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In the first half of this talk, I will review the theory of quadratic
forms over number fields (Hilbert, Minkowski, Hasse, Witt, ....).

I will use this to define an incoherent definite orthogonal space.

In the second half of the talk, I will show how incoherent definite
spaces can be used to study orthogonal Shimura varieties.



Let k be a field, not of characteristic 2.

An orthogonal space V over k is a finite dimensional vector
space equipped with a non-degenerate symmetric bilinear form

〈, 〉 : V × V → k .

Non-degenerate means that the linear map V → V ∗ defined by
v → fv (w) = 〈v ,w〉 is an isomorphism.

We obtain a quadratic form q : V → k defined by

q(v) = 〈v , v〉/2 〈v ,w〉 = q(v + w)− q(v)− q(w).

There is an orthogonal basis {v1, v2, . . . , vn} of V .

Let ai = q(vi), then ai 6= 0 and

q(
∑

xivi) =
∑

ai .x2
i .

.



We say two orthogonal spaces V and W over k are isomorphic
if there is a linear isomorphism T : V →W which satisfies
qW (Tv) = qV (v).

Writing q ∼
∑

ai .x2
i we define three invariants.

I the dimension n = dim(V ).
I the determinant

d(V ) = a1.a2...an ∈ k∗/k∗2 = H1(k , µ2).

I the Witt invariant

w(V ) =
∏
i<j

ai ∪ aj ∈ Br2(k) = H2(k , µ2).

If k is the reals or a p-adic field, then Br2(k) = 〈±1〉. The cup
product a∪ b is given by the Hilbert symbol (a,b), which is +1 if
the quadratic form ax2 + by2− z2 represents zero and −1 if not.



When k = C, the space V is determined up to isomorphism by
its dimension.

d(V ) ≡ 1 w(V ) = 1.

When k = R, there is an orthogonal basis with q(vi) = ±1, and
the space V is determined up to isomorphism by its signature
(r , s).

dim(V ) = r + s d(V ) ≡ (−1)s w(V ) = (−1)s(s−1)/2.

When k is a p-adic field, the space V is determined up to
isomorphism by dim(V ),d(V ), and w(V ).

All possible invariants occur once dim(V ) ≥ 3.



If k is a number field, the Hasse-Minkowski theorem states that
an orthogonal space V over k is determined up to isomorphism
by its localizations Vv = V ⊗ kv .

The local invariants satisfy
I dim(Vv ) = n
I dv (Vv ) ≡ d ∈ k∗/k∗2

I wv (Vv ) = +1 for almost all v and
∏

v wv (Vv ) = +1.
Finally, the invariants dv and wv are trivial at each complex
place, and determined by the signature (rv , sv ) at each real
place.

When dim(V ) ≥ 3, these are the only restrictions on the local
invariants.



In fact, for a and b in k∗, the local Hilbert symbols satisfy∏
v

(a,b)v = +1.

When k = Q, this is Hilbert’s restatement of the law of
quadratic reciprocity.

if p and q are distinct odd primes, then

(p,q)p =

(
q
p

)
(p,q)q =

(
p
q

)
(p,q)2 = +1

unless p ≡ q ≡ 3 (mod 4) when (p,q)2 = −1. Finally

(p,q)v = +1

at all other places v .



We say that the local orthogonal data {Vv} for k is incoherent
if the local invariants satisfy

I dim(Vv ) = n
I d(Vv ) ≡ d ∈ k∗/k∗2

I wv (Vv ) = +1 for almost all v and
∏

v wv (Vv ) = −1.

There is no orthogonal space over k with this local data.

When k is a totally real number field, we say the incoherent
data is definite if the spaces Vv are positive definite at all real
places v .

Then the locally compact group
∏′ SO(Vv ) has open compact

subgroups (but perhaps no discrete co-compact subgroup).



Lett {Vv} be incoherent definite data for k , of dimension n ≥ 3
and determinant d ∈ k∗+/k∗2.

