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Who am I?

Github: digama0
Zulip: Mario Carneiro

I PhD student in Logic at CMU
I Proof engineering since 2013

I Metamath (maintainer)
I Lean 3 (maintainer)
I Dabbled in Isabelle, HOL Light, Coq,

Mizar
I Metamath Zero (author)

I Proved 37 of Freek’s 100 theorems list in
Metamath

I Lots of library code in set.mm and
mathlib

I Say hi at
https://leanprover.zulipchat.com
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How I got involved in formalization

I Undergraduate at Ohio State University
I Math, CS, Physics

I Reading Takeuti & Zaring, Axiomatic Set Theory

I Found Metamath via a random internet search
I → they already formalized half of the book!
I . . . and there is some stuff on cofinality they don’t have yet,

maybe I can help

I Got involved, did it as a hobby for a few years
I Got a job as an android developer, kept on the hobby
I Norm Megill suggested that I submit to a (Mizar)

conference, it went well
I Met Leo de Moura (Lean author) at a conference, he got me

in touch with Jeremy Avigad (my current advisor)
I Now I’m a PhD at CMU philosophy!
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Why formalize mathematics?

I Humans make errors. Computers make fewer errors.

I Formalizing a proof is a really good way to learn how the
proof works!
I It is a real eye opener when you realize how much you

skipped over when reading a proof “normally” vs when
you have to convince a computer

I Formalizing a lot of proofs is a good way to learn how
formalization works
I You learn tricks of the system, the way things are encoded

in the library, and general techniques for structuring
mathematics so that things go as smoothly as you naively
thought it would at the start

I It makes you a better mathematician
I You will lie less when doing paper mathematics
I Cf. Terry Tao’s “post-rigorous” mathematician

I Also it’s the world’s best puzzle game
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What is it like to formalize mathematics?
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Sidebar: Metamath architecture

I Metamath is a specification for .mm files that contain
definitions, theorems, and proofs

I Metamath has many (many!) verifiers, written in dozens of
languages

I Proofs in an .mm file are expressed in a compressed format
that is not intended to be written by humans

I To produce proofs, you need a proof assistant, and there are
several of these (not as many as the verifiers).

I I used for this for many years (and now I’m the
maintainer)
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I Metamath is a specification for .mm files that contain
definitions, theorems, and proofs

I Metamath has many (many!) verifiers, written in dozens of
languages

I Proofs in an .mm file are expressed in a compressed format
that is not intended to be written by humans

I To produce proofs, you need a proof assistant, and there are
several of these (not as many as the verifiers).

I I used mmj21 for this for many years (and now I’m the
maintainer)

1https://github.com/digama0/mmj2/
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Sidebar: Metamath architecture

Search “mmj2 tutorial” to see it in action
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What is it like to formalize mathematics?

In Metamath:

I You state a theorem in the formal language
I You apply theorems from the library, and the computer

prompts you for the subgoals
I In some cases the computer can automatically prove some

of the subgoals
I When you finish the proof, it gives you a big blob to stick

in the .mm file and celebrate
I You PR your changes to the set.mm repository
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What is it like to formalize mathematics?

In Lean:
I You state a theorem in the formal language
I You apply tactics, which transform the goals into subgoals

in some defined way
I Often the tactic is simply apply thm where thm is a lemma

from the library
I When you finish the proof, you leave the tactic script in the

file
I You PR your changes to the mathlib repository

9 / 31



What is it like to formalize mathematics?

From Kevin Buzzard’s “10 minute Lean tutorial: proving logical
propositions”
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How do Metamath and Lean differ?

I Lean has a lot more institutional support (MSR, CMU)
I Lean has a great user experience and is generally better

suited to mathematician users
I Metamath is deliberately as simple as it can be, and writing

a verifier for Metamath is a weekend project
I “Batteries not included”: tooling is decentralized and DIY

I There is essentially only one Lean verifier
I Parsing lean files is nearly impossible for anything other

than lean
I Lean has an export format that has a few alternate verifiers

I Compiling set.mm is about 1000× faster than compiling
mathlib
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How do we get closer to air tight mathematics?

