Math 744, Fall 2014
 Jeffrey Adams
 Homework I SOLUTIONS

(1) Consider the action of $S O(n+1)$ acting on $S^{n} \subset \mathbb{R}^{n+1}$.
(a) Show this action is transitive.
(b) Compute $\operatorname{Stab}_{G}(v)$ where $v=(1,0, \ldots, 0)$.
(c) Show there is an isomorphism $S O(n+1) / S O(n) \simeq S^{n}$ (it is enough to give the bijection).

Solution
(a) We need to show that if $\|\vec{v}\|=\|\vec{w}\|=1$ then there is an element of $S O(n+1)$ taking \vec{v} to \vec{w}. This is Witt's theorem.

It is enough to take $\vec{v}=(1,0, \ldots, 0)$. Suppose $\vec{w}=\left(a_{1}, \ldots, a_{n}\right)$. Take the first column of g to be the vector w. Then take the remaining columns to be an orthonormal basis of w^{\perp}.
(b) It is easy to see $g \vec{v}=\vec{v}$ if and only if the first column of g is $(1,0, \ldots, 0)$. The condition for such a matrix to be orthgonal is that the first row is also $(1,0, \ldots, 0)$, and the matrix in the lower right hand corner is orthgonal. The determinant one condition gives $\operatorname{Stab}_{S O(n+1)}(\vec{v})$ is the matrices of the form $\operatorname{diag}(1, h)$ with $h \in S O(n)$. This is isomorphic to $S O(n)$.
(c) Take $H=S O(n)$ embedded as in (b). The map takes the coset $g H$ to $g \vec{v}$. This is well defined (since H stabilizes \vec{v}), surjective (by (a)), and injective (since H is the full stabilizer of \vec{v}).
(2)
(a) Show that $\left\{(z, w) \in \mathbb{C}^{2} \mid z^{2}+w^{2}=1\right\} \simeq \mathbb{C}^{*}$
(b) Show that $S O(2, \mathbb{C}) \simeq \mathbb{C}^{*}$
(c) Show that $S O(2, \mathbb{R}) \simeq S^{1}$
(d) Show that $S O(1,1) \simeq \mathbb{R}^{*}$. Recall $S O(1,1)$ is the group preserving a symmetric bilinear form on \mathbb{R}^{2} of signature $(1,1)$.
(e) Show that $O(2)$ contains $S O(2)$ as a subgroup of index 2, that $O(2)$ is no abelian, and the elements of $O(2)-S O(2)$ constitute a single conjugacy class.

Solution

It is easiest to start with (b). It is easy to see that $S O(2, \mathbb{C})$ is the set of matrices

$$
\left(\begin{array}{cc}
z & w \tag{1}\\
-w & z
\end{array}\right)
$$

such that $z^{2}+w^{2}=1$. To see this, the condition is that the rows must be orthonormal. So the first row is (z, w) as indicated. The second is $(-w, z)$ or $(z,-w)$; the determinant one condition gives $(-w, z)$. This matrix is diagonalizable, it diagonalizes to

$$
\left(\begin{array}{cc}
z+i w & 0 \tag{1}\\
0 & z-i w
\end{array}\right)
$$

using

$$
J=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -i \tag{1}\\
-i & 1
\end{array}\right)
$$

The inverse map takes

$$
\left(\begin{array}{cc}
a & 0 \tag{1}\\
0 & \frac{1}{a}
\end{array}\right)
$$

to

$$
\left(\begin{array}{cc}
a+\frac{1}{a} & i\left(a-\frac{1}{a}\right) \tag{1}\\
-i\left(a-\frac{1}{a}\right) & a-\frac{1}{a}
\end{array}\right)
$$

Then (a) follows from looking at the first row of (1a) and the first entry of (1b).

Also (c) follows by taking $z, w \in \mathbb{R}$.
(d) It is standard to take the form $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. But you can take any symmetrix matrix equivalent to this, and it is best to take $J=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. This is the same up to change of basis, i.e. up to $J \rightarrow A J A^{t}$. It is easy to see that g satisfies $\left\{g \mid g J g^{t}=J\right\}$ if and only if $g=\operatorname{diag}\left(a, \pm \frac{1}{a}\right)$, so the determinant one condition gives $\operatorname{diag}(a, 1 / a)$, which is isomorphic to \mathbb{R}^{*}.
(e) Since $\operatorname{det}(g)= \pm 1$ for $g \in O(2)$ there is an exact sequence $1 \rightarrow S O(2) \rightarrow$ $O(2) \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow 1$. In fact $O(2)=\langle S O(2), \operatorname{diag}(1,-1)\rangle$. The element $\epsilon=$ $\operatorname{diag}(1,-1)$ acts by inverse on S^{1}, i.e. $\epsilon g \epsilon=g^{-1}$. This gives $g \epsilon g=\epsilon$, or $g \epsilon g^{-1}=\epsilon g^{2}$. Since the square map is surjective for $S O(2)$ this proves the result.

