Incoherent definite orthogonal spaces and Shimura varieties

Benedict H. Gross

March, 2021

In the first half of this talk, I will review the theory of quadratic forms over number fields (Hilbert, Minkowski, Hasse, Witt,).

I will use this to define an incoherent definite orthogonal space.
In the second half of the talk, I will show how incoherent definite spaces can be used to study orthogonal Shimura varieties.

Let k be a field, not of characteristic 2 .
An orthogonal space V over k is a finite dimensional vector space equipped with a non-degenerate symmetric bilinear form

$$
\langle,\rangle: V \times V \rightarrow k
$$

Non-degenerate means that the linear map $V \rightarrow V^{*}$ defined by $v \rightarrow f_{v}(w)=\langle v, w\rangle$ is an isomorphism.
We obtain a quadratic form $q: V \rightarrow k$ defined by

$$
q(v)=\langle v, v\rangle / 2 \quad\langle v, w\rangle=q(v+w)-q(v)-q(w)
$$

There is an orthogonal basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of V.
Let $a_{i}=q\left(v_{i}\right)$, then $a_{i} \neq 0$ and

$$
q\left(\sum x_{i} v_{i}\right)=\sum a_{i} \cdot x_{i}^{2}
$$

We say two orthogonal spaces V and W over k are isomorphic if there is a linear isomorphism $T: V \rightarrow W$ which satisfies $q_{w}(T v)=q_{v}(v)$.
Writing $q \sim \sum a_{i} \cdot x_{i}^{2}$ we define three invariants.

- the dimension $n=\operatorname{dim}(V)$.
- the determinant

$$
d(V)=a_{1} \cdot a_{2} \ldots a_{n} \in k^{*} / k^{* 2}=H^{1}\left(k, \mu_{2}\right) .
$$

- the Witt invariant

$$
w(V)=\prod_{i<j} a_{i} \cup a_{j} \in B r_{2}(k)=H^{2}\left(k, \mu_{2}\right) .
$$

If k is the reals or a p-adic field, then $B r_{2}(k)=\langle \pm 1\rangle$. The cup product $a \cup b$ is given by the Hilbert symbol (a, b), which is +1 if the quadratic form $a x^{2}+b y^{2}-z^{2}$ represents zero and -1 if not.

When $k=\mathbb{C}$, the space V is determined up to isomorphism by its dimension.

$$
d(V) \equiv 1 \quad w(V)=1
$$

When $k=\mathbb{R}$, there is an orthogonal basis with $q\left(v_{i}\right)= \pm 1$, and the space V is determined up to isomorphism by its signature (r, s).

$$
\operatorname{dim}(V)=r+s \quad d(V) \equiv(-1)^{s} \quad w(V)=(-1)^{s(s-1) / 2}
$$

When k is a p-adic field, the space V is determined up to isomorphism by $\operatorname{dim}(V), d(V)$, and $w(V)$.

All possible invariants occur once $\operatorname{dim}(V) \geq 3$.

If k is a number field, the Hasse-Minkowski theorem states that an orthogonal space V over k is determined up to isomorphism by its localizations $V_{v}=V \otimes k_{v}$.
The local invariants satisfy

- $\operatorname{dim}\left(V_{v}\right)=n$
- $d_{v}\left(V_{v}\right) \equiv d \in k^{*} / k^{* 2}$
- $w_{v}\left(V_{v}\right)=+1$ for almost all v and $\prod_{v} w_{v}\left(V_{v}\right)=+1$.

Finally, the invariants d_{v} and w_{v} are trivial at each complex place, and determined by the signature $\left(r_{v}, s_{v}\right)$ at each real place.

When $\operatorname{dim}(V) \geq 3$, these are the only restrictions on the local invariants.

In fact, for a and b in k^{*}, the local Hilbert symbols satisfy

$$
\prod_{v}(a, b)_{v}=+1
$$

When $k=\mathbb{Q}$, this is Hilbert's restatement of the law of quadratic reciprocity.
if p and q are distinct odd primes, then

$$
\begin{gathered}
(p, q)_{p}=\left(\frac{q}{p}\right) \quad(p, q)_{q}=\left(\frac{p}{q}\right) \\
(p, q)_{2}=+1
\end{gathered}
$$

unless $p \equiv q \equiv 3(\bmod 4)$ when $(p, q)_{2}=-1$. Finally

$$
(p, q)_{v}=+1
$$

at all other places v.