I “Computers make fewer errors.” Is this true?

I Computers executing computer programs with modern
error correcting hardware can perform trillions of
computations without a single error

I A buggy program can be wrong 100% of the time
I The presence of a bug is not probabilistic except in the

Bayesian sense
I The number of bugs in a program linearly correlates with

the length of the program

I The possible gains are great, but correctness makes all the
difference.

1. The verifier should be as simple as it can be
2. This isn’t good enough, because the chance of a bug in the

program will still be larger than the computer’s own error
rate
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How do we get closer to air tight mathematics?

I How do we ensure there are no bugs in a program?

I Program correctness is a mathematical property, because
both the program and the target are specified abstractly
(no physics needed)

I But program correctness proofs are long and tricky, and
proving them on paper is liable to human error. . .

I Hammer, meet nail
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Self verifying theorem provers

I Wait, didn’t Gödel prove this is impossible?
I Well, yes and no

I The important observation is that we want to prove
“implementation correctness”, not consistency

I We will not be able to completely eliminate the circularity,
though, so we still need to rely on human verification to
some extent
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The metamathematics of theorem provers

I LetM ⊆ {0, 1}∗ × {0, 1}∗ be a machine semantics, where
M(P, x) means that program P on input x terminates and
indicates success.
I For example,M(P, x) if P encodes a Turing machine that

when run on input x stops in finitely many steps with a 1
on the tape

I Let L ⊆ {0, 1}∗ be a language of assertions
I For example, ϕ ∈ L if ϕ encodes a statement in FOL
I We generally want ϕ ∈ L to be decidable

I Let T be a theory of interest
I For example, T = ZFC

Implementation correctness for a theorem prover

Program V is a theorem prover (for T inM and L) if for all
ϕ ∈ L, if there exists p such thatM(V, (ϕ, p)), then T ` ϕ.

15 / 31



Bootstrapping trust

1. Suppose V is a correct verifier, i.e. if T `V A then T ` A for
all T,A.

2. Suppose we prove, in V + PA, the correctness theorem for
W, that is, PA `V ∀T,A: (T `W A→ T ` A)

3. Then PA ` ∀T,A: (T `W A→ T ` A)
4. If PA is sound, then ∀T,A: (T `W A→ T ` A), that is,

T `W A implies T ` A, so W is a correct verifier

I Bootstrapping: set W := V in the above
I Note that this does not run afoul of Gödel incompleteness
I Circular proof! Need a backup to ground the argument

I ⇒ small verifier
I independent bootstraps
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From theory to practice

I Can we use Lean to prove Lean correct?

I Nope, way too complicated
I Can we use Metamath to prove Metamath correct?

I Maybe, although it’s kind of painful
I Also the model theory of general Metamath databases is

kind of weird
I Solve for V in “We use V to prove V correct”

I It should be as simple as possible, like Metamath
I It should have a decent finitistic metatheory
I It should have good support for program correctness proofs
I It should be practical on potentially very large proofs
I It should have basic interactive theorem prover niceties (not

in the verifier but in the proof assistant)

I V = Metamath Zero
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Metamath Zero Architecture

I MM0: The verifier, the source of trust
I Standalone executable
I The “small trusted kernel”

I MM1: The proof assistant – produces MM0 proofs
I Runs tactics and metaprograms and exports MM0 proofs

I MMC: A verified compiler (in progress)
I A programming language embedded as an MM1 tactic for

producing x86 programs with a proof of correctness

I The plan: write a verifier for MM0 in the MMC language
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Metamath Zero

From “Metamath Zero (MM0/MM1) tutorial”
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Metamath Zero Architecture
MM0 input is split into two parts:
I .mm0 specification file

I trusted, human readable
I contains the statement of axioms and assertions

I .mmb proof file
I untrusted, binary
I fully elaborated, designed for efficient checking by the

verifier

foo.mm1
foo.mm0

foo.mmb
MM0 verifier

display

MM1 compiler

editor

Underlined components are trusted.
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goldbach.mm0

delimiter $ ( [ ∼ , $ -- these tokens don 't need a space after them
$ ) ] $; -- these tokens don 't need a space before them

