then we can define V1×V2×V3 by the 4×4 determinant:
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[X1;Y1;Z1;W1]× [X2;Y2;Z2;W2]× [X3;Y3;Z3;W3] =

∣∣∣∣∣∣∣∣
ı̂ ̂ k̂ l̂

X1 Y1 Z1 W1

X2 Y2 Z2 W2

X3 Y3 Z3 W3

∣∣∣∣∣∣∣∣
We can evaluate this using a cofactor expansion across the top row.

Example 4.3. If we define: P1 = [1; 2; 3; 1], P2 = [0; 1; 2; 1], and P3 =
[4; 6;−1; 1]. Then we calculate:

P1 ×P2 ×P3 =

∣∣∣∣∣∣∣∣
ı̂ ̂ k̂ l̂
1 2 3 1
0 1 2 1
4 6 −1 1

∣∣∣∣∣∣∣∣
= ı̂

 2 3 1
1 2 1
5 6 −1

 1− ̂

 1 3 1
0 2 1
4 −1 1

+ k̂

 1 2 1
0 1 1
4 6 1

− l̂

 1 2 3
0 1 2
4 6 −1


= ı̂(8)− ̂(7) + k̂(−1) + l̂(9)

= 8ı̂− 7̂− 1k̂ + 9l̂
= [8;−7;−1; 9]

�

The result of this sustains duality as follows:

Theorem 4.3.1. We have the following:

• The cross product of three vectors representing points results in the vector
representing the plane containing these points. If the points are all colinear
then the result will be 0 and does not apply. This statement holds if one
or more of the points are at infinity.

• The cross product of three vectors representing planes results in the vector
representing the point in all three planes. If all three planes meet in a line,
rather than in a point, then the result will be 0 and does not apply.

Proof. Omitted. The proof is similar to the duality proofs for points and lines
in the previous chapter. The key point is that the cross product V1×V2×V3

in R4 yields a vector which is perpendicular (dot product zero) to all three
vectors.

As before these lead to quick calculations in the Euclidean patch.

Example 4.4. Consider the three points in R3 given by [1; 2; 3]; [0; 1; 2]; and
[4; 6;−1]. In RP3 these are represented by the vectors P1 = [1; 2; 3; 1], P2 =
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[0; 1; 2; 1], and P3 = [4; 6;−1; 1]. So we calculate:

P1 ×P2 ×P3 =

∣∣∣∣∣∣∣∣
ı̂ ̂ k̂ l̂
1 2 3 1
0 1 2 1
4 6 −1 1

∣∣∣∣∣∣∣∣ = 8i− 7j− 1k + 9l = [8;−7;−1; 9]

Thus in the Euclidean patch the equation of the plane is:

8x− 7y − z + 9 = 0

�

Example 4.5. To illustrate the dual nature of the calculation we could also say
that if we had three planes in the Euclidean patch with equations x+2y+3z+1 =
0; y+ 2z+ 1 = 0, and 4x+ 6y− z+ 1 = 0 then the same calculation shows that
they meet at the point

[8;−7;−1; 9] ≡ [8/9;−7/9;−1/9; 1]

which in the Euclidean patch is the point
[
8
9 ;− 7

9 ;− 1
9

]
.

�

To note some special cases:

Example 4.6. Consider the three points in R3 given by [1; 2; 3]; [2; 4; 6]; and
[3; 6; 9]. In RP3 these are represented by the vectors P1 = [1; 2; 3; 1], P2 =
[2; 4; 6; 1], and P3 = [3; 6; 9; 1]. We calculate:

P1 ×P2 ×P3 = 0

This is expected since these three points are colinear.

�

Example 4.7. In this previous example if these three vectors had represented
planes instead of points then they would represent the planes x+2y+3z+1 = 0,
2x+ 3y+ 6z + 1 = 0, and 3x+ 6y+ 9z + 1 = 0. These three planes are parallel
and in fact meet at a line, that line being the line consisting of the points at
infinity which lie on each plane.

