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Dual Pair

• F a p-adic field.

• W symplectic vector space of dimension 2n, with isometry
group Sp(W ).

• V = V± the two 2m + 1 dimensional quadratic spaces of
discriminant 1, with isometry group O(V±).

Have a dual pair

Sp(W )× O(V ) −→ Sp(W ⊗ V ).

Let Mp(W ) be the unique two-fold nonlinear cover of Sp(W ).

Have:
Mp(W )× O(V ) −→ Mp(W ⊗ V ).



Weil Representation and Theta Correspondence

For a fixed nontrivial character ψ of F , let

ωψ = Weil rep. of Mp(W ⊗ V ).

Pulling back gives a representation ωV ,W ,ψ of Mp(W )× O(V ).

For π ∈ Irr(O(V )), define a smooth rep. of Mp(W ) by

Θ(π) = (ωV ,W ,ψ ⊗ π∨)O(V ) (big theta lift).

Likewise, for π̃ ∈ Irr(Mp(W )), have smooth rep. Θ(π̃) of O(V ).

Theorem (Howe Duality)

(i) Θ(π) has finite length and a unique irreducible quotient θ(π).

(ii) If π1 6= π2, then θ(π1) 6= θ(π2) (if both nonzero).



Equal Rank Case

We shall focus on the special case m = n, so that
dimV± = dimW + 1 = 2n + 1.

Theorem (Local Shimura Correspondence)

The theta correspondence, together with the restriction from O(V )
to SO(V ), gives a bijection

Irr(Mp(W )←→ Irr(SO(V+)) t Irr(SO(V−)).

Moreover, under this bijection, discrete series representations
correspond, and so do tempered representations.

θ : Irrtemp(SO(V+)) t Irrtemp(SO(V−))←→ Irrtemp(Mp(W )),



Characters

If π ∈ Irr(G (F )), set

Θπ = Harish-Chandra character of π.

It is a conjugacy-invariant distribution on G (F ), which is given by
a locally L1 smooth function on the regular semisimple locus:

Θπ : C∞c (G (F )) � C∞c (G (F ))G(F )∆ → C.

If π is unitary and {ei} is an orthonormal basis of π, then

Θπ(f ) = Tr(π(f )) =
∑
i

〈π(f )ei , ei 〉.

If π is tempered, then Θπ is a tempered distribution: it extends to
a linear form on the Harish-Chandra-Schwarz space
C(G (F )) ⊂ L2(G (F )).



The Question
Suppose π̃ ∈ Irr(Mp(W )) and π ∈ Irr(SO(V ε)) satisfy

π̃ = θ(π).

Question: How are the characters of π and π̃ related?

• This question has been studied by T. Prezbinda when F = R;
he introduced a construction known as the
Cauchy-Harish-Chandra integral, which transfers invariant
eigendistributions from one group to another and conjectured
that this relates the characters of representations in theta
correspondence with each other.
• He verified his conjecture in the stable range. The analytic

difficulties in working with this integral is one obstacle in
extending his results beyond the stable range.

We would like to propose a more conceptual approach.
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An Approach to Character Relations

We shall:

• introduce spaces of test functions on Mp(W ) and SO(V );

• define a notion of transfer of test functions from one group to
another;

• show that this transfer descends to a well-defined map on the
level of coinvariant spaces (i.e. orbital integrals), thus
inducing a transfer of invariant distributions.

• show that the transfer of Θπ is equal to Θπ̃.

• describe the transfer in geometric terms (in terms of a
moment map).



Spaces of Test Functions

Consider the diagram

Ωε = ωW ,V ε ⊗ ωW ,V ε

pε

uukkkk
kkkk

kkkk
kk qε

))SSS
SSSS

SSSS
SSS

C∞(Mp(W )) C∞(SO(V ε))

The two maps are defined by matrix coefficients:

pε(φ1 ⊗ φ2)(g) = 〈φ1, gφ2〉 and qε(φ1 ⊗ φ2)(h) = 〈φ1, hφ2〉.

for φ1 ⊗ φ2 ∈ Ωε. Set

Sε(Mp(W )) = Image(pε) and S(SO(V ε)) = Image(qε).

These are the spaces of test functions.