We say that the local orthogonal data $\left\{V_{v}\right\}$ for k is incoherent if the local invariants satisfy

- $\operatorname{dim}\left(V_{v}\right)=n$
- $d\left(V_{v}\right) \equiv d \in k^{*} / k^{* 2}$
- $w_{v}\left(V_{v}\right)=+1$ for almost all v and $\prod_{v} w_{v}\left(V_{v}\right)=-1$.

There is no orthogonal space over k with this local data.
When k is a totally real number field, we say the incoherent data is definite if the spaces V_{v} are positive definite at all real places v.
Then the locally compact group $\prod^{\prime} \mathrm{SO}\left(V_{v}\right)$ has open compact subgroups (but perhaps no discrete co-compact subgroup).

Lett $\left\{V_{v}\right\}$ be incoherent definite data for k, of dimension $n \geq 3$ and determinant $d \in k_{+}^{*} / k^{* 2}$.

For each place u of k, we will define a global orthogonal space $V(u)$ of dimension n and determinant d, up to isomorphism over k.

To do this, we insist that:

- The localization of $V(u)$ at the place v is isomorphic to V_{v}, for all places $v \neq u$.
- The Witt invariant of $V(u)$ at the place u is the negative of the Witt invariant of V_{u}.
- If u is a real place, the signature of $V(u)$ at the place u is ($n-2,2$).

The product of Witt invariants is now +1 , so a global space with these invariants exists, and is unique up to isomorphism.

We call the global spaces $V(u)$, for each place u, the neighbors of the incoherent definite data $\left\{V_{v}\right\}$.
$V(u)$ is unique up to isomorphism over k, but not up to a unique isomorphism.

We can't speak of a vector or a subspace of $V(u)$, but we can consider an orbit of subspaces under the orthogonal group.

For example, when u is a real place the local orthogonal space $V(u)_{u}$ has signature $(n-2,2)$. We can consider the set of negative definite planes $W \subset V(u)_{u}$
They form a single orbit under the orthogonal group, by Witt's extension theorem, and W^{\perp} is positive definite.

An orientation of the negative definite plane W is a choice of an isomorphism of one dimensional tori

$$
\mathrm{SO}(W) \cong \operatorname{Res}_{\mathbb{C} / \mathbb{R}}\left(\mathbb{G}_{m}\right) / \mathbb{G}_{m} .
$$

The real group $\mathrm{SO}\left(V(u)_{u}\right) \cong \mathrm{SO}(n-2,2)$ acts transitively on the space X_{u} of oriented negative definite planes $W \subset V(u)_{u}$, and the stabilizer of W is the compact subgroup $\mathrm{SO}(W) \times \mathrm{SO}\left(W^{\perp}\right)$.
The tangent space to X_{u} at W is the orthogonal representation $W \otimes W^{\perp}$ of dimension 2($n-2$). This has a complex structure and X_{u} is two copies of the Hermitian symmetric space of $\mathrm{SO}(n-2,2)$.
For $n=3, \mathrm{SO}(1,2) \cong \mathrm{PGL} \mathrm{L}_{2}(\mathbb{R})$ and X_{u} can be identified with the upper and lower half planes.

Following Deligne, a Shimura variety S_{M} is associated to a reductive group G over \mathbb{Q}, an open compact subgroup $M \subset G\left(\mathbb{A}^{f}\right)$, and a distinguished conjugacy class X of homomorphisms

$$
h: \operatorname{Res}_{\mathbb{C} / \mathbb{R}} \mathbb{G}_{m} \rightarrow G_{\mathbb{R}}
$$

which has three weights on the Lie algebra.
Each connected component X^{+}is a Hermitian symmetric space and as a complex analytic orbifold

$$
S_{M}(\mathbb{C})=G(\mathbb{Q}) \backslash X \times G\left(\mathbb{A}^{f}\right) / M=\cup \Gamma_{g} \backslash X^{+} .
$$

- S_{M} is a complex variety, which has a canonical model over a subfield $E \hookrightarrow \mathbb{C}$, which has finite degree over \mathbb{Q}. (The components of S_{M} are defined over an abelian extension of E.)
- If we choose a different embedding of E into \mathbb{C}, the complex points of S_{M} can be described using different Deligne data $\left(G^{\prime}, X^{\prime}\right)$.

Let k be a totally real field.
Let V be an orthogonal space over k of dimension $n \geq 3$ with signature ($n-2,2$) over the real completion k_{u} and signature $(n, 0)$ over all other real completions of k.

$$
G=\operatorname{Res}_{k / \mathbb{Q}} S O(V) \quad G_{\mathbb{R}} \cong S O(n-2,2) \times K
$$

Then the conjugacy class X can be identified with the homogeneous space X_{u} of oriented, negative definite 2-planes W in the real orthogonal space $V \otimes k_{u}$.
In this case, S_{M} has dimension $n-2$. The canonical model of S_{M} is defined over k, embedded in $k_{u}=\mathbb{R} \hookrightarrow \mathbb{C}$ by the place u.