�

Example 4.8. Consider the three planes in R3 with equations x + y = 2,
x = 0 and y = 0. In R3 these meet pairwise in vertical lines. In RP3 these
are represented by the vectors P1 = [1; 1; 0;−2], P2 = [1; 0; 0; 0], and P3 =
[0; 1; 0; 0]. We calculate:

P1 ×P2 ×P3 = [0; 0;−2; 0] ≡ [0; 0; 1; 0]

This is the point at infinity which is encountered if we allow Z → ±∞ for any
[X0;Y0;Z; 1].
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In the following example one of the points is a point at infinity. This is not a
problem, there is still a plane.

Example 4.9. Consider the two points in R3 given by [1; 4; 3] and [0; 5; 2] and
the single point at infinity [6; 2; 1; 0]. In RP3 these are represented by the vectors
P1 = [1; 4; 3; 1], P2 = [0; 5; 2; 1], and P3 = [6; 2; 1; 0]. We calculate:

P1 ×P2 ×P3 = [3;−5; 8; 41]

�

Exercise 4.4. Find the intersection point of the three planes with Euclidean
equations x+ 2y − 3z = 3, 4x− y + 2z = 5 and x+ 6y − z = 10.

�

Exercise 4.5. Find the equation of the plane containing the three points
[1; 0; 0], [5; 10; 3] and [6;−3; 4].

�

Exercise 4.6. Suppose V1, V2, V3, V4 ∈ R3. Consider the calculation:

(V1 ×V2 ×V3) ·V4

What does this calculation tell you...

1. If the Vi represent points?

2. If the Vi represent planes?

�

4.4 Standard Transformations of Planes

Given that a plane is represented by a vector P we might ask what happens if a
projective transformation is applied to the plane. This theorem should remind
you of a similar theorem about lines in the previous chapter.

Theorem 4.4.1. If a plane represented by the vector P is transformed by the
matrix M then the resulting plane is represented by the matrix:(

M−1
)T

P

Proof. Suppose x is on the transformed plane. Then M−1x is on the original
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plane and so:

P ·
(
M−1x

)
= 0

PTM−1x = 0((
M−1

)T
P
)T

x = 0((
M−1

)T
P
)
· x = 0

Example 4.10. To calculate the result when the plane 2x+y−z = 3 is rotated
by 5 radians about the y-axis we assign P = [2; 1;−1;−3] and then calculate:

(RY (5)−1)TP ≈ [1.53; 1; 1.63;−3]

so the Euclidean equation for the result is approximately 1.53x+y+1.63z−3 = 0.

�

Exercise 4.7. Find the result when the plane x + 5y − 2z = 10 is rotated by
4.2 radians about the line x = 2, y = −3.

�

5 Plücker Coördinates for Lines

5.1 Pre-Computation Lemmas

Before proceeding let’s establish a few facts about dot and cross products.

Lemma 5.1.1. For vectors a, b, c and d we have:

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c)

Proof. Brute force.

Lemma 5.1.2. For vectors a, b, and c we have:

a× (b× c) = (a · c)b− (a · b)c

Proof. Brute force.

Lemma 5.1.3. For vectors a, b and c we have:

a · (b× c) = b · (c× a) = c · (a× b)

Proof. Brute force. Notice this is easy to remember because the letters are
always in cyclical order.

17



5.2 Definition of Plücker Coördinates

Lines are not easy to describe in RP3 just as they are not easy to describe in
R3.

It’s certainly true that two points make a line but these points are not unique
and even so, knowing two points on a line is not particularly helpful. Simi-
larly a point and a vector make a line but these don’t necessarily lead to easy
calculations of intersections, coplanarity and so on.

Instead we introduce Plücker coördinates which are a computationally conve-
nient way to store the information about line.