For each place u of k , we will define a global orthogonal space
V (u) of dimension n and determinant d , up to isomorphism
over k .

To do this, we insist that:

I The localization of V (u) at the place v is isomorphic to Vv ,
for all places v 6= u.

I The Witt invariant of V (u) at the place u is the negative of
the Witt invariant of Vu.

I If u is a real place, the signature of V (u) at the place u is
(n − 2,2).

The product of Witt invariants is now +1, so a global space with
these invariants exists, and is unique up to isomorphism.



We call the global spaces V (u), for each place u, the
neighbors of the incoherent definite data {Vv}.

V (u) is unique up to isomorphism over k , but not up to a
unique isomorphism.

We can’t speak of a vector or a subspace of V (u), but we can
consider an orbit of subspaces under the orthogonal group.

For example, when u is a real place the local orthogonal space
V (u)u has signature (n − 2,2). We can consider the set of
negative definite planes W ⊂ V (u)u

They form a single orbit under the orthogonal group, by Witt’s
extension theorem, and W⊥ is positive definite.



An orientation of the negative definite plane W is a choice of
an isomorphism of one dimensional tori

SO(W ) ∼= ResC/R(Gm)/Gm.

The real group SO(V (u)u) ∼= SO(n − 2,2) acts transitively on
the space Xu of oriented negative definite planes W ⊂ V (u)u,
and the stabilizer of W is the compact subgroup
SO(W )× SO(W⊥).

The tangent space to Xu at W is the orthogonal representation
W ⊗W⊥ of dimension 2(n − 2). This has a complex structure
and Xu is two copies of the Hermitian symmetric space of
SO(n − 2,2).

For n = 3, SO(1,2) ∼= PGL2(R) and Xu can be identified with
the upper and lower half planes.



Following Deligne, a Shimura variety SM is associated to a
reductive group G over Q, an open compact subgroup
M ⊂ G(Af ), and a distinguished conjugacy class X of
homomorphisms

h : ResC/RGm → GR

which has three weights on the Lie algebra.

Each connected component X+ is a Hermitian symmetric
space and as a complex analytic orbifold

SM(C) = G(Q)\X ×G(Af )/M = ∪ Γg\X+.

I SM is a complex variety, which has a canonical model over
a subfield E ↪→ C, which has finite degree over Q. (The
components of SM are defined over an abelian extension
of E .)

I If we choose a different embedding of E into C , the
complex points of SM can be described using different
Deligne data (G′,X ′).



Let k be a totally real field.

Let V be an orthogonal space over k of dimension n ≥ 3 with
signature (n − 2,2) over the real completion ku and signature
(n,0) over all other real completions of k .

G = Resk/Q SO(V ) GR ∼= SO(n − 2,2)× K .

Then the conjugacy class X can be identified with the
homogeneous space Xu of oriented, negative definite 2-planes
W in the real orthogonal space V ⊗ ku.

In this case, SM has dimension n − 2. The canonical model of
SM is defined over k , embedded in ku = R ↪→ C by the place u.



If we embed k into C by a different real place w , the complex
variety SM(Cw ) is a Shimura variety for a different orthogonal
group G′ = Resk/Q SO(V ′).

The orthogonal space V ′ over k has signature (n − 2,2) at kw
and signature (n,0) at all other real completions. At all finite
places, V ′ is isomorphic to V .

In particular, G(Af ) ∼= G′(Af ) and M ⊂ G(Af ) gives a subgroup
M ′ of G′(Af ).

At the real place w we have

SM(Cw ) = G′(Q)\X ′ ×G′(Af )/M ′.

What determines the variety SM over k , without choosing a
real embedding?



The data {Vv} of an incoherent definite orthogonal space.

At each real place u, the neighboring space V (u) is used to
describe the Shimura variety SM over the completion
ku = R ↪→ Ku = C.

Let G(u) = SO(V (u)) and let Xu be the space of oriented,
negative definite planes in V (u)u. Then

SM(Ku) = G(u)(k)\Xu ×G(u)(Af
k )/M.

