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Background: cohomology with trivial coefficients
Given a proper smooth variety X over Q, we have (compatibly):
I H i(Xan

C ,Q)⊗Q C ∼= H i
dR(X/Q)⊗Q C;

I H i(Xan
C ,Q)⊗Q Qp

∼= H i
ét(XQ,Qp);

I H i
ét(XQp

,Qp)⊗Qp BdR
∼= H i

dR(X/Q)⊗Q BdR.

Here BdR is Fontaine’s p-adic de Rham period ring, which is a
filtered field with a Gal(Qp/Qp)-action such that griBdR

∼= Cp(i).

The last isomorphism above is compatible with the filtrations and
Gal(Qp/Qp)-actions on both sides, and induces
I H i

ét(XQp
,Qp)⊗Qp Cp ∼= ⊕a+b=i

(
Hb(X,Ωa

X)⊗Q Cp(−a)
)
.

We say a Gal(Qp/Qp)-representation V over Qp is de Rham if

DdR(V ) := (V ⊗Qp BdR)Gal(Qp/Qp) and V have same dimensions.
Its multiset HT(V ) of Hodge–Tate weights contains a ∈ Z with

multiplicity dimQp

(
V ⊗Qp Cp(a)

)Gal(Qp/Qp)
. Then H i

ét(XQp
,Qp) is

de Rham, with dimQH
b(X,Ωa

X) times of a in HT
(
H i

ét(XQp
,Qp)

)
.

Today, we would like to allow nontrivial coefficients on nonproper
X, in the context of the cohomology of (general) Shimura varieties.



Shimura data and Shimura varieties
Notation: Ẑ := lim←−N (Z/NZ), A∞ := Ẑ⊗Z Q, A := R× A∞

Suppose we have a Shimura datum (G,X), where:

I G is a reductive algebraic group; and

I X is a G(R)-conjugacy class of homomorphisms
h : C× → G(R) satisfying certain axioms, which is a finite
disjoint union of Hermitian symmetric domains.

Consider the tower {Shan
K,C := G(Q)\

(
X×G(A∞)/K

)
} of

complex manifolds indexed by neat open compact subgroups K of
G(A∞) (called the levels) with its right action by G(A∞).

I Baily–Borel and Borel: This is the analytification of a
canonical tower {ShK,C}K of quasi-projective varieties.

I Shimura, . . . , Deligne, . . . , Milne, Borovoi: {ShK,C}K has a
canonical model {ShK}K over a number field E (reflex field).

Hence, lim−→K
H•ét(ShK,Q,Q`) has commuting actions of G(A∞)

and Gal(Q/E). (Useful in Langlands program. “Trivial weight”.)

For the main theme today, we need “nontrivial weights ”.



Betti local systems: complex analytic construction
Let Gc = quotient of G by the maximal Q-anisotropic R-split
subtorus of the center of G.

Let V ∈ RepF (Gc) (algebraic representations of Gc over F ),
where F is any coefficient field. (Nontrivial weights!)

Then the compatible double coset construction

G(Q)\
(
(X× V )×G(A∞)/K

)
→ G(Q)\

(
X×G(A∞)/K

)
defines a (Betti) local system BV over Shan

K,C.

(For general V ∈ RepF (G) not factoring through Gc, the
construction breaks down due to infinite stabilizers.)

We will introduce certain étale and de Rham analogues of BV , but
we will not assume that they are (known to be) of geometric origin.

For simplicity of exposition, let us assume from now on that:
I (reflex field) E = Q.
I G = Gc, and coefficient fields will be mainly Q, C, and Qp.

We will however emphasize nontrivial V and noncompact Shan
K,C.



Deligne’s Riemann–Hilbert correspondence
Given an algebraic variety X over C, there is a tensor equivalence
of categories between the following:

(Betti) local systems L
with coefficient field C

over Xan

↔


(algebraic) vector bundles
E over X

with integrable connections
∇ : E → E ⊗OX

Ω1
X

with regular singularities


The analytification (Ean,∇an) is just (L⊗C OXan , 1⊗ d), where
d : OXan → Ω1

Xan is the usual derivation; and L = (Ean)∇
an

is the
sheaf of horizontal sections. But Deligne’s algebraic construction
requires the canonical extensions of (E ,∇) (over smooth
compactifications of X with normal crossings boundary divisors,
with eigenvalues of residues having real parts in [0, 1)).