Definition 5.2.1. Suppose a line L in R3 is determined by a point v and a
direction vector d. If we define the moment vector of the line:

m = v × d

then the pair of vectors in R3

[d; m]

make up the Plücker Coördinates for L. Note that this is a sextuplet, a vector
in R6.

�

Example 5.1. To find the Plücker coördinates for the line containing the points
[4; 5; 0] and [10; 13; 3] we note:

v = [4; 5; 0]

d = [6; 8; 3]

m = v × d = [4; 5; 0]× [6; 8; 3] = [15;−12;−2]

Thus the result is [d; m] = [6; 8; 3; 15;−12;−2].

Note: You might wonder what had happened if we’d used the other point, or a
parallel direction vector. We’ll address this soon.

�

Okay we’ve given an example but it might be a bit premature. We must address
more rigorously the correspondance between lines and sextuplets.

First let’s address the question as to whether any sextuplet can represent a line.

Theorem 5.2.1. The sextuplet [d; m] represents a line iff d 6= 0 and d ·m = 0.

Proof. We have two directions to manage:

=⇒:

Suppose the sextuplet [d; m] represents the line with some direction d and
point v. Note that d 6= 0 or else the line would not have a direction and that
d ·m = d · (v × d) = 0 because (v × d) ⊥ d.

18



⇐=:

Given a sextuplet [d; m] with d 6= 0 and d ·m = 0 we claim that this sextuplet
arises from the line with direction d and point v = (d ×m)/(d · d). To see
this observe that we only need to show that this v gives rise to our m. In other
words that m = v × d.

v × d =

(
d×m

d · d

)
× d

=
1

d · d
[(d×m)× d]

= − 1

d · d
[d× (d×m)]

= − 1

d · d
[(d ·m)d− (d · d)m]

= − 1

d · d
[0− (d · d)m]

= m

So the answer is no, and the previous theorem tells us which sextuplets do and
which sextuplets don’t. Thus the set of lines corresponds to the set of sextuplets
[d; m] having d 6= 0 and d ·m = 0.

As a corollary from the above, but calling a theorem because it’s important
enough, we note:

Theorem 5.2.2. The line with Plücker coördinates [d; m] contains the conve-
nient point:

d×m

d · d

Proof. Follows as part of the calculation above.

Example 5.2. The line with Plücker coördinates [1; 0; 3;−6; 2; 2] contains the
point:

[1; 0; 3]× [−6; 2; 2]

[1; 0; 3] · [1; 0; 3]
=

[−6;−20; 2]

10
=

[
−3

5
;−2;

1

5

]
�

Next we have to see if this correspondance is 1-1 or not.

Given that any other point on the line v + αd and any other nonzero multiple
of the direction vector βd can be used to construct the same line we have to
ask what happens to the Plücker coördinates if we use such a variation.
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Theorem 5.2.3. For a line with a given point and direction, replacing the point
by any other point on the line and the direction by any nonzero scalar multiple
of the direction yields the same Plücker coördinates up to a scalar multiple.

Proof. Suppose we replace the point v by v′ = v + αd. and we replace d by
d′ = βd with β 6= 0, observe that:

m′ = v′ × d′

= (v + αd)× (βd)

= βv × d + αβd× d

= βm + αβ(0)

= βm

So the new Plücker coördinates are:

[d′; m′] = β[d; m]

Okay great, so any given line will product nonzero scalar multiples of the same
sextuplet. But can we be sure that every nonzero scalar multiple of the same
sextuplet arises from the same line?

Theorem 5.2.4. Suppose L yields Plücker coördinates [d; m] and L′ yields
Plücker coordiantes [βd;βm] with β 6= 0, then L = L′.

Proof. Since d and βd point in the same direction the lines are parallel.

Moreover we saw earlier that the line with Plücker coördinates [d; m] contains
the point:

d×m

d · d

And the line with Plücker coördinates [βd;βm] contains the point:

βd× βm

βd · βd
=
β2(d×m)

β2(d · d)
=

d×m

d · d

Since they contain the same point and are parallel, they are the same line.