Can we use the neighboring orthogonal spaces V (p) at finite
primes p of k to study the variety SM over the completions kp?

We need an analog of the homogeneous space Xu of oriented,
negative definite planes W . Note that W is isomorphic to C
with quadratic form given by −1 times the norm, and
w(W ) = (−1,−1) = −1.



Let p be a finite place of k (not dividing 2) where the
discriminant d is a unit and where w(Vp) = +1.

Let W = Kp be the unramified quadratic extension of kp, with
quadratic form given by πp times the norm. Then d(W ) is a unit
and w(W ) = −1.

An orientation of W is the choice of an isomorphism

SO(W ) ∼= ResKp/kp(Gm)/Gm.

The group SO(V (p)p) acts transitively on the set of oriented
planes in V (p)p, with stabilizer isomorphic to SO(W )×SO(W⊥).



One difference from the real case is that the stabilizer
SO(W )× SO(W⊥) is only compact when dim W⊥ = 1.

The orthogonal space W⊥ has unit discriminant and Witt
invariant +1. Hence there are integral lattices L ⊂W⊥ which
are self-dual for the bilinear form. They form a single orbit for
the group SO(W⊥).

We let Xp be the set of pairs (W ,L), where W ⊂ V (p)p is an
oriented plane and L is a self-dual lattice in the orthogonal
complement W⊥.

The group SO(V (p)p) acts transitively on Xp, with compact
stabilizer isomorphic to SO(W )× SO(L).

This stabilizer is contained in a unique maximal compact
subgroup, which we will now describe.



Let e be a vector in W with q(e) = πp, and let Ap be the ring of
integers in Kp.

Then Ap.e is the unique maximal integral lattice in W and
Λ = Ap.e + L is a maximal lattice in V (p)p, whose stabilizer is a
maximal compact subgroup.

The subgroup (of index 2) which stabilizes the maximal integral
lattice Λ = Ap.e + L and preserves an orientation of its
discriminant lattice Λ∗/Λ is a maximal parahoric subgroup.

Let Yp be the homogenous space of maximal integral lattices in
V (p)p together with an orientation of the discriminant lattice,
and let φ : Xp → Yp be the equivariant covering map, taking the
pair (W ,L) to the maximal lattice Λ = Ap.e + L.



The fibers of φ : Xp → Yp can be identified with open unit
polydiscs of dimension n − 2 over Ap.

With these two analogs of the Hermitian symmetric space, we
can return to the Shimura variety SM over k . We wish to
parametrize some points over the quadratic extension Kp of the
completion kp.

Assume that M has the form M = Mp ×Mp, with Mp a
hyperspecial maximal compact subgroup.

Then SM has a (canonical) smooth model over the ring of
integers of kp with good reduction modulo p.



Let G(p) = SO(V (p)) and consider the map

φ : G(p)(k)\Xp ×G(p)(Af ,p
k )/Mp → G(p)(k)\Yp ×G(p)(Af ,p

k )/Mp

The target
G(p)(k)\G(p)(Af )/Np ×Mp

is a finite set, which parametrizes the special supersingular
points on SM modulo p.

These points are all rational over the quadratic extension Fp2 of
the residue field Fp.

The source has the structure of an Ap-orbifold of dimension
n − 2, which parametrizes the points of SM over Ap which have
special supersingular reduction modulo p.



In some cases when k = Q and n ≤ 21, SM is the moduli space
of polarized K 3 surfaces with level structure.

Artin introduced a stratification of the supersingular locus.

A K 3 surface N in characteristic p is supersingular if

Λ = H2(N,W )φ=p

is a Zp lattice of rank 22.

N is in the special supersingular locus when Λ∗/Λ is a non-split
quadratic space of rank 2 over Z/pZ.



φ : G(p)(k)\Xp ×G(p)(Af ,p
k )/Mp → G(p)(k)\Yp ×G(p)(Af ,p

k )/Mp
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Thank you.