Deligne also proved H i(Xan,L) ∼= H i
dR(Xan, Ean) ∼= H i

dR(X, E).

If E is equipped with a (decreasing) filtration Fil• satisfying the
Griffiths transversality ∇(FiliE) ⊂ (Fili−1E)⊗OX

Ω1
X , then we say

(abusively, for simplicity) that (E ,∇,Fil•) is a filtered connection.



Filtered connections: complex analytic construction
Given V ∈ RepQ(G) with BV over Shan

K,C as above, consider the
coefficient base change BV C := BV ⊗Q C.

By Deligne’s Riemann–Hilbert correspondence, we obtain
(dRV C,∇) over ShK,C, with analytification (dRV

an
C ,∇an).

Moreover, any h ∈ X induces hC : C× × C× → G(C), whose
restriction to the first C× defines the Hodge cocharacter µh,
inducing a filtration Fil• on dRV

an
C = BV C ⊗C OShan

K,C
making

(dRV
an
C ,∇an,Fil•) a filtered connection over Shan

K,C.

(In fact, we obtain a variation of Hodge structures over Shan
K,C.)

The filtration Fil• extends to the canonical extension of
(dRV

an
C ,∇an) and hence algebraizes to a filtration of (dRV C,∇),

which we still denote by the same symbols. Thus, we obtain an
algebraic filtered connection (dRV C,∇,Fil•) over ShK,C.

(M. Harris, Milne: (dRV C,∇,Fil•) also have canonical models.)

Next step: p-adic analytic constructions!



p-adic étale local systems
Fix a prime p > 0. Consider VQp := V ⊗Q Qp, with continuous
action of G(A∞) via the projection G(A∞)� G(Qp). Let us
define an étale local system (i.e., lisse étale sheaf ) étV Qp

over ShK :

Let V0 ⊂ VQp be any Zp-lattice stabilized by K ⊂ G(A∞).

Take open normal subgroups K(j) of K acting trivially on V0/p
jV0.

These define Galois finite étale coverings ShK(j) → ShK over E
(not just over C!) with Galois groups K/K(j), and the sections of

ShK(j) ×K/K
(j)

(V0/p
jV0)→ ShK(j)/(K/K(j)) ∼= ShK

define a locally constant étale sheaf ét(V0/p
jV0) over ShK .

Then we set étV0 := lim←−j ét(V0/p
jV0) and étV Qp

:= étV0 ⊗Zp Qp.

Note: Well-defined, functorial, etc. Pullback of étV Qp
to Shan

K,C
can be compared with BV Qp

:= BV ⊗Q Qp in a precise sense.

Natural questions: (also for H i
ét,c,H i

ét,int:=Im(H i
ét,c→H i

ét),H i
ét,∂ ,“IH i

ét”)

I Is H i
ét(ShK,Qp

, étV Qp
) de Rham?

I How do we describe or compute HT
(
H i

ét(ShK,Qp
, étV Qp

)
)
?



p-adic (arithmetic) Riemann–Hilbert correspondence
Suppose X is a smooth algebraic variety over a finite extension k
of Qp. We no longer have an equivalence, but only a functor (by
Diao–Lan–Liu–Zhu, based on Scholze and Liu–Zhu):

Dalg
dR :

{
étale Qp-local

systems L over X

}
→


filtered connections
(E ,∇,Fil•) over X

with regular singularities


Some good properties of Dalg

dR:
I If X is a classical point (defined by a finite extension of Qp),

then it is Fontaine’s DdR functor (already not an equivalence).
I Compatible with pullbacks in X (e.g., to a classical point).
I If X is connected and L is de Rham at one classical point of
X, then it is de Rham at all other classical points of X.

I When restricted to de Rham étale Qp-local systems, Dalg
dR is

compatible with tensors and duals, and with proper smooth
pushforwards. Also, we have the p-adic de Rham comparison
H i

ét

(
Xk,L

)
⊗Qp BdR

∼= H i
dR

(
X,Dalg

dR(L)
)
⊗k BdR for de

Rham L, compatible with Gal(k/k)-actions and filtrations.
(Will explain: filtration on H i

dR uses smooth compactifications.)



