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Abstract

We study hyperbolic attractors of some dynamical systems with apriori given
countable Markov partitions. Assuming that contraction is stronger than ex-
pansion we construct new Markov rectangles such that their crossections by
unstable manifolds are Cantor sets of positive Lebesgue measure. Using
new Markov partitions we develop thermodynamical formalism and prove
exponential decay of correlations and related properties for certain Hölder
functions. The results are based on the methods developed by Sarig [26] -
[28].

1 Introduction
Examples of one-dimensional maps with countable Markov partitions go back to
the Gauss transformation, and further developments appeared in particular in [24],
[3], [31]. Beginning in [4], theorems about ergodic properties of such maps are
often referred to as Folklore.

More recently an interest in such maps was motivated by works on ergodic and sta-
tistical properties of quadratic-like and Hénon-like maps. The study of such maps
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is typically based on various tower constructions, see in particular [16], [17], [7],
[8], [32]. Power maps defined on the tower satisfy hyperbolicity and distortion
estimates.

Although the following remark is not directly related to the results of our paper, it
might be useful for the further work in the area under discussion.

Remark 1.1 Since numerical evidence for the existence of a strange attractor was
presented in the original Hénon paper [13], rigorous results were only obtained
in unspecified small neighborhoods of one-dimensional maps.
One possible approach to that problem is to prove that in a sufficiently small
neighborhood of the classical Hénon values, aH = 1.4,bH = .3, there is a positive
Lebesgue measure set M, such that for (a,b) ∈ M, Hénon maps fa,b have SRB
measures with strong mixing properties.
The main difficulty in that direction is to design a set of checkable numeric es-
timates which can be maintained through the induction. In the one-dimensional
case such estimates were used in [22], [15], [11].

We study apriori given two-dimensional systems with countable Markov parti-
tions satisfying hyperbolicity and distortion conditions. In [18] we proved strong
mixing properties of such systems assuming distortion condition D2, requiring
boundedness of the quotient of the second derivatives over the first derivative.
This condition is too strong for our purposes since it does not hold for power
maps induced by quadratic and Hénon maps.

Here we return to the more general setting of [20], [21] where only boundedness
of the quotient of the second derivatives over the square of first derivatives is as-
sumed. In order to study the decay of correlations we require additionally that
contraction in our models grows faster than expansion, see condition H5 below.
Condition H5 naturally holds for power maps generated by Hénon-like maps with
Jacobian less than 1. We also require distortions of our initial maps to be uni-
formly bounded, see condition BIV below. That is a standard requirement for
maps defined on a tower.
The main new idea of the paper is to develop thermodynamic formalism by using
special Markov rectangles such that their intersections with unstable manifolds
are Cantor sets of positive Lebesgue measure.
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2 Description of models and statement of results.
1. Description of the model.

The setting for our model is the same as in [18] - [21]. To summarize, let
Q be the unit square. Let ξ = {E1,E2, . . .} be a countable collection of full-
height, closed, curvilinear rectangles in Q. Hyperbolicity conditions that we
will recall below imply that the left and right boundaries of Ei are graphs of
smooth functions x(i)(y) with

∣∣∣dx(i)
dy

∣∣∣≤ α for 0 < α < 1.

Assume that each Ei lies inside a domain of definition of a C2 diffeomor-
phism F which maps Ei onto its image Si ⊂ Q. The images F |Ei(Ei) =
fi(Ei) = Si are disjoint, full-width strips of Q which are bounded from above
and below by the graphs of smooth functions yi(x), | dy(i)

dx | ≤ α .

We recall geometric and hyperbolicity conditions from [21].

2. Geometric conditions.

For z ∈ Q, let `z be the horizontal line through z. We define δ z(Ei) =
diam(`z

⋂
Ei), δ i,max = maxz∈Q δ z(Ei), δ i,min = minz∈Q δ z(Ei).

G1. For i 6= j holds int Ei∩ int E j = /0, int Si∩ int S j = /0 .

G2. mes(Q\∪i int Ei) = 0 where mes stands for Lebesgue measure.

G3. for some 0 < a≤ b < 1 and some C̃ ≥ 1 it holds that

C̃−1ai ≤ δ i,min ≤ δ i,max ≤ C̃bi.

3. Hyperbolicity conditions.

Let JF(z) be the absolute value of the Jacobian determinant of F at z.

There exist constants 0 < α < 1 and K0 > 1 such that for each i the map

F(z) = fi(z) for z ∈ Ei

satisfies
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H1. | F2x(z) |+α| F2y(z) |+α2| F1y(z) | ≤ α| F1x(z) |
H2. | F1x(z) |−α| F1y(z) | ≥ K0.

H3. | F1y(z) |+α| F2y(z) |+α2| F2x(z) | ≤ α| F1x(z) |
H4. | F1x(z) |−α| F2x(z) | ≥ JF(z)K0.

We recall some notation.

Given a finite string i0 . . . in−1, n≥ 1, we define inductively

Ei0...in−1 = Ei0

⋂
f−1
i0 Ei1i2...in−1 (1)

Then, each set Ei0...in−1 is a full height subrectangle of Ei0 .

Analogously, for a string i−m . . . i−1 we define

Si−m...i−1 = fi−1(Si−m...i−2

⋂
Ei−1)

and get that Si−m...i−1 is a full width strip in Q. It is easy to see that Si−m...i−1 =

fi−1 ◦ fi−2 ◦ . . .◦ fi−m(Ei−m...i−1) and that f−1
i0 (Si−m...i−1i0) is a full-width sub-

strip of Ei0 .

We also define curvilinear rectangles Ri−m...i−1,i0...in−1 by

Ri−m...i−1,i0...in−1 = Si−m...i−1

⋂
Ei0...in−1 (2)

If there are no negative indices then respective rectangle is full height in Q.