Transfer of Test Functions

We say that

f ε ∈ S(SO(V ε)) and f̃ ε ∈ Sε(Mp(W ))

are transfer of each other if there exists Φ ∈ Ωε such that

pε(Φ) = f ε and qε(Φ) = f̃ ε.

More generally, say that

f = (f +, f −) ∈ S(SO(V±)) := S(SO(V+))⊕ S(SO(V−))

and

f̃ = (f̃ +, f̃ −) ∈ S(Mp(W )) := S+(Mp(W ))⊕ S−(Mp(W ))

are in correspondence if the ±-components correspond.
Transfers always exist, by definition.



Properties of Test Functions

Lemma

C∞c (Mp(W )) ⊂ S(Mp(W )) ⊂ C(Mp(W ))

and
C∞c (SO(V ε)) ⊂ S(SO(V ε)) ⊂ C(SO(V ε)).

Corollary

For π ∈ Irrtemp(SO(V ε)) and f ∈ S(SO(V ε)) the operator π(f ) is
defined and so is its trace

Θπ(f ) =
∑

v∈ONB(π)

〈π(f )v , v〉



Equivariance Properties

Lemma
(i) The map

pε : Ωε −→ C(Mp(W ))

is Mp(W )×Mp(W )-equivariant and O(V ε)∆-invariant.

Indeed, p = p+ ⊕ p− induces an isomorphism⊕
ε

Ωε
O(V ε)∆

∼= S(Mp(W )).

(ii) The map
qε : Ωε −→ C(SO(V ε))

is SO(V ε)× SO(V ε)-equivariant and Mp(W )∆-invariant. We have
an isomorphism

⊕ε(Ωε)Mp(W )∆
∼= ⊕εS(SO(V ε)) =: S(SO(V±)).
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Isomorphism of Spaces of Orbital Integrals
Consider the composite:
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This map is Mp(W )∆-invariant and thus factors as:
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A Character Identity

The previous lemma allows one to transfer invariant distributions
between S(Mp(W )) and S(SO(V±).

Theorem
Suppose that π ∈ Irrtemp(SO(V ε)), so that
π̃ = θ(π) ∈ Irrtemp(Mp(W )). Then for f and f̃ in correspondence,

Θπ(f ) = Θπ̃(f̃ ).

What we will discuss in the rest of this talk

• a sketch proof of the character identity.

• a geometric description of the transfer of test functions.
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Sketch Proof via the Plancherel Theroem

For Φ = φ1 ⊗ φ2 ∈ Ωε, observe that

p(Φ)(1) = 〈φ1, φ2〉 = q(Φ)(1).

Since p(Φ) ∈ C(Mp(W )), the Harish-Chandra-Plancherel theorem
gives:

p(Φ)(1) =

∫
M̂p(W )

Θπ̃(p(Φ)) dµMp(W )(π̃).

Likewise,

q(Φ)(1) =

∫
ŜO(V )

Θπ(q(Φ)) dµSO(V )(π).

So we get the equality of both RHS’s.



We have shown:∫
M̂p(W )

Θπ̃(p(Φ)) dµMp(W )(π̃) =

∫
ŜO(V )

Θπ(q(Φ)) dµSO(V )(π).

Under the local Shimura correspondence

θ : Irrtemp(SO(V+)) ∪ Irrtemp(SO(V−))←→ Irrtemp(Mp(W )),

one has (by G.-Ichino)

θ∗(dµSO(V+)) + θ∗(dµSO(V−)) = dµMp(W )

This gives∫
ŜO(V )

Θθ(π)(p(Φ)) dµSO(V )(π) =

∫
ŜO(V )

Θπ(q(Φ)) dµSO(V )(π).

One can peel off the integrals on both sides using a Bernstein
center argument.



Doubling
The key for understanding the transfer is to interpret everything in
terms of the doubling see-saw.

Let
W = W ⊕ (−W )

be the doubled symplectic space. This contains

W∆ = {(w ,w) : w ∈W } and W∇ = {(w ,−w) : w ∈W }

as maximal isotropic subspaces.

Likewise,
V = V ⊕ (−V )

which contains V∆ and V∇ as maximal isotropic subspaces.