Differences between complex and p-adic analytic theories
I As we explained, Deligne’s Riemann–Hilbert correspondence is

based on an analytic correspondence and on the construction
of canonical extensions over smooth compactifications with
normal crossings boundary divisors (so that GAGA applies).

I But p-adically, while we also have an analytic functor DdR

based on Scholze and Liu–Zhu, general connections have no
canonical extensions (and, accordingly, no algebraizations).

I Instead, we constructed a p-adic log Riemann–Hilbert functor
DdR,log, which provides the canonical extensions of DdR(Lan),
by working with pro-Kummer étale sites and log de Rham period
sheaves over suitable (analytified) smooth compactifications X

an
.

I Crucially, Lan
= R(Xan

ét → X
an
két)∗(Lan) is a local system, and

eigenvalues of residues of DdR,log(Lan
) are in Q ∩ [0, 1) (by

theory of decompletions, and [k : Qp] <∞). Then DdR,log

and its algebraization Dalg
dR,log induce the desired Dalg

dR. Also:

I E1 degen. of log Hodge s.s. Ea,b1 = Ha,b
log Hodge(X,D

alg
dR,log(L))

⇒ Ha+b
log dR(X,Dalg

dR,log(L)) ∼= Hi
dR(X,Dalg

dR(L)) (∼= uses residues).
I p-adic generations of Kodaira vanishing (also using residues).



Filtered connections: p-adic analytic construction
Back to Shimura varieties. Given V ∈ RepQ(G) with the étale
local system étV Qp

over ShK as before, we now have the following:

I By p-adic Riemann–Hilbert, the pullback of étV Qp
to the

variety ShK,Qp := ShK ⊗Q Qp defines a filtered connection
(p-dRV Qp

,∇,Fil•) over ShK,Qp with regular singularities.

(Note that étV Qp
is de Rham because it is so at special points,

which exist in abundance on each connected component.)
I By base change from Qp to C, we obtain a filtered connection

(p-dRV C,∇,Fil•) over ShK,C with regular singularities.

(Note that this base change from Qp to C makes sense
because we are working with algebraic filtered connections! It
wouldn’t work if we only had a rigid analytic construction.)

I By Deligne’s Riemann–Hilbert correspondence, (p-dRV C,∇)
defines a Betti local system p-BV C over Shan

K,C.

(The filtration is not used in the definition of p-BV C. But

p-BV C still remembers the existence of filtrations—via the
Simpson correspondence, the Higgs field is nilpotent.)



Summary of constructions, and comparisons of local systems

BV C

?

V ∈ RepQ(G)oo //
étV Qp

p-adic RH

��

p-adic RH

��

(dRV C,∇,Fil•)

classical RH

OO

classical RH

OO

?

p-BV C (p-dRV Qp
,∇,Fil•)

(barbaric)
base change from Qp to C

ss
(p-dRV C,∇,Fil•)

classical RH

OO

I Do we have p-BV C
∼= BV C?

I Do we have (p-dRV C,∇,Fil•) ∼= (dRV C,∇,Fil•)?

Theorem: Both answers are yes!

Not surprising for Shimura varieties of Hodge type, when the local
systems are (Tate twists of) summands of the relative cohomology
of abelian schemes (thanks to Deligne’s and Blasius’s works).

But it’s unclear that such families of varieties exist in general. Our
indirect proof used almost all tools we know over general Shimura
varieties, including Hecke symmetry, Margulis superrigidity, and a
construction of Piatetski-Shapiro’s in Borovoi’s and Milne’s works.



De Rham and Hodge–Tate comparison isomorphisms
Note that ι−1 : C ∼→ Qp induces Qp ↪→ C ↪→ BdR and C ↪→ Cp.

With Liu and Zhu, we have established comparison isomorphisms
forming the following commutative diagram

Hi
ét,c(ShK,Qp

, étV Qp
)⊗Qp BdR

can.
��

∼ // Hi
dR,c(ShK,C, dRV C)⊗C BdR

can.
��

Hi
ét(ShK,Qp

, étV Qp
)⊗Qp BdR

∼ // Hi
dR(ShK,C, dRV C)⊗C BdR

(strictly compatible with filtrations) and (by taking graded pieces)

Hi
ét,c(ShK,Qp

, étV Qp
)⊗Qp Cp

can.
��

∼ // ⊕a

(
Ha,i−a

Hodge,c(ShK,C, dRV C)⊗C Cp(−a)
)

can.
��

Hi
ét(ShK,Qp

, étV Qp
)⊗Qp Cp

∼ // ⊕a

(
Ha,i−a

Hodge(ShK,C, dRV C)⊗C Cp(−a)
)

These induce similar comparison for the interior cohomology.