The following is a well known fact in hyperbolic theory, see [21].

Proposition 2.1 Any C1 map F satisfying the above geometric conditions
G1–G3 and hyperbolicity conditions H1–H4 has a ”topological attractor”

Λ =
⋃

...i−n...i−1

⋂
k≥1

Si−k...i−1.

The infinite intersections
∞⋂

k=1

Si−k...i−1

4



define C1 curves y(x), |dy/dx| ≤ α, which are the unstable manifolds for
the points of the attractor.

The infinite intersections

∞⋂
k=1

Ei0...ik−1

define C1 curves x(y), |dx/dy| ≤ α, which are the stable manifolds for the
points of the attractor.

The infinite intersections

∞⋂
m=1

∞⋂
n=1

Ri−m...i−1,i0...in−1

define points of the attractor.

4. Distortion condition.

We formulate certain assumptions on the second derivatives. We use the dis-
tance function d((x,y),(x1,y1)) = max(| x− x1 |, | y− y1 |) associated with
the norm | v |= max(| v1 |, | v2 |) on vectors v = (v1,v2).

Our first condition is the same as in [21]; we recall it below.

Let fi(x,y) = ( fi1(x,y), fi2(x,y)). We use fi jx, fi jy, fi jxx, fi jxy, etc. to denote
partial derivatives of fi j, j = 1,2.

We define

| D2 fi(z) |= max
j=1,2,(k,l)=(x,x),(x,y),(y,y)

| fi jkl(z) |.

We assume that there exists a constant C0 > 0 such that the following Dis-
tortion Condition holds:

D1. supz∈Ei, i≥1
| D2 fi(z) |
| fi1x(z) |

δ z(Ei)<C0.
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5. A result about systems satisfying geometric, hyperbolicity and distor-
tion conditions:

Our conditions imply the following Theorem proved in [20] and [21].

Theorem 2.2 Let F be a piecewise smooth mapping as above satisfying the
geometric conditions G1–G3, the hyperbolicity conditions H1–H4, and the
distortion condition D1.

Then, F has an SRB measure µ supported on Λ whose basin has full Lebesgue
measure in Q. The dynamical system (F,µ) satisfies the following proper-
ties.

(a) (F,µ) is measure-theoretically isomorphic to a Bernoulli shift.

(b) F has finite entropy with respect to the measure µ , and the entropy
formula holds

hµ(F) =
∫

log|DuF |dµ (3)

where DuF(z) is the norm of the derivative of F in the unstable direc-
tion at z.

(c)

hµ(F) = lim
n→∞

1
n

log | DFn(z) | (4)

where the latter limit exists for Lebesgue almost all z and is indepen-
dent of such z.

6. Additional distortion and hyperbolicity conditions and statement of the
main theorems.

(a) Properties of the function φ(z) = − log(DuF(z)) are important when
applying thermodynamic formalism to hyperbolic attractors. We con-
sider systems satisfying conditions of Theorem 2.2 and some extra
hyperbolicity conditions, which can be used for power maps arising
from Henon-type diffeomorphisms.
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We explore a general principle that can be stated as : Contraction in-
creases faster than expansion - see hyperbolicity condition H5 below.
For such systems we construct new Markov partitions such that the
pullback of φ(z) into a respective symbolic space is a locally Hölder
function.

New Markov rectangles are Cantor sets, such that their one-dimensional
crossections by W u(z) have positive Lebesgue measure.

(b) We consider a class of system which satisfy conditions of the Theorem
2.2 as well as the following additional assumptions.

i. Bounded Initial Variation.

BIV. There exists B0 > 0 such that for all i and all

{z1 = (x1,y1),z2 = (x2,y2)} ∈ Ei

holds
| log fi1x(z1)− log fi1x(z2) |< B0. (5)

BIV does not allow unbounded oscillations of widths for initial
rectangles.

ii. Contraction grows faster than expansion.
We assume that there is a constant a1 satisfying

0 < a1 < a (6)

where a is from G3, such that for each j, for each z ∈ E j, and for
any vector v in the stable cone Ks

α (z) holds

H5. | D f−1
j v | ≥ a− j

1 | v |.

Condition H5 means that up to a uniform factor, contractions of
f j grow faster than expansions. In particular it implies that up to
a uniform factor, heights of Si∩Ek are smaller than widths of Ek
for all k ≤ i.
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Remark 2.3 Uniform hyperbolicity and distortion conditions were used
in [20], [21] to extend the classical approach of [6] and to study er-
godic properties of systems with countable Markov partitions. By com-
bining D1 and H5 we can add methods of thermodynamic formalism.

(c) Let Hγ be the space of functions on Q satisfying Hölder property with
exponent γ

| φ(x)−φ(y) | ≤ c| x− y |γ .

We state our main Theorems.

Theorem 2.4 (Exponential Decay of Correlations)
Let F be a piecewise smooth mapping as above, satisfying geometric
conditions G1– G3, hyperbolicity conditions H1–H5, distortion condi-
tion D1, and the BIV condition. Then the system (F,µ) has exponential
decay of correlations for f ∈Hγ and g ∈ L∞(µ). Namely there exists
0 < η < 1, η = η(γ), such that∣∣∣∣∫ f (g◦Fn)dµ−

∫
f dµ

∫
g dµ

∣∣∣∣<C( f ,g)ηn. (7)

Theorem 2.5 (Central Limit Theorem)
Let (F,µ) satisfy the assumptions of Theorem 2.4 and suppose that
f ∈Hγ . If

∫
f dµ = 0 and f cannot be expressed as g− g ◦F for g

continuous, then there is a positive constant σ = σ( f ), such that for
every t ∈ R,

lim
n→∞

µ

{
x :

1√
n

n−1

∑
k=0

f ◦Fk(x) < t

}
=

1√
2πσ2

∫
∞

−t
e
−s2

2σ2 ds.