If we embed k into \mathbb{C} by a different real place w, the complex variety $S_{M}\left(\mathbb{C}_{W}\right)$ is a Shimura variety for a different orthogonal group $G^{\prime}=\operatorname{Res}_{k / \mathbb{Q}} S O\left(V^{\prime}\right)$.
The orthogonal space V^{\prime} over k has signature $(n-2,2)$ at k_{w} and signature ($n, 0$) at all other real completions. At all finite places, V^{\prime} is isomorphic to V.

In particular, $G\left(\mathbb{A}^{f}\right) \cong G^{\prime}\left(\mathbb{A}^{f}\right)$ and $M \subset G\left(\mathbb{A}^{f}\right)$ gives a subgroup M^{\prime} of $G^{\prime}\left(\mathbb{A}^{f}\right)$.
At the real place w we have

$$
S_{M}\left(\mathbb{C}_{w}\right)=G^{\prime}(\mathbb{Q}) \backslash X^{\prime} \times G^{\prime}\left(\mathbb{A}^{f}\right) / M^{\prime} .
$$

What determines the variety S_{M} over k, without choosing a real embedding?

The data $\left\{V_{v}\right\}$ of an incoherent definite orthogonal space.
At each real place u, the neighboring space $V(u)$ is used to describe the Shimura variety S_{M} over the completion $k_{u}=\mathbb{R} \hookrightarrow K_{u}=\mathbb{C}$.

Let $G(u)=\operatorname{SO}(V(u))$ and let X_{u} be the space of oriented, negative definite planes in $V(u)_{u}$. Then

$$
S_{M}\left(K_{u}\right)=G(u)(k) \backslash X_{u} \times G(u)\left(\mathbb{A}_{k}^{f}\right) / M .
$$

Can we use the neighboring orthogonal spaces $V(\mathfrak{p})$ at finite primes \mathfrak{p} of k to study the variety S_{M} over the completions k_{p} ?
We need an analog of the homogeneous space X_{u} of oriented, negative definite planes W. Note that W is isomorphic to \mathbb{C} with quadratic form given by -1 times the norm, and $w(W)=(-1,-1)=-1$.

Let \mathfrak{p} be a finite place of k (not dividing 2) where the discriminant d is a unit and where $w\left(V_{\mathfrak{p}}\right)=+1$.
Let $W=K_{\mathfrak{p}}$ be the unramified quadratic extension of $k_{\mathfrak{p}}$, with quadratic form given by $\pi_{\mathfrak{p}}$ times the norm. Then $d(W)$ is a unit and $w(W)=-1$.
An orientation of W is the choice of an isomorphism

$$
\mathrm{SO}(W) \cong \operatorname{Res}_{K_{p} / k_{p}}\left(\mathbb{G}_{m}\right) / \mathbb{G}_{m}
$$

The group $\mathrm{SO}\left(V(\mathfrak{p})_{\mathfrak{p}}\right)$ acts transitively on the set of oriented planes in $V(\mathfrak{p})_{\mathfrak{p}}$, with stabilizer isomorphic to $\mathrm{SO}(W) \times \mathrm{SO}\left(W^{\perp}\right)$.

One difference from the real case is that the stabilizer $\mathrm{SO}(W) \times \mathrm{SO}\left(W^{\perp}\right)$ is only compact when $\operatorname{dim} W^{\perp}=1$.
The orthogonal space W^{\perp} has unit discriminant and Witt invariant +1 . Hence there are integral lattices $L \subset W^{\perp}$ which are self-dual for the bilinear form. They form a single orbit for the group $\mathrm{SO}\left(W^{\perp}\right)$.
We let $X_{\mathfrak{p}}$ be the set of pairs (W, L), where $W \subset V(\mathfrak{p})_{\mathfrak{p}}$ is an oriented plane and L is a self-dual lattice in the orthogonal complement W^{\perp}.
The group $\mathrm{SO}\left(V(\mathfrak{p})_{\mathfrak{p}}\right)$ acts transitively on $X_{\mathfrak{p}}$, with compact stabilizer isomorphic to $\mathrm{SO}(W) \times \mathrm{SO}(L)$.
This stabilizer is contained in a unique maximal compact subgroup, which we will now describe.

