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® Fix a prime p and a simple algebraic group G over k = Fp.
® Assume G defined over Fy € k (g = pf), with Frobenius map F: G - G.
e Obtain finite group G(F,) = G* = {g € G| F(g) = g}.

|G(F,)| = qdimG + smaller powers of q.
q

General aim/program:

Determine Irr(GF) = complex irreducible characters of i
® Parametrisation, values on semisimple elements: solved (Lusztig 1980s).
® Arbitrary elements: theory of character sheaves (Lusztig 1984—today) . . .
® ... where certain normalisations (roots of unity) remain to be determined.

And with this, create an electronic ATLAS of “generic” character tables,
extending the famous Cambridge ATLAS of finite groups.
(E.g., the latter contains character table of F4(IF5); would like this for F4(Fo), all f = 1.)
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In this talk:
® Special case for above program: “Green functions”.

® “Normalisation problem” for Green functions solved in most cases, mainly by
work of Beynon—Spaltenstein, Shoji and Lusztig (1980s—2000s).

® Will explain how to solve last remaining open cases, for G of exceptional
types (uses computer calculations).

Platform for electronic ATLAS and computer calculations (ongoing project).
CHEVIE: M.Geck, G.Hiss, F.Luebeck, G.Malle, J.Michel, G.Pfeiffer

http://www.math.rwth-aachen.de/~CHEVIE/
Implemented in GAP3; 64-bit version, with many extensions, see:
http://webusers.imj-prg.fr/~jmichel/gap3

Latest development: Port to Julia language (J. Michel).
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Let T c G be an F-stable maximal torus and 6 € Irr(TF)

~ Ry virtual character of cd (Deligne and Lusztig 1970s).
Let Gyni be the variety of unipotent elements of G

~  Green function Qr: Gy — Q, U+ Rre(u).

® Q7 has values in Z, and does not depend on 6.

® Character formula: Get all values of Rt from Qr and inductive procedure.

Lusztig 1984: Knowledge of all Qr's ~  “average value” character table of G

Letp € Irr(GF) and C be an F-stable conjugacy class of G. Then cr splits into
finitely many classes in @t , With representatives g4,...,9, € cf say.

~ “average value”  AV(p,C) := str[/\i L Al 10(g0),
where A; = Cg(g;)/Cg(g;) finite group (with induced action of F).
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Assume from now on: G of adjoint type, defined and split over [F,. J

The G© -conjugacy classes of F-stable maximal tori T € G are parametrised by the
conjugacy classes of W (Weyl group of G); write T =T, forw e W.

e “New” Green functions Q= |W|_1 Z o(w)Qr, for ¢ € lrr(W).
weW
® Values of Q, are given by m x n table, where

m=|lrr(W)| and n=number of unipotent classes of G~

Example: G of type Es. 146 if p=2,
127 if p=3, .
m=[Imr(W)| =112 and n={ .77 ifg=57 (Mizuno 1980)).
113 if p>5,

Above assumption implies: If C is a unipotent class of G, then F(C) = C
and there exists u € C" such that F acts trivially on A(u) = Cg(u)/Cg(u). J
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Values of Q, “almost known” by a general, purely combinatorial algorithm. J

® For ¢ € Irr(W) there is a unique unipotent class C = C, of G such that
{geGhilQyg)#0}cC and  Qlcr #0.
Thus, obtainamap ¢+~ C, (= Springer correspondence)
® Setdj := (dim G —dim Cy —rank(G))/2 € Zso. Define Y,: G un, - Q by
Qslcr = q% Y (and extend by 0 outside C¢).
® Lusztig, Shoji, ... (1976-2012): There are unique py , € Z such that

Q= Y q%pyyYy forallpelm(W).
'elrr(W)
Matrix (p,' 4) is triangular with 1 on diagonal.
It can be computed by a purely combinatorial algorithm, which relies on

a priori knowledge of the map ¢ — C,, i.e., Springer correspondence for G.
® ~ Function ICCTable inJ. Michel’s version of CHEVIE.
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“Almost known” ? Let ¢ € Irr(W), C = Cy4, and Y, be the corresponding function.
The remaining problem is to determine the values of Y, on qu.

® letu, € qu be such that F acts trivially on A(ug) = Cg(u,)/Ca(uy).

® Springer correspondence also associates to ¢ a character v, € Irr(A(uy)).

® letay,...,a € A(u,) be representatives of the conjugacy classes of A(uy).

® There are corresponding representatives uy, ..., u, € Cg of the conjugacy
classes of G" into which Cg splits.

Then there exists a sign d, = £1 such that Yo(Ui) = 04100 (a;) for all /. J

~ Everything is reduced to the — tricky! — task of determining the signs i . J

® For G of classical type, signs are determined by Shoji (1980s, 2007).
® For G of exceptional type, Beynon—Spaltenstein (1984), except for cases where p is small.

e For Gy, 3D4, Fa, Eg, 2E6 and p small, various explicit computations by Enomoto,
Enomoto—Yamada, Spaltenstein, Malle, Porsch, Marcelo—Shinoda (1970s—1990s).
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Opencases:  “Eo(Fa), E(Fy), E;(Fy), Eg(Fy), Eg(Fy), Eg(Fer). |

Theorem (G., 2020) Let ¢ € Irr(W) and ¢, be the corresponding sign.

For n = 1, consider the group GFn = G(F4) and the Green function
Qyp n ani — Q, with corresponding sign d4 . Then we have d4 , = 62.

Proof uses interpretation of Green functions in terms of character sheaves, work of
Lusztig and Shoiji; and there are no restrictions on the characteristic p.

Theorem motivated by general character theory of finite groups. Let I', S be finite
groups of coprime order such that S is solvable and acts by automorphisms on T.