So all together it follows from the previous theorems that any given line will
yield [d; m] with d = 0 and d ·m = 0 unique up to scalar multiples and any
[d; m] represents a line provided d 6= 0 and d ·m = 0, with scalar multiples
representing the same line.
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We’ll continue to use the phrase ”the Plücker coördinates” even though they’re
not unique with the understanding that nonzero multiples are equivalent. This
is pretty handy because we’ve done it all over the place in RP2 and RP3 with
points, lines and planes.

Exercise 5.1. Find the Plücker coördinates for the line containing the points
[5; 0; 2] and [8; 1; 2].

�

Exercise 5.2. Show that for Plücker coordinatex [d; m] we have m = 0 if and
only if the line goes through the origin.

�

5.3 Which Point Did We Get?

It’s worth returning to an earlier theorem to observe something interesting.

Recall this theorem:

Theorem 5.3.1. The line with Plücker coördinates [d; m] contains the conve-
nient point:

d×m

d · d

�

Which point on the line is this exactly? Well, suppose [d; m] arises from some
point v, so m = v × d. Then observe that:

d×m

d · d
=

d× (v × d)

d · d
=

(d · d)v − (d · v)d

d · d
= v − (d · v)d

d · d
= v − Projdv

Since this vector is perpendicular to d and lies on the line (well, points from
the origin to a point on the line), it must be the point on the line closest to the
origin.

Another way to see this is to recall the Calculus 3 formula for the (shortest,
perpendicular) distance from a point Q to a line containing the point P and
with direction vector d:

||PQ× d||
||d||

In our case P = v and Q = 0 and so:

||PQ× d||
||d||

=
|| − v × d||
||d||

=
||v × d||
||d||
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But notice that:

||d×m||
d · d

=
||d× (v × d)||

d · d
=
||d|| ||v × d||

d · d
=
||d|| ||v × d||
||d||2

=
||v × d||
||d||

(Note that the second equals sign arises from the fact that d ⊥ (v×d) and that
||d× (v × d)|| = ||d|| ||v × d|| sin θ.)

So the (shortest, perpendicular) distance from the origin to our line is exactly
the length of the vector d ×m/d · d so this vector must point to the closest
point.

5.4 Important Note About the Literature

There are many, many resources regarding Plücker Coördinates on the internet
and they are not at all consistent in the definition and some are downright con-
fusing from a computational perspective, partially due to the various approaches
one can take to the material.

Specifically note that Ken Shoemake’s notes, which are considered an excellent
resource, defines them as [d; d×v] instead of [d; v×d], whereas Wikipedia and
most software implementations agree with what we’ve done here.

Other resources rearrange the entries in the sextuplet even more in ways that
perhaps make more theoretical mathematical sense but are less useful from a
computational perspective.

Each of these leads to slightly different formulas to what is below in a few cases.
Just be aware of this.

5.5 A Trip Back to RP3

Theorem 5.5.1. The line with Plücker Coördinates [d; m] is considered as a
line in RP3 it picks up the single point at infinity [d; 0].

Proof. Put on a homework.

5.6 Point on Line

Theorem 5.6.1. The point v ∈ R3 is on the line [d; m] iff v × d = m.

Proof. We have two directions:

=⇒:
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Suppose v is on the line. We also know that (d ×m)/d · d is on the line. It
follows that the the difference is parallel to d and so:[

v − d×m

d · d

]
× d = 0

v × d +
d× (d×m)

d · d
= 0

v × d +
(d ·m)d− (d · d)m

d · d
= 0

v × d +
(0)d− (d · d)m

d · d
= 0

v × d−m = 0

v × d = m

⇐=:

On the other hand suppose v satisfies v × d = m. Let v0 be any point on the
line. Then we have:

(v − v0)× d = v × d− v0 × d = m−m = 0

Thus v − v0 is parallel to d and since v0 is on the line, so is v.