You can think of $O(2)$ as the "infinite dihedral group".
(3) Show that the proper algebraic subsets of the one dimensional vector space \mathbb{C} are the finite sets.

Solution

This amounts to the fact that a polynomial in one variable only has finitely many roots.
(4) Show that the Euclidean topology on \mathbb{C}^{n} is finer than the Zariski topology.

Solution

It is enough to show Zariski-closed implies Euclidean closed. A Zariski closed set is the intersection of the zeros of a set of polynomials. Since polynomials are continuous in the Euclidean topology, their zeros are closed in the Euclidean topology.
(5) Show that $\operatorname{Hom}_{\mathrm{alg}}\left(G_{m}, G_{m}\right) \simeq \mathbb{Z}$; the left hand side is the set of morphisms from G_{m} to G_{m} (as algebraic varieties) which are also group homomorphisms. Solution

The key point is to use $\operatorname{Hom}_{\text {alg }}\left(G_{m}, G_{m}\right) \simeq \operatorname{Hom}\left(k\left[x, x^{-1}\right], k\left[x, x^{-1}\right]\right)$. A homomorphism is given by $f(x)=\sum_{m}^{n} a_{k} x^{k}$. To be an algebra homomorphism it must satisfy $f(x y)=f(x) f(y)$, or $\sum_{i, j} a_{i} a_{j} x^{i} y^{j}=\sum_{k} a_{k}(x y)^{k}$. On the right hand side, the only terms which appear are $x^{k} y^{k}$. It follows that there can only be one term on the left: $f(x)=a x^{k}$ for some k, and $a=1$.
(6) Recall an action of an algebraic group G on an algebraic variety X is a morphism of varieties $G \times X \rightarrow X,(g, x) \rightarrow g \cdot x$, satisfying $g \cdot(h \cdot x)=(g h) \cdot x$, and $e \cdot x=x$.
(a) Consider the action of $G L(n, K)$ on K^{n} (K is any field). Determine the orbits of $G L(n, K)$ and $S L(n, K)$ on K^{n}.

Solution

$G L(n)$ acts transitively on $K^{n}-\{0\}: g *(1,0, \ldots, 0)=\left(a_{1}, \ldots, a_{n}\right)$ if the first column of g is $\left(a_{1}, \ldots, a_{n}\right)$, and if this isn't the 0 vector this can be filled out to an element of $G L(n)$. There are two orbits.

If $n \geq 2$, the same holds for $S L(n)$. After permuting we may assume $a_{1} \neq 0$; take

$$
g=\left(\begin{array}{ccccc}
a_{1} & 0 & 0 & \ldots & 0 \\
a_{2} & 1 & 0 & \ldots & 0 \\
a_{3} & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
a_{n} & 0 & 0 & \ldots & a_{1}^{-1}
\end{array}\right)
$$

If $n=1$ of course $S L(1)=1$ and the orbits are points.
(b) Show that $G L(2, K)$ acts transitively on P^{1}, the set of lines through the origin in K^{2}. Compute the stabilizer of a point. Compute the orbits of $G L(2, K)$ on $P^{1} \times P^{1}$.

The transitivity is clear from (a). The stabilizer of the line through (1,0) is the Borel subgroup $\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right)$. All lines are related by the action of $G L(2)$; correspondingly all Borel subgroups are conjugate.

Compute the orbits of $G L(2)$ on $P^{1} \times P^{1}$.
We know that $P^{1}=G / B$, so we're computing $G \backslash G / B \times G / B$. There is a bijection:

$$
G \backslash(G / B \times G / B) \longleftrightarrow B \backslash G / B
$$

given by $G(x B, y B) \rightarrow B x^{-1} y B$.
It is not hard to see that $B \backslash G / B=B \cup B w B$ where $w=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. We have to show any element not in B is in $B w B$:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
\frac{b c-a d}{c} & -a \\
0 & -c
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & \frac{d}{c} \\
0 & 1
\end{array}\right)
$$

if $c \neq 0$.
This is a general fact: $B \backslash G / B \simeq W$ (the Bruhat decomposition).