Observe that one has isomorphisms of symplectic spaces:

V⊗W = (V⊗W )⊕(V⊗(−W )) ∼= (V⊗W )⊕((−V )⊗W ) = V⊗W .



Doubling See-Saw

In Sp(V ⊗W) = Sp(V⊗W ), there are 2 dual pairs fitting in a
see-saw:

Mp(W)

SSS
SSS

SSS
SSS

SSS
O(V )× O(V )

Mp(W )×Mp(−W )

kkkkkkkkkkkkkk
O(V )∆

Moreover, if ΩW,V ,ψ denotes the Weil rep. for Mp(W)× O(V )∆,
then

ΩW,V ,ψ
∼= ωW ,V ,ψ ⊗ ωW ,V ,ψ

when restricted to Mp(W )×Mp(W )× O(V )∆.



ΩW,V ,ψ
∼= ωW ,V ,ψ ⊗ ωW ,V ,ψ

RHS is the domain Ω of the maps p and q in the definition of
transfer; we see now that it is a Weil rep. for Mp(W)× O(V )∆.

We want to interpret the map

p : Ω −→ S(Mp(W ))

through the lens of the other dual pair Mp(W)× O(V )∆.

Since p is O(V )∆-invariant, it descends to

p : ΩO(V )∆ −→ S(Mp(W ))

Now the LHS is a rep. of Mp(W) which has been described by
Rallis.



A Result of Rallis

Theorem
There is a natural morphism of Mp(W)-modules

ι : ⊕εΩε � ⊕εΩε
O(V ε)

∼= IP(W∆)(0)

where the RHS is a degenerate principal series rep. of Mp(W)
induced from the Siegel parabolic stabilizing W∆.

The morphism ι is described as follows:

• The rep. Ωε can be realized on S(V ε ⊗W∇).

• For Φ ∈ S(V ε ⊗W ),

ι(Φ)(g) = (g · Φ)(0) for g ∈ Mp(W).



Degenerate P.S.
Now let’s examine the degenerate p.s. IP(W∆)(0) from other points
of view. By definition, elements of IP(W∆)(0) are smooth sections
of a line bundle on the partial flag variety

P\Sp(W) = P(W∆)\Sp(W),

parametrizing maximal isotropic subspaces of W. Such sections are
determined by their restrictions to open dense subsets.

There are 2 such open dense subsets we will use:

• the open Bruhat cell:

X1 = P\P · N ⊂ P\Sp(W)

and
N ∼= Sym2(W∇) ∼= sp(W ).

• Sp(W )× Sp(W ) has an open dense orbit (orbit of W∆):

X2 = Sp(W )∆\Sp(W )× Sp(W ) ⊂ P\Sp(W).



So we have two injective restriction maps

restX2 : IP(0) ↪→ C∞(Mp(W ))

and
restX1 : IP(0) ↪→ C∞(N) = C∞(sp(W )).

Lemma
The map p : Ω −→ S(Mp(W )) is given by:

p = restX2 ◦ ι.

Hence
restX2 : IP(0) ∼= S(Mp(W )).



Denoting the image of restX1 by S(sp(W )), we have an
isomorphism

j : S(Mp(W )) ∼= IP(0) ∼= S(sp(W )).

What is this isomorphism?

Lemma
Given f ∈ S(Mp(W )),

j(f )(x) = f (c(x)) · | det(1− c(x))|
dim V

2 .

where
c : sp(W ) −→ Mp(W )

which is the “birational map” given by the Cayley transform

c(x) = (x − 1)(x + 1)−1

(when projected to Sp(W )).



Character of Weil representation

The factor | det(1− c(x))|
dim V

2 which appears in the previous
lemma can be interpreted in terms of the character of the Weil
representation. One has the following result of Teruji Thomas:

Theorem
As a generalized function on Mp(V ⊗W ), the character of the
Weil representation ωV ,W ,ψ is given by

Tr(ωV ,W ,ψ(g)) = γψ(g) · |detV⊗W (g − 1)|−1/2.

For g ∈ Mp(W ), one has

Tr(ωV ,W ,ψ(g ⊗ 1V )) = γψ(g) · |detW (g − 1)|− dimV /2.