Example 5.3. Consider the line [d; m] = [8; 2;−1;−3; 1; 22]. We can check
some points:

• [1; 3; 0]: We find [1; 3; 0]× [8; 2;−1] = [−3; 1; 22] = m so it’s on the line.

• [9; 5;−1]: We find [9; 5;−1] × [8; 2;−1] = [−3; 1; 22] = m so it’s on the
line.

• [10; 3; 10]: We find [10; 3; 10] × [8; 2;−1] = [−23; 90;−4] 6= m so it’s not
on the line.

�

Exercise 5.3. Check which of the following points are on the line [d; m] =
[2; 3; 3;−9;−10; 16].

(a) [4;−2; 1]

(b) [6; 1; 4]

(c) [10; 8; 10]

(d) [14; 13; 16]

�
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5.7 Intersection Line Between Planes

Theorem 5.7.1. Suppose P1 is represented by [n1;n1] and P2 is represented
by [n2;n2]. If these planes are not parallel then they meet in the line

[d; m] = [n1 × n2︸ ︷︷ ︸
∈R3

;n1n2 − n2n1︸ ︷︷ ︸
∈R3

]

Proof. Clearly d = n1 × n2. Suppose v ∈ R3 is on both planes so that [v; 1] ·
[n1;n1] = v · n1 + n1 = 0 and [v; 1] · [n2;n2] = v · n2 + n2 = 0. Then observe
that:

m = v × d

= v × (n1 × n2)

= (v · n2)n1 − (v · n1)n2

= (−n2)n1 − (−n1)n2

= n1n2 − n2n1

Example 5.4. Consider the planes x+ y + z − 1 = 0 and x+ y + 2z − 1 = 0.

For reference clearly the points [1; 0; 0] and [0; 1; 0] lie on both planes and so the
line can be constructed with d = [−1; 1; 0] and m = [1; 0; 0]× [−1; 1; 0] = [0; 0; 1]
yielding Plücker coördinates [d; m] = [−1; 1; 0; 0; 0; 1].

Assigning [n1;n1] = [1; 1; 1;−1] and [n2;n2] = [1; 1; 2;−1] the formula above
finds:

n1 × n2 = [1;−1; 0]

n1n2 − n2n1 = [0; 0;−1]

Yielding Plücker coördinates [1;−1; 0; 0; 0;−1] ≡ [−1; 1; 0; 0; 0; 1].

�

Example 5.5. Consider the planes x + 2y − 3z + 10 = 0 and 2x + y − 5 = 0.
These are represented by [1; 2;−3; 10] and [2; 1; 0;−5]. These meet in the line
represented by:

[d; m] = [[1; 2;−3]× [2; 1; 0]; 10[2; 1; 0]− (−5)[1; 2;−3]] = [3;−6;−3; 25; 20;−15]

Note that if we took a more traditional Calculus approach to this we would
find the direction vector for the line, taking [1; 2;−3]× [2; 1; 0] = [3;−6;−3], so
that part is similar. Then we would find a point on both planes, which involves
finding a point satisfying both equations. This can be algebraically awkward
in general. In this case it’s not so bad and [5;−5; 5/3] works. Then to get the
Plücker coördinates we find:

m = [5;−5; 5/3]× [3;−6;−3] = [25; 20;−15]
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Exercise 5.4. Find the Plücker coördinates [d; m] of the line of intersection of
the planes x+ y − z = 3 and 2x+ y + 3z = 10.

�

5.8 Detecting Coplanarity of Lines

Theorem 5.8.1. Suppose L1 is represented by [d1; m1] and L2 is represented
by [d2; m2]. Then the lines are coplanar iff d1 ·m2 + d2 ·m1 = 0.

Proof. There are two cases to cover depending on whether the lines are parallel.