3 Hölder properties of log(DuF(z)) and Markov par-
titions in the phase space.

1. The key step toward the proof of Theorem 2.4 is to establish that the pull-
back of the function logDuF into the respective symbolic space is Hölder
continuous. Then one can follow the Ruelle-Bowen approach ([25], [9]),
in particular using results of Sarig [26] - [28] to develop thermodynamic
formalism for the systems under consideration. Hölder properties of the
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pullback of logDuF into symbolic space follow from Hölder properties of
logDuF in the phase space.
In order to get an appropriate symbolic space, we construct a partition of
a subset of positive measure C ⊂ Λ, such that the first return map to C is
Markov. Elements of the Markov partition of Λ are elements of the Markov
partition of C and their orbits before the first return.
Elements Ci of the Markov partition C have the following property. For
z ∈Ci the crossection Cu

i (z) of Ci by W u(z) is a Cantor set of positive linear
Lebesgue measure.

2. Cantor sets that we construct are inscribed in curvilinear rectangles
Ri−m...i−1,i0...in−1 . Recall that Ri−m...i−1,i0...in−1 are bounded from above and
below by arcs of unstable curves Γu, which are images of some pieces of
the top and bottom of Q, and from the left and right by arcs of stable curves
Γs which are preimages of some pieces of the left and right boundaries of Q .

For x ∈ Ri−m...i−1,i0...in−1 ∩Λ let

Γ
s(x,Ri−m...i−1,i0...in−1) =W s(x)∩Ri−m...i−1,i0...in−1

Γ
u(x,Ri−m...i−1,i0...in−1) =W u(x)∩Ri−m...i−1,i0...in−1.

We define the height of Ri−m...i−1,i0...in−1 as

H(Ri−m...i−1,i0...in−1) = supx
∣∣Γs(x,Ri−m...i−1,i0...in−1)

∣∣
The width W (Ri−m...i−1,i0...in−1) is defined similarly.

Hyperbolicity conditions imply that stable boundaries of rectangles belong
to stable cones. Since standard horizontal lines belong to unstable cones,
and stable and unstable cones are separated, we get the following.

For every ε1 there is an ε0 such that if

H(Ri−m...i−1,i0...in−1)< ε0wmin(Ri−m...i−1,i0...in−1) (8)

then for all m ≥ 1, n ≥ 1, the ratio of lengths of any two unstable curves
Γu(x,Ri−m...i−1,i0...in−1) is bounded by 1± ε1. Similarly it follows from hy-
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perbolicity conditions, that if l is the length of a standard horizontal crossec-
tion of Ei0...in−1 through a point x ∈ Ri−m...i−1,i0...in−1 , then for some c0,

| Γu(x,Ri−m...i−1,i0...in−1) |< c0l. (9)

3. Admissible objects.

We define the following strings of indices as admissible:

A1. A string ᾱ = [i1 . . . ik] is admissible if for each l = 1,2, . . .k−1 it holds that

l

∑
m=1

im ≥ il+1 (10)

A rectangle Ri−m...i−1,i0...in−1 = is admissible if the string [i−m . . . i−1i0 . . . in−1]
is admissible. It follows from definition that if Ri−m...i−1,i0...in−1 , m≥ 0,n≥ 1
is admissible, then all rectangles obtained by moving the comma in the in-
dex to the left or to the right are admissible. A one-sided sequence i1i2 . . . in . . .
is admissible if all strings [i1 . . . in] are admissible.

In particular all strings [i j], i ≥ j are admissible, and thus, the respective
rectangles are admissible.

Note that distortion estimates may be satisfied on non-admissible rectangles
if their heights are small enough, but we ignore that possibility, and orga-
nize our construction based on condition A1.

4. We estimate the variation of logDuF on admissible two-dimensional curvi-
linear rectangles Ri−m...i−1,i0...in−1 . For any function a(x,y) the variation of
a(x,y) over a rectangle R is defined as

var(a(x,y))|R = sup
(x1,y1)∈R,(x2,y2)∈R

| a(x1,y1)−a(x2,y2) | (11)

The function logDuF is locally Hölder on admissible rectangles Ri−m...i−1,i0...in−1

if for m≥ 0, n≥ 1 the variation of logDuF on Ri−m...i−1,i0...in−1 satisfies

var(logDuF)|Ri−m...i−1,i0...in−1 <Cθ
min(m,n)
0 (12)
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for some C > 0, θ0 < 1.

Note that on initial rectangles Ei estimate (12) is satisfied because of BIV.

5. The proof of the following Proposition is similar to the proof of Proposition
5.1 in [18].

Proposition 3.1 For any admissible string [i−m . . . i−1i0 . . . in−1] the varia-
tion of logDuF on Ri−m...i−1,i0...in−1 satisfies (12) with some C and θ0 inde-
pendent of m,n and determined by hyperbolicity and distortion conditions.

Note that in [18] and [19] we proved Hölder property of logDuF on arbitrary
rectangles Ri−m...i−1,i0...in−1 . Here we prove it for admissible rectangles.

Proof.

(a) Admissible rectangles Ri−m...i−1,i0...in−1 are bounded from above and be-
low by some arcs of two unstable curves Γu

i−m...i−1
which are images

of some pieces of the top and bottom of Q and from left and right by
some arcs of two stable curves Γs

i0...in−1
which are preimages of some

pieces of the left and right boundaries of Q.

Let z1,z2 ∈ Ri−m...i−1,i0...in−1 ∩Λ. We consider two points z3,z4 such
that W s(z3) =W s(z4) and for which we can connect z1 to z3 and z2 to
z4 along their respective unstable manifolds. We define the following
curves inside Ri−m...i−1,i0...in−1 ,

γ1 = γ(z1,z3)⊂W u(z1)

γ2 = γ(z2,z4)⊂W u(z2)

γ3 = γ(z3,z4)⊂W s(z3).