-- Propositional logic
strict provable sort wff;

term im: wff > wff > wff;
infixr im: $->$ prec 25;

term not: wff > wff;
prefix not: $∼$ prec 41;

axiom ax_1 (ph ps: wff): $ ph -> ps -> ph $;
axiom ax_2 (ph ps ch: wff): $ (ph -> ps -> ch) -> (ph -> ps) -> ph -> ch $;
axiom ax_3 (ph ps: wff): $ (∼ph -> ∼ps) -> ps -> ph $;
axiom ax_mp (ph ps: wff): $ ph -> ps $ > $ ph $ > $ ps $;

def an (a b: wff): wff = $ ∼(a -> ∼b) $;
infixl an: $/\$ prec 34;

def iff (a b: wff): wff = $ (a -> b) /\ (b -> a) $;
infixl iff: $<->$ prec 20;

def or (a b: wff): wff = $ ∼a -> b $;
infixl or: $\/$ prec 30;
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goldbach.mm0

-- Predicate logic (on nat)
sort nat;
term al {x: nat} (ph: wff x): wff;
prefix al: $A.$ prec 41;

def ex {x: nat} (ph: wff x): wff = $ ∼(A. x ∼ph) $;
prefix ex: $E.$ prec 41;

term eq (a b: nat): wff;
infixl eq: $=$ prec 50;

axiom ax_gen {x: nat} (ph: wff x): $ ph $ > $ A. x ph $;
axiom ax_4 {x: nat} (ph ps: wff x): $ A. x (ph -> ps) -> A. x ph -> A. x ps $;
axiom ax_5 {x: nat} (ph: wff): $ ph -> A. x ph $;
axiom ax_6 (a: nat) {x: nat}: $ E. x x = a $;
axiom ax_7 (a b c: nat): $ a = b -> a = c -> b = c $;
axiom ax_10 {x: nat} (ph: wff x): $ ∼ A. x ph -> A. x ∼ A. x ph $;
axiom ax_11 {x y: nat} (ph: wff x y): $ A. x A. y ph -> A. y A. x ph $;
axiom ax_12 {x: nat} (a: nat) (ph: wff x): $ x = a -> ph -> A. x (x = a -> ph) $;

def sb (a: nat) {x .y: nat} (ph: wff x): wff =
$ A. y (y = a -> A. x (x = y -> ph)) $;

notation sb (a: nat) {x: nat} (ph: wff x): wff =
($[$:41) a ($/$:0) x ($]$:0) ph;
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goldbach.mm0

-- Peano 's axioms
term d0: nat; prefix d0: $0$ prec max;
term suc (n: nat): nat;
axiom peano1 (a: nat): $ ∼ suc a = 0 $;
axiom peano2 (a b: nat): $ suc a = suc b <-> a = b $;
axiom peano5 {x: nat} (P: wff x):

$ [0 / x] P -> A. x (P -> [suc x / x] P) -> A. x P $;

term add: nat > nat > nat; infixl add: $+$ prec 64;
term mul: nat > nat > nat; infixl mul: $*$ prec 70;

axiom addeq (a b c d: nat): $ a = b -> c = d -> a + c = b + d $;
axiom muleq (a b c d: nat): $ a = b -> c = d -> a * c = b * d $;
axiom add0 (a: nat): $ a + 0 = a $;
axiom addS (a b: nat): $ a + suc b = suc (a + b) $;
axiom mul0 (a: nat): $ a * 0 = 0 $;
axiom mulS (a b: nat): $ a * suc b = a * b + a $;
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goldbach.mm0

-- Definitions and theorems
def d1: nat = $suc 0$; prefix d1: $1$ prec max;
def d2: nat = $suc 1$; prefix d2: $2$ prec max;

def le (a b .x: nat): wff = $ E. x a + x = b $; infixl le: $<=$ prec 50;
def lt (a b: nat): wff = $ suc a <= b $; infixl lt: $<$ prec 50;
def dvd (a b .c: nat): wff = $ E. c c * a = b $; infixl dvd: $|$ prec 50;
def prime (p .x: nat): wff = $ 1 < p /\ A. x (x | p -> x = 1 \/ x = p) $;

theorem goldbach (n: nat) {p q: nat}:
$ 2 < n /\ 2 | n -> E. p E. q (prime p /\ prime q /\ n = p + q) $;

I This is a complete .mm0 file that asserts that Goldbach’s
conjecture (GC) is derivable from the axioms of Peano
Arithmetic.