Case I:

If the lines are parallel then they are automatically coplanar and we simply need
to check that the above equation is true. Parallel lines will have d2 = βd1 for
some β 6= 0. In that situation suppose that L1 has point v1 and that L2 has
point v2 and then observe that:

d1 ·m2 + d2 ·m1 = d1 · (v2 × d2) + d2 · (v1 × d1)

= d1 · (v2 × βd1) + βd1 · (v1 × d1)

= d1 · (v2 × βd1) + βd1 · (v1 × d1)

= βd1 · (v2 × d1 + v1 × d1)

= βd1 · ((v2 + v1)× d1)

= 0

Case II:

If the lines are not parallel then they are coplanar iff they intersect. Let v1 be a
point on L1 and let v2 be a point on L2. Noting that d1 × d2 is perpendicular
to both, observe that:

(v2 − v1) · (d1 × d2) = v1 · (d1 × d2)− v2 · (d1 × d2)

= d2 · (v1 × d1)− d1 · (d2 × v2)

= d2 ·m1 − d1 · (−m2)

= d2 ·m1 + d1 ·m2

This will be zero iff either v1 = v2 (in which case they intersect) or v1 6= v2

and (v1 − v2) ⊥ (d1 × d2) which will happen exactly iff the lines intersect.

Example 5.6. Consider the line L1 joining [1; 0; 0] and [8; 2;−3] and the line
L2 joining [5; 5;−1] and [0; 3; 3]. These have Plücker coördinates [d1; m1] =
[7; 2;−3; 0; 3; 2] and [d2; m2] = [−5;−2; 4; 18;−15; 15] respectively. To see if
they meet we calculate:

d1 ·m2 + d2 ·m1 = 53 6= 0
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So they do not meet.

�

Example 5.7. The lines with Plücker coördinates [d1,m1] = [4;−8; 7; 38; 5;−16]
and [d2,m2] = [9;−5;−3; 9; 30;−23] do meet because:

d1 ·m2 + d2 ·m1 = 0

�

Exercise 5.5. Determine whether each of the pairs of lines meet:

(a) [d1; m1] = [0; 3; 10; 10;−50; 15] and [d2; m2] = [5; 1;−1;−1; 5; 0].

(b) [d1; m1] = [0;−3;−10;−10; 50;−15] and [d2; m2] = [4;−8;−5;−18; 46;−88].

�

5.9 Plane Formed by Intersecting Lines

Theorem 5.9.1. Suppose L1 is represented by [d1; m1] and L2 is represented
by [d2; m2]. If the two lines intersect then their common plane is represented
by:

[d1 × d2︸ ︷︷ ︸
∈R3

; d1 ·m2︸ ︷︷ ︸
∈R

]

Proof. The plane has normal vector n = d1 × d2. We know that the point
p = d2 ×m2/d2 · d2 is on the line and hence on the plane and so by an earlier
theorem the plane is represented by [n;−n · p]. Observe that:

−n · p = −(d1 × d2) ·
(

d2 ×m2

d2 · d2

)
= − 1

d2 · d2
(d1 × d2) · (d2 ×m2)

= − 1

d2 · d2
[(d1 · d2)(d2 ·m2)− (d1 ·m2)(d2 · d2)]

= − 1

d2 · d2
[(d1 · d2)(0)− (d1 ·m2)(d2 · d2)]

= d1 ·m2

Example 5.8. The lines with Plücker coördinates [d1,m1] = [4;−8; 7; 38; 5;−16]
and [d2,m2] = [9;−5;−3; 9; 30;−23] meet as we saw earlier. Their common
plane is represented by the vector:

[d1 × d2; d1 ·m2] = [59; 75; 52;−365]
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In Euclidean coördinates this is:

59x+ 75y + 52z − 365 = 0

�

Exercise 5.6. Determine the plane formed by the intersecting lines with Plücker
coördinates [d1; m1] = [0; 3; 10; 10;−50; 15] and [d2; m2] = [5; 1;−1;−1; 5; 0].