Now we bound each term on the right hand side of the inequality

|logDuF(z1)− logDuF(z2)| ≤
|logDuF(z1)− logDuF(z3)| +

|logDuF(z3)− logDuF(z4)| +

|logDuF(z4)− logDuF(z2)|
(13)
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Estimates of |logDuF(z1)−logDuF(z3)| and |logDuF(z4)−logDuF(z2)|
are the same as estimates (15)− (28) in the proof of Proposition 5.1
in [18]. Then we get

|logDuF(z1)− logDuF(z3)|<C2
1

Kn
0
. (14)

Similarly,

|logDuF(z2)− logDuF(z4)|<C2
1

Kn
0
. (15)

(b) The second part of the proof, depending on m, follows again the ideas
in [18] and [19] but also utilizes condition H5. We are left with esti-
mating the difference

|logDuF(z3)− logDuF(z4)|. (16)

Note that the BIV condition implies that the above difference is uni-
formly bounded on full-height rectangles. From [21] we get that the
hyperbolicity conditions imply that any unit vector in Ku

α at a point
z ∈ Ei, in particular a tangent vector to W u(z), has coordinates (1,az)
with |az|< α . Thus we need to estimate

log|F1x(z3)+az3F1y(z3)|− log|F1x(z4)−az4F1y(z4)|. (17)

Now we are moving along γ3 ⊂W s(z3) connecting z3 and z4.
We cover γ3 by rectangles R̃k for which the widths ∆x and lengths ∆y
satisfy |∆x|< α|∆y|. As in [18], we get (17) by estimating differences

|logF1x(z̃)− logF1x(z̃′)| (18)

for z̃, z̃′ ∈ R̃k∩W s(z3), and

|az3−az4 |. (19)

To estimate (18) we use the mean value theorem and get on each rect-
angle R̃k an estimate not exceeding

Const · sup
z∈R̃k

| f1i j(z)|
| f1x(z)|

∆y. (20)
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Let Γ3 = W s(z3)∩Ri−1,i0 . The sum of the contributions from (20) is
bounded by

Const sup
z∈Ri−1,i0

| f1i j(z)|
| f1x(z)|

|γ3|. (21)

Since the distortion condition D1 is expressed using the width of Ei0 ,
we use condition H5.

On an admissible rectangle Ri−m...i−1,i0...in−1 , the string [i−m . . . i−1i0] is
admissible. Let hmax be the maximal height of Si−m...i−1 and let wmin
be the minimal width of Ei0 . From condition H5 we know that con-
traction of fi is stronger than ai

1. Since the rectangle is admissible, the
sum of the indices satisfies i−m + . . . i−1 ≥ i0. Since contraction of the
composition is stronger than ai0

1 , it follows that

hmax

wmin
<C

(a1

a

)i0
. (22)

As each index is at least 1 we get that i0 ≥ m and thus

hmax <
(a1

a

)m
C̃−1wmin. (23)

Therefore the heights of rectangles Ri−m...i−1,i0 decay exponentially
comparatively to the width of Ei0 . Since |γ3|< hmax and wmin < δz(Ei0)
for any z ∈ Ei0 , we can apply D1 and obtain the following bound for
the sum of the contributions from (18),

C3

(a1

a

)m
(24)

We estimate (19) as in [18], [19]. We assume by induction

|az3−az4|< c1θ
m
1 (25)

As in [19] one can assume by taking if needed instead of F some
power of F

1
K2

0
+α

2 < 1 (26)
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Note that differently from [19] the variation of logDuF along sta-
ble manifolds inside admissible rectangles is controlled not by using
bounded distortions of inverse maps, but from (23) and (26).

With that modification we prove like in Lemma 5.2 from [18]

|aF(z3)−aF(z4)|< c1θ
m+1
1 . (27)

where
max{ 1

K2
0
+α

2,
a1

a
}< θ1 < 1 (28)

Combining (24) and (27) gives us

|logDuF(z3)− logDuF(z4)|<C4θ
m
1 . (29)

Finally combining (14), (15), and (29) concludes the proof of Propo-
sition 3.1, if we take θ0 < 1 satisfying

θ0 > max{ 1
K0

,θ1}. (30)

6. Construction of full height Cantor sets.

We define full height Cantor sets Cn inside full height rectangles En, n ≥ 1
by

Cn =
∞⋂

m=1

m⋃
k=1

Ei0...ik−1 (31)

where i0 = n, k ≥ 1 and all [i0 . . . ik−1] are admissible strings.

As an example let us consider several rectangles with indices starting from
1. It follows from the definition that [11] is admissible and [1i], i > 1 are
not. Then R[11] is the only defining rectangle of order two for the Cantor set
C1 and that the other R[1i] are gaps. The next defining rectangles of order
three for C1 are R[111] and R[112], of order four R[1111], R[1112], R[1113], R[1121],
R[1122], R[1123], R[1124] and so on.

As each index is at least 1 we get from the definition of admissible rect-
angles that inadmissible indices satisfy iN > N. Geometric condition G3
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implies that on any unstable manifold, the relative measure of the union of
rectangles with indices greater than N decays exponentially.
Then uniformly bounded distortion implies that the total relative linear mea-
sure of gaps in an unstable manifold of any defining rectangle of order N
has uniform exponential decay.

This implies the following Corollary.

Corollary 3.2 There is a c0 > 0 such that for any initial full height rectan-
gle En and respective full height Cantor set Cn constructed inside En and
for any z ∈Cn∩Λ the relative linear measure of Cn in W u(z,En) is greater
than c0. Moreover that relative measure tends to one when n→ ∞.