So
j(f )(x) = f (c(x)) · Tr(ωV ,W ,ψ(c(x)⊗ 1V ))−1.



Summary

At this point, we have the following diagram:

Ωε = S(V ε ⊗W )
pε

vvmmm
mmm

mmm
mmm

m
qε

((QQ
QQQ

QQQ
QQQ

QQ

S(Mp(W ))

jW
��

S(SO(V ε))

jV
��

S(sp(W )) S(so(V ε))

This diagram arises in another context: the moment map
associated to the Hamiltonian O(V )× Sp(W )-variety V ⊗W .
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Moment Map
The moment map is a double fibration

V ⊗W
p′

vvmmm
mmm

mmm
mmm

m
q′

''PP
PPP

PPP
PPP

P

sp(W )∗ ∼= Sym2W ∗ so(V )∗ ∼= ∧2V ∗

The maps are given by:

p′(T ) = T ◦ T ∗ and q′(T ) = T ∗ ◦ T .

• The map p′ is Sp(W )-equivariant and SO(V )-invariant,
whereas q′ is SO(V )-equivariant and Sp(W )-invariant.

• It induces a correspondence of orbits between so(V ) and
sp(W ), giving a bijection

so(V )♥//SO(V )←→ sp(W )♥//Sp(W ),

where sp(W )♥ correspond to maximally nondegenerate maps.



Moment Map Correspondence
The moment map diagram

V ⊗W
p′

yysss
sss

sss
s

q′

%%JJ
JJJ

JJJ
JJ

sp(W ) so(V )

induces by integration along the fibers:

S(V ⊗W )
p′∗

wwooo
ooo

ooo
oo q′∗

''OO
OOO

OOO
OOO

S(sp(W )♥) S(so(V )♥)

This defines a “moment map correspondence” of the two spaces of
test functions, which descends to give an isomorphism of orbital
integrals

S(sp(W )♥//Sp(W )∆) ∼= S(so(V )♥//SO(V±))



Transfer and Moment Map
We may ask if the maps p and p′∗ are related?

Proposition

jW ◦ p = F♥ ◦ p′∗ ◦ FV⊗W .

where FV⊗W is the Fourier transform on V ⊗W and

F♥ : S(sp(W )♥) −→ S(sp(W ))

is the Fourier transform (of distributions) on sp(W ).

So have commutative diagram:

S(V ⊗W )
FV⊗W−−−−→ S(V ⊗W )

p′∗−−−−→ S(sp(W )♥)

p

y yF♥
S(Mp(W )) −−−−→

jW
S(sp(W )) S(sp(W ))



Geometric Description of Transfer
Here is our geometric description of the transfer of test functions:

• given f̃ ∈ S(Mp(W )) and f ∈ S(SO(V )), we consider

jW (f̃ ) ∈ S(sp(W )) and jV (f ) ∈ S(so(V )).

• Then f̃ and f correspond if the Fourier transforms F♥(jW (f̃ ))
and F♥(jV (f )) correspond under the moment map
correspondence.

• In that case, F♥(jW (f̃ )) and F♥(jV (f )) have equal orbital
integrals under the bijection of nondegenerate orbits induced
by the moment map.

Corollary

If Õ is an Sp(W )-orbit in sp(W )♥ with corresponding SO(V )-orbit
O in so(V )♥, then the transfer map identifies the Fourier
transform of the orbital integrals µÕ and µO.



Periods and Theta Correspondence

The techniques for deriving the main character identity can be
applied in the setting of the relative Langlands program to give
relative character identities.

In theta correspondence, given a dual pair G × H, it is typical for
one to relate a period P on G with another period P ′ on H. Given
a period P, one can associate a relative character. Thus, in the
above setting, one may ask if there is an identity relating the
relative character for P and that for P ′.
For example:

• The theory discussed before corresponds to the group case,
where G = G0 × G0 and the period P is the G∆

0 -period.

• For On−1\On vs. (N, ψ)\SL2, see paper with Xiaolei Wan.

• Wan’s thesis deal with U2\SO5 v.s. (N, ψ)\PGL2 × T\PGL2,
using the theta correspondence for PGSp4 × PGSO4.



THANK YOU FOR YOUR ATTENTION!