Let e be a vector in W with $q(e)=\pi_{\mathfrak{p}}$, and let $A_{\mathfrak{p}}$ be the ring of integers in K_{p}.
Then $A_{p} . e$ is the unique maximal integral lattice in W and $\Lambda=A_{\mathfrak{p}} \cdot e+L$ is a maximal lattice in $V(\mathfrak{p})_{\mathfrak{p}}$, whose stabilizer is a maximal compact subgroup.
The subgroup (of index 2) which stabilizes the maximal integral lattice $\Lambda=A_{p} . e+L$ and preserves an orientation of its discriminant lattice Λ^{*} / Λ is a maximal parahoric subgroup.

Let Y_{p} be the homogenous space of maximal integral lattices in $V(\mathfrak{p})_{\mathfrak{p}}$ together with an orientation of the discriminant lattice, and let $\phi: X_{p} \rightarrow Y_{p}$ be the equivariant covering map, taking the pair (W, L) to the maximal lattice $\Lambda=A_{\mathfrak{p}} \cdot e+L$.

The fibers of $\phi: X_{\mathfrak{p}} \rightarrow Y_{\mathfrak{p}}$ can be identified with open unit polydiscs of dimension $n-2$ over A_{p}.

With these two analogs of the Hermitian symmetric space, we can return to the Shimura variety S_{M} over k. We wish to parametrize some points over the quadratic extension $K_{\mathfrak{p}}$ of the completion k_{p}.

Assume that M has the form $M=M_{\mathfrak{p}} \times M^{\mathfrak{p}}$, with $M_{\mathfrak{p}}$ a hyperspecial maximal compact subgroup.
Then S_{M} has a (canonical) smooth model over the ring of integers of k_{p} with good reduction modulo \mathfrak{p}.

Let $G(\mathfrak{p})=S O(V(\mathfrak{p}))$ and consider the map
$\phi: G(\mathfrak{p})(k) \backslash X_{\mathfrak{p}} \times G(\mathfrak{p})\left(\mathbb{A}_{k}^{f, \mathfrak{p}}\right) / M^{\mathfrak{p}} \rightarrow G(\mathfrak{p})(k) \backslash Y_{\mathfrak{p}} \times G(\mathfrak{p})\left(\mathbb{A}_{k}^{f, \mathfrak{p}}\right) / M^{\mathfrak{p}}$
The target

$$
G(\mathfrak{p})(k) \backslash G(\mathfrak{p})\left(\mathbb{A}^{f}\right) / N_{\mathfrak{p}} \times M^{\mathfrak{p}}
$$

is a finite set, which parametrizes the special supersingular points on S_{M} modulo \mathfrak{p}.

These points are all rational over the quadratic extension $F_{\mathfrak{p}^{2}}$ of the residue field F_{p}.
The source has the structure of an A_{p}-orbifold of dimension $n-2$, which parametrizes the points of S_{M} over A_{p} which have special supersingular reduction modulo \mathfrak{p}.

In some cases when $k=\mathbb{Q}$ and $n \leq 21, S_{M}$ is the moduli space of polarized $K 3$ surfaces with level structure.
Artin introduced a stratification of the supersingular locus.
A K3 surface N in characteristic p is supersingular if

$$
\Lambda=H^{2}(N, W)^{\phi=p}
$$

is a \mathbb{Z}_{p} lattice of rank 22.
N is in the special supersingular locus when Λ^{*} / Λ is a non-split quadratic space of rank 2 over $\mathbb{Z} / p \mathbb{Z}$.

$$
\phi: G(\mathfrak{p})(k) \backslash X_{\mathfrak{p}} \times G(\mathfrak{p})\left(\mathbb{A}_{k}^{f, \mathfrak{p}}\right) / M^{\mathfrak{p}} \rightarrow G(\mathfrak{p})(k) \backslash Y_{\mathfrak{p}} \times G(\mathfrak{p})\left(\mathbb{A}_{k}^{f, \mathfrak{p}}\right) / M^{\mathfrak{p}}
$$

For proofs of these statements, see:
Haining Wang, "On the superspecial loci of orthogonal type Shimura varieties", ArXiv 1911.12283
Benjamin Howard and Georgios Pappas, "Rapoport-Zink spaces for spinor groups", Compositio 153 (2017)

Mark Kisin, "Integral models for Shimura varieties of abelian type", JAMS 23 (2010).

Pierre Deligne et alia, "Hodge cycles, motives, and Shimura varieties". Springer LNM 900 (1982).

Thank you.