Then a ∈ Z has multiplicity dimCH
a,i−a
Hodge(ShK,C, dRV C) in

HT
(
H i

ét(ShK,Qp
, étV Qp

)
)
, and similar for other cohomology.

We can more explicitly describe these dimensions, in terms of those
of the so-called coherent cohomology (generalizing spaces of
classical modular forms), using Faltings’s dual BGG complexes.



Automorphic vector bundles and their extensions
Consider projective smooth toroidal compactifications ShK ↪→ Shtor

K

with normal crossings boundary divisors D (by AMRT and Pink).

Any h : C× → G(R) parameterized by X induces a homomorphism
hC : Gm,C ×Gm,C → GC, whose restriction to the first factor
Gm,C defines the so-called Hodge cocharacter µh : Gm,C → GC.
Up to modifying h in X, we may assume that µh is induced by
some homomorphism Gm,Q → GQ, which we still denote by µh.

Let P denote the parabolic subgroup of GQ defined by µh, with
Levi subgroup M the centralizer of µh. We view any representation
of M as one of P via the canonical homomorphism P� M.

M. Harris: There is a tensor functor assigning to W ∈ RepQ(P)
the automorphic vector bundle cohWC over ShK,C, canonically
isomorphic to dRV C when WC ∼= VC|PC for some V ∈ RepQ(G).
Moreover, this extends to a tensor functor assigning to W the
canonical extension cohW

can
C of cohW over Shtor

K,C, canonically
isomorphic to dRV

can
C when WC ∼= VC|PC for some V ∈ RepQ(G).

We also have the subcanonical extension cohW
sub
C := cohW

can
C (−D).



Positive roots and weights, and Weyl actions
I Let us fix a maximal torus T of M and hence of GQ, with

roots ΦGQ
⊃ ΦM and weights XGQ

= XM. Let us also choose

compatibly positive roots Φ+
GQ

and Φ+
M, and dominant weights

X+
GQ

and X+
M, so that Φ+

M ⊂ Φ+
GQ

and X+
GQ
⊂ X+

M.

I For an irreducible V ∈ RepQ(GQ) of highest weight λ ∈ X+
GQ

,

we write V = Vλ, VC = Vλ,C, dRV C = dRV λ,C, etc. Similarly,

for an irreducible W ∈ RepQ(M) of highest weight ν ∈ X+
M,

we write W = Wν , WC = Wν,C, cohWC = cohW ν,C, etc.

I Let ρ = ρGQ
denote the usual half-sums of positive roots.

I Let WM ⊂WGQ
denote the Weyl groups with respect to T.

I In addition to the natural action, there is also the dot action
w · λ = w(λ+ ρ)− ρ, for all w ∈WGQ

and λ ∈ XGQ
.

I Let WM denote the subset of WGQ
mapping X+

GQ
into X+

M,

which are the minimal length representatives of WM \WGQ
.

I Let H denote the coweight of T ⊂ M ⊂ GQ induced by µh.



Faltings’s dual BGG complexes
While the Hodge cohomology (as hypercohomology) is difficult to
compute in general, graDRlog(dRV

can
C ) (the a-th graded piece of

the log de Rham complex) has a miraculous quasi-isomorphic
direct summand, called the graded dual BGG complex, whose
differentials are zero and whose terms are direct sums of cohW

can
C

for some representations W determined explicitly by V . Then the
hypercohomology of this graded dual BGG complex is just a direct
sum of coherent cohomology of cohW

can
C up to degree shifting.