I The correctness theorem for MM0 implies that if the MM0
verifier accepts any .mmb proof of this .mm0 file, then GC is
in fact provable in PA.
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The MM0 toolchain

I MM0 verifier is currently implemented in C (2000 LOC)
I The MM1 proof assistant is in Rust
I MMC implementation in progress (in Rust)

I Scales well to large developments
I Can verify set.mm library of ∼30000 proofs in 200 ms, faster

than metamath itself (metamath.exe – 8 s, smm – 900 ms)
I That’s 10,000× faster than lean, although this is an incredibly

unfair comparison for a number of reasons
I The library of supporting material from PA for this project

checks in 2 ms
I Proof terms are stored in the binary format as fully

elaborated and fully deduplicated terms
I Essentially linear time verification

I Proof size is comparable to compiled proof formats in
other languages (.mm, .olean)
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Translation

I Even after the MM0 self-verification theorem is complete,
it is only useful if people use it... or is it?

I A theorem prover that can bootstrap itself can also be the
foundation for others

I Proving Lean correct in MM0 is no easier than Lean in
Lean, but we have another alternative: proof translation

I If all theorems in Lean can be translated in a proof
preserving way to MM0 theorems, then Lean can be used
as an MM0 IDE
I MM0 gains all the benefits of Lean’s user interface
I We don’t need to convince anyone to switch
I Work on Lean→MM0 translation can proceed

independently of new theorems to mathlib
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Translation

I The MM0 formal system lies at the intersection of
Metamath and second order logic, and so it has easy
translation paths to each
I MM→MM0
I MM0→ OpenTheory
I MM0→ Lean

I The MM→MM0 translator has been used to losslessly
translate the entire Metamath ZFC library into MM0

theorem dirith' {n : N} {a : Z} (n0 : n , 0)
(g1 : int.gcd a n = 1) :
¬ set.finite {x | nat.prime x ∧ ↑n | ↑x - a}
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The Rosy Future
I Improved user experience in high level proof assistants like

Lean means that more mathematicians can get involved
I The bottleneck on interesting formalized mathematics

today is lack of mathematicians who know and care to
formalize interesting mathematics

I There are no serious technical limitations on proving any
branch of mathematics that I am aware of

I By translation to MM0, the entire library of mathematics in
every major theorem prover can be checked by a proven
correct verifier
I Also, by translation from MM0, libraries can communicate

formal content and build on material proved in other
theorem provers

I The MM0 bootstrap itself can be improved independently,
for example by verifying the electronic model of the
hardware.
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The Rosy Future

All together, these points mean that anyone will have easy
access to mechanical means to verify proofs to the quality of the
physical hardware (up to the probability of e.g. cosmic ray
interference and our understanding of physical laws).

Then:
I Make it easy for programmers to write bug-free software

through better verified-programming language design
I Make it easy for mathematicians to write formal

mathematics, so that all the new mathematics that comes
out is also verified

Correctness: solved!
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Conclusion

I Verification systems are the means by which we check
mathematics in the computer

I Metamath and Lean are near polar opposite designs for a
theorem prover
I (I recommend Lean for mathematicians)

I To improve on the correctness frontier, we need to verify
the verifier

I The goal of the MM0 project is to prove a correctness
theorem for the verifier of the form “if execution of verifier
V according to the semantics of x86 machine code reports
that theorem ϕ follows from axioms T, then T ` ϕ”

I Large parts of the project are already complete, and you
can play with the MM1 proof assistant today
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Resources

I Metamath: http://us.metamath.org/
I Lean/mathlib: http://leanprover-community.github.io/
I Metamath Zero: https://github.com/digama0/mm0
I Lean Zulip: https://leanprover.zulipchat.com/

I Ask me anything on Zulip, I’m there a lot

Thanks!
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