�

5.10 Intersection Point Between Coplanar Lines

Theorem 5.10.1. Suppose L1 is represented by [d1; m1] and L2 is represented
by [d2; m2] and suppose that neither contains the origin. If the two lines are
coplanar but not parallel then they meet at the point:

[m1 ×m2︸ ︷︷ ︸
∈R3

; d2 ·m1︸ ︷︷ ︸
∈R

] ≡
[

m1 ×m2

d2 ·m1
; 1

]

Proof. We show that this point is on both lines.

First we show it is on L1.

Keeping in mind (earlier formula) that coplanarity implies d1 ·m2 +d2 ·m1 = 0
and so d2 ·m1 = −d1 ·m2 we then have:

m1 ×m2

d2 ·m1
× d1 = − 1

d2 ·m1
d1 × (m1 ×m2)

= − 1

d2 ·m1
[(d1 ·m2)m1 − (d1 ·m1)m2]

= − 1

d2 ·m1
[(d1 ·m2)m1 − (0)m2]

=
1

d1 ·m2
[(d1 ·m2)m1 − (0)m2]

= m1

Next we show it is on L2:

m1 ×m2

d2 ·m1
× d2 = − 1

d2 ·m1
d2 × (m1 ×m2)

= − 1

d2 ·m1
[(d2 ·m2)m1 − (d2 ·m1)m2]

= − 1

d2 ·m1
[(0)m1 − (d2 ·m1)m2]

= m2
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Note: If either lines passes through the origin then we have one of the mi = 0
and then d2 ·m1 = d1 ·m2 = 0 and the calculation returns an invalid result. If
this is the case then the formula is far more complicated.

Example 5.9. Consider L1 passing through [1; 1; 1] and [3; 4; 5] and L2 passing
through [1; 1; 1] and [7; 10; 4]. For reference clearly they meet at [1; 1; 1].

We find d1 = [2; 3; 4] and so m1 = [1; 1; 1] × [2; 3; 4] = [1;−2; 3] and we find
d2 = [6; 9; 3] and so m2 = [1; 1; 1] × [6; 9; 3] = [−6; 3; 3] Then the formula from
our theorem yields an intersection point via:

m1 ×m2 = [−9;−9;−9]

d2 ·m1 = −9

Yielding [−9;−9;−9;−9] ≡ [1; 1; 1; 1] for the point [1; 1; 1].

�

Example 5.10. The lines with Plücker coördinates [d1,m1] = [4;−8; 7; 38; 5;−16]
and [d2,m2] = [9;−5;−3; 9; 30;−23] meet as we saw earlier. The point they
meet at is:

[m1 ×m2; d2 ·m1] = [365; 730; 1095; 365] ≡ [1; 2; 3; 1]

�

Exercise 5.7. Determine the intersection point of the lines with Plücker coördinates
[d1; m1] = [0; 3; 10; 10;−50; 15] and [d2; m2] = [5; 1;−1;−1; 5; 0].

�

5.11 Intersection Point Between Line and Plane

Theorem 5.11.1. Assuming they meet in R3, the line represented by [d; m] ∈
R6 and the plane represented by P = [n;n0] ∈ R4 meet at the point:

[n×m− n0d︸ ︷︷ ︸
∈R3

; n · d︸︷︷︸
∈R

] ≡
[

n×m− n0d
n · d

; 1

]

Proof. We show that the point is on the line and on the plane. For the line
observe that:

n×m− n0d
n · d

× d =
1

n · d
[−d× (n×m)− n0(d× d)]

=
1

n · d
[− [(d ·m)n− (d · n)m]− n0(0)]

=
1

n · d
[− [(0)n− (d · n)m]]

= m
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For the plane observe that:

[n×m− n0d; n · d] · [n;n0] = (n×m− n0d) · n + (n · d)n0

= (n×m) · n− n0d · n + (n · d)n0

= 0

Example 5.11. Consider the line through [0; 0; 1] and [3; 2;−1]. To see where
this line meets the plane x+ 5y + 2z = 10 we calculate the Plücker coördinates
for the line, which turn out to be [d; m] = [3; 2;−2;−2; 3; 0] and we assign for
the plane [n;n0] = [1; 5; 2;−10] and then we calculate:

[n×m− n0d; n · d] = [24; 16;−7; 9] ≡ [24/9; 16/9;−7/9; 1]

or the Euclidean point [24/9; 16/9;−7/9].