Also as in [18], Remark 5.10, we get the following Corollary from distortion
estimates.

Corollary 3.3 Let Ei0...in−1 be a full height admissible rectangle of order n.
Then for any two points z1, z2 ∈ Ei0...in−1 ∩Λ, it holds that

|W u(z1,Ei0...in−1) |
|W u(z2,Ei0...in−1) |

< c (32)

As Corollary 3.3 is valid for all defining rectangles we get

Corollary 3.4 Let Cn be the full height Cantor set constructed inside En,
let z ∈Cn∩Λ, and let |W u(z,Cn) | be the linear Lebesgue measure of Cn in
W u(z,En). Then for any two points z1, z2 ∈Cn∩Λ, it holds that

|W u(z1,Cn) |
|W u(z2,Cn) |

< c (33)

7. Markov properties of Cn.

Every Cantor set Ci is determined by its defining rectangles and equivalently
by its gaps. Defining rectangles are labeled by admissible strings [i1i2 . . . in]
satisfying A1. Gaps are labeled by nonadmissible strings [i1i2 . . . in j], where
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[i1i2 . . . in] is admissible and j > i1 + i2 + . . .+ in.

For example gaps of C3 are:

E3k, k > 3 - gaps of order 1,

E31k, k > 4, E32k, k > 5, E33k, k > 6 - gaps of order 2,

E311k, k > 5 - gaps of order 3, and so on.

The following example illustrates Markov relations between Cantor sets Ci.

Consider an admissible rectangle E112. Then F(E112) = R1,12 is a sub-
rectangle of a non-admissible rectangle E12. However, because of H5,
F2(E112) = R11,2 has height less than the width of E2.

We will use the notation

C112 =C1∩E112

and in general,

Ci1...is =Ci1 ∩Ei1...is,

Ci1...ik,ik+1...il =Cik+1...il ∩Ri1...ik,ik+1...il .

We have that
F2(C112)⊃C11,2. (34)

As the sum of indices in [112] is greater than 2, the inclusion in (34) is not
an equality. Namely strings [23] and [24] are not admissible, but [1123] and
[1124] are admissible. The image F2(C112) covers respective slice of C2 and
also covers some parts of gaps C23 and C24 used in the construction of the
Cantor set C2.
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Consider the union of all full height Cantor sets Cn :

C =
∞⋃

n=1

Cn. (35)

For z ∈Ci1...in let us denote W u(z,Ci1...in) =Ci1...in ∩W u(z,Ei1...in).

Let T be the first return map to C generated by F . Similarly to (34) above
we get the following Markov properties.

Proposition 3.5 If [i1 . . . in] is admissible, z ∈Ci1...in , T (z) ∈Cin , then

T (W u(z,Ci1...in))⊃W u(T (z),Cin). (36)

T (W s(z,Ci1...in))⊂W s(T (z),Ci1...in−1,in) (37)

8. Estimates of measure.

Let T1 be the first return map to C1 ⊂ C . Next we estimate the measure of
points in C1 which return to C1 after at least n iterates of F .

Proposition 3.6 Let Bn be the set of points in the domain of T1 such that the
return time for z ∈ Bn is greater than n. For some C > 0 and 0 < β < 1,

µ(Bn)<Cβ
n. (38)

We begin by proving (38) for the first return map T onto C .

Suppose x = (x0x1 . . .xn . . .) ∈ C , y = Fx = (x1x2 . . .xnxn+1 . . .) /∈ C , and
Fnx ∈ C is the first return.

As y /∈ C , yk such that yk = xk+1 > y0 + . . .+ yk−1 = x1 + . . .+ xk. If k ≥ n,
then

xk+1 > x1 + . . .xk ≥ xn + . . .+ xk

which contradicts that Fn(x) ∈ C .
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Suppose k < n satisfies

x1 + . . .+ xk < xk+1

Then xk+1 ≥ k+1 because each coordinates is at least 1.

As all images Fkx, 1 ≤ k < n do not belong to C , there is a coordinate
xN , N ≥ k such that

xk + . . .+ xN < xN+1.

If N ≥ n, then
xn + . . .+ xN < xN+1

and we get a contradiction as above to Fnx ∈ C . So N < n and we get

N +1 = 1+(k+1)+(N− k−1)≤ xk + xk+1 + . . .+ xN < xN+1 (39)

Proceeding as above we get
xn ≥ n. (40)

As widths of Ei decay exponentially, the measure of the collection of x
satisfying (40) decays exponentially. Since the measure of C is positive, we
get that the measure of points which do not return to C after n iterates is
less than

C1β
n
1 . (41)

for some C1 > 0 and 0 < β1 < 1.

Next we note that if z ∈ C1 is mapped by T into Ci, then because all tran-
sitions from Ci to C1 are admissible, z will be mapped into C1 by the next
iterate of F . Therefore points which do not return into C1 after n iterates
are subdivided into two subsets: points which did not return into C after n
iterates and points which returned into Ci, i > 1, after n− 1 iterates and at
the next iterate were not mapped into C1. Because of uniformly bounded
distortion the measure of the second set is less than

C1β
n−1
1 (1− γ0) (42)

where 0 < γ0 < 1. Then (38) follows from (41) and (42) if we take C = 2C1
and β = max{β1,1− γ0}.

This concludes the proof of Proposition 3.6.
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9. First return maps and respective transition matrices.