More precisely, suppose V ∼= V ∨λ for some λ ∈ X+
GQ

. Then

gra BGGj
log

(
dRV

can
C
) ∼= ⊕w∈WM, l(w)=j, (w·λ)(H)=−a

(
cohW

∨
w·λ,C

)can

Consequently, we have

Ha,i−a
Hodge(ShK,C, dRV C) := H i

(
Shtor

K,C, graDRlog

(
dRV

can
C
))

∼= ⊕w∈WM, (w·λ)(H)=−a H
i−l(w)

(
Shtor

K,C,
(

cohW
∨
w·λ,C

)can)
We have similar decomposition for Ha,i−a

Hodge,c(ShK,C, dRV C) in
terms of the coherent cohomology of subcanonical extensions.



Example: classical modular curves
Consider G = SL2 (up to cocenter), and identify XGQ

= XM = Z.

λ = k, Wν
∼= W∨w·λ

l(w) =? ν =?

•
0

•

l(w) = 0
−k

•
2

•

l(w) = 1
k + 2

dual BGG = Eichler–Shimura isomorphism (for weights ≥ 2 or ≤ 0):

grH1
dR(ShK,C, dRV k,C) ∼= H0(Shtor

K,C, cohW
can
k+2,C)⊕H1(Shtor

K,C, cohW
can
−k,C)

dRV k,C = Symk(C⊕2), cohW
can
k,C = (cohW

can
−k,C)

∨
= ωk

1

(non-cohomological)
low weight
↓

◦

Weight 1 modular forms do not contribute to de Rham cohomology

(but can be studied by congruences with cohomological weights).

Later when computing Hodge–Tate weights, need to use the full G = GL2:

grH1
dR(ShK,C, dRV (0,−k),C)

∼= H0(Shtor
K,C, cohW

can
(1,−k−1),C)⊕H1(Shtor

K,C, cohW
can
(−k,0),C)

(Evaluate the weights (1,−k − 1) and (−k, 0) on the coweight H = (0,−1).)



Example: Siegel modular threefolds
Consider G = Sp4 (up to cocenter), and identify XGQ

= XM = Z2.

λ = (k1, k2), Wν
∼= W∨w·λ

l(w) =?

ν =?

(0, 0)

l(w) = 0
(−k2,−k1)

(2, 0)

l(w) = 1
(k2 + 2,−k1)

(3, 1)

l(w) = 2
(k1 + 3,−k2 + 1)

(3, 3)

l(w) = 3
(k1 + 3, k2 + 3)dual BGG:

grH3
dR(ShK,C, dRV (k1,k2),C)

∼= H0(Shtor
K,C, cohW

can
(k1+3,k2+3),C)

⊕H1(Shtor
K,C, cohW

can
(k1+3,−k2+1),C)

⊕H2(Shtor
K,C, cohW

can
(k2+2,−k1),C)

⊕H3(Shtor
K,C, cohW

can
(−k2,−k1),C)

low weights

Again, will need to use the full

G = GSp4 when computing

Hodge–Tate weights.



Hodge–Tate weights for Shimura varieties
Thus, when V ∼= V ∨λ , for λ ∈ X+

GQ
, each a ∈ Z has multiplicity

I
∑

w∈WM, (w·λ)(H)=−a dimC H i−l(w)
(
Shtor

K,C,
(

cohW
∨
w·λ,C

)can)
in HT

(
H i

ét(ShK,Qp
, étV Qp

)
)
;

I
∑

w∈WM, (w·λ)(H)=−a dimC H i−l(w)
(
Shtor

K,C,
(

cohW
∨
w·λ,C

)sub)
in HT

(
H i

ét,c(ShK,Qp
, étV Qp

)
)
; and

I
∑

w∈WM, (w·λ)(H)=−a dimC H
i−l(w)
int

(
Shtor

K,C,
(

cohW
∨
w·λ,C

)can)
in HT

(
H i

ét,int(ShK,Qp
, étV Qp

)
)
, where “int” means the image

of the cohomology of “sub”, by abuse of notation.

These dimensions can be computed in terms of relative Lie algebra
cohomology (M. Harris, Jun Su, based on Borel, Franke, ...)

By results of Schwermer, Li–Schwermer, and Harris–Zucker, when
λ is regular, the interior cohomology coincides (strictly!) with the
intersection cohomology, so the above results also cover the latter.

When λ = 0, people have techniques showing that the intersection
cohomology is de Rham. But, not just for other irregular λ, it is
desirable to extend p-adic RH to perverse sheaves (beyond ICs).