If we had taken a more traditional Calculus approach we might have found the
parametric equations of the line:

x = 0 + 3t

y = 0 + 2t

z = 1− 2t

Then we compute the t value for which it hits the plane:

3t+ 5(2t) + 2(1− 2t) = 10

9t = 8

t = 8/9

Which then yields the point:

x = 24/9

y = 16/9

z = −7/9

�

Exercise 5.8. Find the intersection of the line through the points [4; 2; 0] and
[−3; 1; 0] and the plane with equation 2x− 2y + 5z = 40.

�

Theorem 5.11.2. Interestingly this theorem also holds if the line and the plane
do not meet in R3. If they do not, then they still meet at the point at infinity
in RP3 given by [n×m− n0d; n · d].
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Proof. Since the line and plane do not meet in R3 we have n · d = 0. We
saw earlier that the point at infinity on the line (in its extension to RP3) is
[d; 0]. Observe also that the point [n×m− n0d; n · d] is still on the plane (the
calculation from the theorem still holds because it’s an R4 calculation) but in
addition note that if v is any point on the line then:

[n×m− n0d; n · d] = [n× (v × d)− n0d; 0]

= [(n · d)v − (n · v)d− n0d; 0]

= [−(n · v + n0)d; 0]

which equals [d; 0] in RP3. Note that the result is not 0 ∈ R4 since n ·v+n0 6= 0
because v is not on the plane.

5.12 Plane Containing Point and Line

Theorem 5.12.1. Suppose L is represented by [d; m] and the point Q =
[q; 1] ∈ E3 with q ∈ R3 is not on L. Then the plane containing both L and Q
is represented by the vector:

[q× d−m︸ ︷︷ ︸
∈R3

; m · q︸ ︷︷ ︸
∈R

]

Proof. Pick some v on the line (and hence on the plane) so that v × d = m.
Then we can obtain a normal for the plane via:

n = (q− v)× d = q× d− v × d = q× d−m

In addition we have:

−n · q = −(q× d−m) · q = −(q× d) · q + m · q = 0 + m · q

The result then follows by an earlier theorem.

Example 5.12. The plane containing the line with Plücker coördinates [d; m] =
[3; 2;−2;−2; 3; 0] and containing the point q = [3; 5; 2] is represented by the vec-
tor:

[q× d−m; m · q] = [−12; 9;−9; 9]

The Euclidean equation is then −12x+ 9y − 9z + 9 = 0.

�

Exercise 5.9. Find the equation of the plane containing the line [d; m] =
[5; 2;−2;−2; 10; 5] and the point [1; 1; 1].

�
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5.13 Computation Summary

Point v on Line [d; m] If v × d = m
Intersection Line Between Planes [n1;n1] and [n2;n2] [n1 × n2;n1n2 − n2n1]
Detecting Coplanarity of Lines [d1; m1] and [d2; m2] If d1 ·m2 + d2 ·m1 = 0
Plane Formed by Intersecting Lines [d1; m1] and [d2; m2] [d1 × d2; d1 ·m2]
Intersection Point Between Coplanar Lines [d1; m1] and [d2; m2] [m1 ×m2; d2 ·m1]
Intersection Point between Line [d; m] and plane [n;n0] [n×m− n0d; n · d]
Plane Containing Point q and Line [d; m] [q× d−m; m · q]
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