Note that on every unstable leaf, relative measures of Ci inside Ei are uni-
formly bounded away from 0. Together with uniformly bounded distortion
it implies that in the orbits of the first return map each gap is substituted by
a union of new gaps and a Cantor set of relative measure greater than some
uniform c0 > 0. Then at the end of that construction we get, up to a set of
measure zero,

Ci =
⋃
k

{T−1(TCi∩Ck) =Cik} (43)

Note that Cik can be unions of several Cantor sets which belong to disjoint
full height rectangles. For example consider C1113 ⊂ E1113. Admissible
rectangle E1113 is mapped as follows,

E1113→ E113→ E13→ E3

As E113, E13 are inadmissible, we get that T = F3 maps C1113 onto C3 in a
Markov way. Similarly T = F3 maps C1123 onto C3 in a Markov way.
The correct labeling is provided by respective strings of the original alpha-
bet starting width i and ending with k.

To get an authentic Markov partition which generates a transition matrix of
0’s and 1’s we partition each C j0 j1 into subsets

Ci0i1...in−1 (44)

where
i0 = j0, i1, . . . , in−1 = j1 (45)

is admissible, and for all k > 0

ik, . . . , in−1 (46)

are not admissible.
In other words the first return map T maps Ci0i1...in−1 onto a full width sub-
strip of Cin−1 and all intermediate images of Ci0i1...in−1 belong to various gaps.

As in the proof of (38) we get that the length of the above strings starting
from j0 and ending with j1 is at most j1− j0 +2.
The union of C j0i1...in−2 j1 forms a Markov partition
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MP = {C j0i1...in−2 j1} (47)

of C . Using Proposition 3.5 we get

Lemma 3.7 To any one-sided T -admissible sequence of transitions

C j0i11...i
1
n1−2 j1 →C j1i21...i

2
n2−1 j2 → . . .

corresponds a unique one-sided sequence of the original alphabet

j0, i11, . . . , i
1
n1−1 = j1, i21, . . . , i

2
n2−1 = . . . (48)

such that
C j0i11...i

1
n1−2 j1 ∩T−1(C j1i21...i

2
n2−1 j2)∩ . . .

coincides with the stable manifold labeled by (48).

The union of elements of MP and all intermediate iterates of C j0i1...in−2 j1
form a tower over C . Elements of this tower form a Markov partition of the
attractor Λ.

Up to a set of µ measure zero, any point of the attractor is uniquely labeled
by a two-sided sequence of admissible transitions

. . .→C j−1i−1
1 ...i−1

n−1−2 j0
→C j0i11...i

1
n1−2 j1 →C j1i21,...i

2
n2−2 j2 → . . . (49)

We consider a new alphabet Ω corresponding to the elements of the tower
from Lemma 3.7 and get a subshift

(Ω,X ,σ) (50)

Recall that a subshift is topologically mixing if for any states a and b there
is n(a,b) such that for n ≥ n(a,b) there is an admissible word of length n
starting from a ending with b.

We will need the following Proposition.
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10. Proposition 3.8 Subshift (Ω,X ,σ) is topologically mixing.

Note that although our original map is clearly topologically mixing ele-
ments of the Markov partition are Cantor sets, so the statement is not obvi-
ous.

Proof of Proposition 3.8. By construction any Cantor set C which coincides
with some element of the tower is mapped by some iterate of F onto a full
width substrip of some Cantor set Ci. As the image of any Ci (including C1)
contains a full with substrip of C1, we get that all consecutive images of Ci
have Markov intersections with C1.

It remains to prove that for any element ∆ of the tower there is an n(∆) such
that FnC1 has Markov intersection with ∆ for n > n(∆) . By construction
any ∆ = Fk(∆)P where P is a full height Cantor subrectangle of some Ci. So
it is enough to prove that FnC1 intersects Ci for n > n(i). But C1 contains a
full height Cantor subset C11...1i and all images of C1 have Markov intersec-
tions with C11...i . That proves Proposition 3.8.

Next we consider the first return map T1 induced by T on C1. Consider the
Markov partition MP1 of C1

MP1 = {C1i1...im1} (51)

generated on C1 by T1. By construction T1 maps its domains (which are full
height Cantor sets) onto full width substrips of C1. Therefore the transition
matrix corresponding to the map T1 on MP1 consists of all 1’s.

Remark: [1] will correspond to our choice of state [a] in the symbolic dy-
namics in later sections.

4 Thermodynamic formalism, Reduction of Theo-
rems 2.4 and 2.5 to results for functions defined
on one-sided sequences.

1. Reduction Arguments.
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By first reducing to functions defined on one-sided sequences, we will show
that our transfer operator (53) has the spectral gap property (56) on a partic-
ular Banach Space. This property implies exponential decay of correlations
and Central Limit Theorem for functions defined on one-sided sequences.
Then we can extend these results to certain functions defined on two-sided
sequences, Theorems 2.4 and 2.5, respectively. This exchange between the
two settings is a consequence of the reduction from two-sided shifts to one-
sided shifts following from the classical arguments of Ruelle and Bowen,
see [25], [9]. In the case of an infinite alphabet, detailed reduction argu-
ments can be found in sections 4 and 5 of [33].

If we restrict our consideration to Hölder functions on Q, then we are left
with the proof of the spectral gap property (SGP) of the transfer operator
acting on a suitable space L of functions defined on one-sided sequences
of the alphabet Ω. We do this in the next sections, following [10] and [28].

2. Thermodynamic Formalism.
Now by following [25], [9] we develop thermodynamic formalism on the
space of one-sided sequences for the function Φ(x,y) =−log|DuF |.

Let Ei ⊂ Ei be an element of the Markov partition MP . For each Ei we
fix some unstable manifold W u

0 , and to any (x,y) ∈ Ei we let correspond
(x,y0) =W s(x,y)∩W u

0 . We define

u(x,y) =
∞

∑
k=0

Φ(Fk(x,y))−Φ(Fk(x,y0)).

Then we can construct a Hölder function on one-sided sequences cohomol-
ogous to Φ(x,y) in the following way,

φ(x) = Φ(x,y)+u(F(x,y))−u(x,y). (52)

We call φ the potential.