Glauberman correspondence: lrrs(T) = lrr(Cr(S)), X e X
Problem/Conjecture (1990s): The degree of x* divides the degree of x.
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Hartley—Turull (1994): (1) Reduction to finite simple groups; (2) by classification:
difficult case are groups of Lie type; and (3) for these, it is enough to show:

Congruence condition for Green functions.

Let T < G be an F-stable maximal torus and u € G' be unipotent.
Let r € N be a prime such that r |GF |. Then Qrr(u) = Qrfr(u) mod r.

In G. 2020, this is deduced from the theorem; so, x*(1) | x(1) holds in general !

Back to problem of determining the signs ¢, for ¢ € Irr(W).
Recall G" = G(F4) where g = pf with f = 1.
® Theorem implies that it is enough to compute d4 assuming f = 1.
® Hence, “only” need to compute values of Q, for the 6 individual groups

°E6(F3), E7(Fp), E7(Fs), Eg(Fp), Es(Fs), Eg(Fs).
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Open case challenge: G(F;) = Eg(F2); 112 functions Q.

If character table of Eg(F») was known (like for other groups as in the Cambridge
ATLAS), then we could easily determine the 112 missing signs.

But: |Eg(Fo)| = 3 - 10" and size of character table is 1156 x 1156

(see http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/index.html)
Brute force methods won’t work. Solved by alternative methods, as follows.

Recall: Qy’s linear combinations of Yy’'s, Y4 known up to d4. Further information:
Let B ¢ G be an F-stable Borel subgroup and T; < B an F-stable maximal torus.

Rz, 1 = permutation character of G" on cosets of B".

So,ifue GFis unipotent, then

> 6(1)Qy(u) = Qr,(u) = Rr,1(u) = [{gB" € G"/B" | g 'ug e B"}.
pelrr(W)

Hence, if we can compute the right hand side, then we may get information on ¢,4's.
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Example: G = Eg(Fq) with g = pf where p + 3

Let C = unipotent class Eg(bg) with representative u = z;7 (Mizuno 1980, Dg(as3)).
We have A(u) = Cg(u)/C&(u) = &3 and |Cg(u)"| = 6472

There are three ¢ € Irr(W) such that C, = C, denoted 22401g, 17512 and 84013.
(Springer correspondence known by Spaltenstein 1982, 1985.)

Want to determine 02040,, = £1, 6475, = £1,  dgao,, = £1.

Beynon—SpaItenstein (1984) If p > 5, then 5224010 = 517512 =1, 584013 = g mod 3.
For p € {2,5}, run the GAP algorithm ICCTable. This yields the following identity:

[{gB(Fq) € G(Fq)/B(Fyq) | g 'z;g e B(Fq)} = Rt 1(277) = Qr,(277)

= (22409'°+3688¢° +3444¢°+2360q" +1351¢° +672¢° +294¢* +1124°
+350° +8q+1)d2240,,+350q' %175, +(840q'°+650G° +1604° ) 340,

By Theorem, we only need to consider the cases where g = p.
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For g = p = 2, obtain identity  |{gB(F») € G(F»)/B(F2) | g~ z77g € B(F2)}|
= 5,479,485 5224010 + 358,400 04 7510 T 1,233,920 534013.

For g = p = 5, obtain identity  |{gB(FF5) € G(F5)/B(Fs) | g_1z77g € B(Fs)}|
= 30,631,220,541 62049,, + 3,417,968,750 175,, + 9,535,156,250 dg40,,-

In both cases, we can already conclude that d2040,, = 1. J

Now, total number of cosets G(F,)/B(F)) is still huge, roughly /| G(F,)|.
So practically impossible to create actual permutation representation.

Consider Bruhat decomposition ~ G(Fp) = | | B(Fp)wB(F,);
weW

each double coset B(F,)wB(F,) contains exactly p

‘W) cosets of B(Fp).

~ Systematic way of enumerating (in principle) all coset representatives
for G(IFp)/B(Fp), proceding by increasing ¢(w).
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Can use matrix realization of G(IF,,) to perform these computations.
This is not very efficient but it was good enough to obtain:

Proposition (G. 2020). Re-compute, or compute for the first time, the signs 4, for
all exceptional G # Eg and p = 2,3. In all these cases, we always have ¢, = 1. J

® Suggestions of F. LUbeck: Instead of matrices, work with Chevalley
generators x,(t) of G (where « is a root, t € k) and commutator relations.

® Number of cosets fixed by an element can be obtained as number of
IF,-solutions of system of polynomial equations in several variables.

® ~ Julia package ChevLiel.1 (G.;independent GAP programs by Libeck).

Back to Eg: For p = 2, number of cosets fixed by z77 should equal
5,479,485 + 358,400 6175, + 1,233,920 dgao,;-

With ChevLiel.1, find exact number of cosets fixed by z77 :  4,603,965.

(This takes < 2 mins on my laptop.)  Hence, d175,, = 1 and dg4g,, = —1.
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For p = 5, number of cosets fixed by z77 should equal

30,631,220,541 + 3,417,968,750 d175,, + 9,5635,156,250 dg40,;,-
With ChevLiel.1, find all 24,514,033,041 (!!!) cosets fixed by z77 in < 4 mins.
(Note [G(F5) : B(F5)] ~ 4 - 1084.) Hence, again, d17s5,, = 1 and dgao,, = —1.

Libeck (2021) has now worked through all remaining classes in Eg and p = 2,3, 5.

Corollary. The Green functions are explicitly known in all cases (all G). The class
C = Eg(bs) considered above is the only example where we can have 64 = —1. J

Next steps:
® Compute Lusztig’s generalised Green functions.

® Determine complete tables of values (not just average values) of unipotent
characters of G(F), for G of exceptional type and all g = pf, f=1.
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