The transfer operator, Lφ is defined as
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(Lφ f )(x) = ∑
F(y)=x

eφ(y) f (y). (53)

In the next several sections we consider the space of functions on one-sided
sequences for which we can prove the spectral gap property for Lφ . We
denote by X the space of one-sided sequences. From this point forward,
points x,y will be one-sided sequences belonging to X .

3. Induced system.
Just as in general case, we get SGP as a result of a particular induction
procedure, see [10], [28], and references to earlier works in [28]. In our
setting we induce on C1; here our [a] is [1].

The induced system on [1] is F1 : X1→ X1 where

X1 := {x ∈ X | x0 = 1,xi = 1 infinitely often}

and

F1(x) := Fϕ1(x),

for

ϕ1(x) := 1[1](x)min{n≥ 1 : xn = 1}.

The resulting transformation can be given the structure of a Markov Shift as
follows. Let

S := {[1,ξ2, ...,ξn−2,1] : 2≤ i≤ n−2, ξi 6= 1}

and let Fϕ1 : X → X denote the left shift on X = (S)N. Then Fϕ1 is topolog-
ically conjugate to F1. The conjugacy π : X → X1 is given by

π([1,ξ 0,1], [1,ξ 1,1], ...) := (1,ξ 0,1,ξ 1, ...).

Let

φ :=

(
ϕ1−1

∑
i=0

φ ◦F i

)
◦π.
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We call φ : X → R the induced potential.

4. Gurevich Pressure.

We introduce a few preliminary definitions and results.

Let φn(x) = ∑
n−1
k=0 φ ◦Fk(x) where x = (.x0x1 . . .). Let

Zn(φ) = ∑
{x:T nx=x; x0=1}

eφn(x). (54)

Then the limit, called the Gurevich Pressure,

PG(φ) = lim
n→∞

1
n

logZn(φ) (55)

exists, see [26], and we can calculate it explicitly in our setting.

Let T1 be the first return map to C1. Each periodic orbit of T1 is contained
in some admissible cylinder of F , also periodic but which has, in general, a
larger period. Moreover there are F-strings of arbitrary large periods which
correspond to a given T1 period. Admissible cylinders of the same T1 peri-
ods but with different T1 labels do not intersect.

Proposition 3.1 and uniformly bounded distortions of DuF imply that the
contribution to PG(φ) from each periodic T1 orbit differs from the length
of the horizontal cross section of the respective two-dimensional cylinder
by a uniformly bounded factor. That implies that the quantities Zn(φ) are
uniformly bounded from above.

As the measure of the Cantor set C1 is positive, we get that Zn(φ) are uni-
formly bounded from below. Thus,

PG(φ) = 0.

Remark: This calculation works for any Ci, so as in the general case (see
[28]) the Gurevich pressure is independent of the choice of partition set [a].
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5. Spectral gap.

Following [10], [28] we would like to show that Lφ has spectral gap on the
appropriate Banach space L , defined below in (64). The implications of
such a property are as follows.

If Lφ has spectral gap then it can be written as

Lφ = λP+N

where

λ = ePG(φ), PN = NP = 0, P2 = P

and the spectral radius, ρ , of N is less than λ . Since ρ < λ ,

|| λ−nLn
φ
−P ||

L
= λ

−n|| Nn ||L → 0 (56)

exponentially fast as n→ ∞.

In our setting,

λ = ePG(φ) = 1

and

P f = h
∫

f dν (57)

where h is the eigenfunction of Lφ and ν is the eigenmeasure of L∗
φ

.

Following [10], [28] we introduce the a-discriminant

∆a[φ ] := sup
p∈R
{PG(φ + p) | PG(φ + p)< ∞}.

The Discriminant Theorem 6.7, from [28], gives necessary and sufficient
conditions for the spectral gap based on certain properties of the a-discriminant.
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Specifically, it links the strict positivity of the discriminant to the spectral
gap property. It involves the Gurevich pressure evaluated with respect to the
induced system. We state one of the properties relevant to our setting.

Proposition 4.1 Let X be a topologically mixing TMS and suppose φ : X→
R is a weakly Hölder continuous function such that PG(φ)< ∞. If for some
state a,

∆a[φ ]> 0, (58)

then φ has the SGP on the Banach space L defined below in (64).

6. The following results prove ∆1[φ ]> 0 by showing that for sufficiently small
p,

0 < PG(φ + p)< ∞.

Proposition 4.2 For sufficiently small p > 0, PG(φ + p)< ∞.

Recall that

PG(φ + p) = lim
n→∞

1
n

logZn(φ + p). (59)

We begin by calculating Z1(φ + p):

Z1(φ + p) = ∑
{x: T x=x; x0=1}

eφ+p =
∞

∑
n=1

∑
{x: T x=Fnx=x; x0=1}

eφ epn

=
∞

∑
n=1

epn
∑

{x: T x=Fnx=x; x0=1}
eφ

≤Cφ

∞

∑
n=1

epn
β

n =Cφ M1 < ∞ (60)

Here β comes from the estimate in Proposition 3.6 and we use p< log
(

1
β

)
.

Constant Cφ depends on constant C from the same proposition, on the uni-
form distortion bounds and on the uniform bound of measures of crossec-
tions of the Cantor set C1 by unstable manifords.
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We define a sum similar to (54),

Z′n(φ) = ∑
{x∈ ān}

e
sup

x∈ ān
φn(x)

, (61)

where ān = [1i1...in−1].

The definition of Z′n(φ) implies

Z′n+m(φ)≤ Z′n(φ)Z
′
m(φ), (62)

Also from definitions of Zn(φ) and of Z′n(φ) and from uniformly bounded
distortions we get

Zn(φ)≤ Z′n(φ)≤ dZn(φ). (63)

for some constant d. Combining (60), (62), and (63),

Zn(φ + p)≤ Z′n(φ + p)≤
(
Z′1(φ + p)

)n ≤
(
C Z1(φ + p)

)n ≤ dnCn
φ Mn

1 ,

and thus,

PG(φ + p) = lim
n→∞

1
n

logZn(φ + p)≤ lim
n→∞

1
n

log(dnCn
φ Mn

1)

= logd + logCφ + logM1 < ∞.

Proposition 4.3 For p > 0 as in Proposition 4.2, PG(φ + p)> 0.

We combine the following properties from [28] with the fact that in our
setting PG(φ) = 0 for φ(x) cohomologous to Φ(x,y).

i. φ + p≥ φ + p, ∀p ∈ R+

ii. If φ ≤ ψ , then PG(φ)≤ PG(ψ)

iii. PG(φ + p) = PG(φ)+ p, ∀p ∈ R
iv. PG(φ) = 0 ⇐⇒ PG(φ) = 0
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For our p > 0,

PG(φ + p)≥ PG(φ + p) = PG(φ)+ p = p > 0.

7. Banach Space.
For all x,y ∈ X , let

t(x,y) = min{n : xn 6= yn}

s1(x,y) = #{0≤ i≤ t(x,y)−1 : xi = yi = 1}.

Let [1] be the collection of one-sided sequences, x = .x0x1..., such that
x0 = 1 .

As proved in [10] there is a positive function h0 : Z+→ R with the follow-
ing properties.

Consider the set of continuous functions { f :‖ f ‖L < ∞} where

‖ f ‖L = sup
b∈Z+

1
h0(b)

[
sup
x∈[b]
| f (x)| + sup

(x,y)∈[b]; x 6=y

| f (x)− f (y) |
θ s1(x,y)

]
. (64)

Then L is an Lφ -invariant Banach space, and Lφ on L is a bounded oper-
ator with spectral gap. Additionally the eigenfunction h of Ruelle operator
belongs to L and for any bounded Hölder function ψ it holds that

ψh ∈L (65)

Note that bounded Hölder functions belong to L .

8. It follows from Propositions 4.2 and 4.3 that the discriminant is strictly pos-
itive, and thus, by Proposition 4.1, Lφ has spectral gap on the Banach Space
L . As in [10], [28] this implies that (σ ,µφ ) has exponential decay of cor-
relations.
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Theorem 4.4 For σ a one-sided full shift, consider φ the potential defined
in (52), and let µφ be the respective invariant measure. Then (σ ,µφ ) has
exponential decay of correlations for bounded Hölder functions f and g ∈
L∞(µφ ). Namely there exists 0 < η1 < 1 such that∣∣∣∣∫ f (g◦σ

n)dµφ −
∫

f dµφ

∫
g dµφ

∣∣∣∣<C ‖ g ‖∞‖ f h ‖L η
n
1 . (66)

Note that f h ∈ L because of 65. As in [10], [28], the subsequent result
follows.

Theorem 4.5 (Central Limit Theorem for one-sided shift)
Let (σ ,µφ ) satisfy the assumptions of Theorem 4.4 and suppose that f ∈L .
If
∫

f dµφ = 0 and f cannot be expressed as g−g◦σ for g continuous, then
there is a positive, finite constant d= d( f ) such that for every t ∈ R,

lim
n→∞

µφ

{
x :

1√
n

n−1

∑
k=0

f ◦σ
k(x) < t

}
=

1√
2πd2

∫
∞

−t
e
−s2

2d2 ds.

Remark: It follows from Theorem 1.1 part d in [10] that for g, bounded and
Hölder continuous, P(φ + tg) is real analytic in a neighborhood of 0.

9. Exponential Decay of Correlations and Central Limit Theorem for func-
tions of two variables.

One can follow arguments of Section 4 of [33] to reduce the estimate of the
n-th correlation for functions defined on the two-sided shift to the following
estimate for functions defined on the one-sided shift,

| Ln−2k
φ

(L2k
φ
( fkh))− (

∫
L2k

φ
( fkh)dm)h |, (67)

where h dm = dν and ν is the eigenmeasure of L∗
φ

as in (57). Here 2k < n,
and fk is a piecewise constant approximation of f on cylinders of length
k. Thus fk is a Hölder function bounded by max | f |. From (65) we get
fkh ∈L .

As in [33] Section 4 we get that norms ‖ L2k
φ
( fkh) ‖L are uniformly bounded

by a constant which only depends on max | f |. From (67) we get an estimate
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similar to (66) but with a different constant and a different 0 < η < 1. That
proves Theorem 2.4.

Theorem 2.5 follows from arguments in Section 5 of [33] regarding a result
referred to as Theorem [G] from [12]. Using the spectral gap property, one
obtains the following estimate,

∫
| L j

φ
( f0 h) |dm≤C′0 ‖ L j

φ
( f0 h) ‖L ≤C0η

j
0 ‖ f0 h ‖L (68)

where, as above, f0 is a bounded Hölder approximation of f and 0<η0 < 1.
Theorem 2.5 relies on showing that the key assumption in Theorem [G]
holds - finiteness of the sum of the L2-norms of the relevant conditional
expectations. Showing that this assumptions holds reduces to showing that
the sum of estimate (68) is bounded, and thus, we just need that f0 h ∈L .
This again follows from (65).

10. Concluding Remarks.
The study of countable Markov partitions in the 1980’s originated in par-
ticular from the work of Roy Adler [4]. His work motivated the use of
countable Markov partitions as a tool for studying one-dimensional dynam-
ics with critical points, and subsequently, Henon-like systems.

The first author keeps warmest memories of his visit in 1990 to IBM Thomas
J Watson Research Center, when he worked within the wonderful group di-
rected by Roy Adler.

The authors would like to thank Omri Sarig for useful discussions.
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