On the Kottwitz conjecture for local shtuka spaces

David Hansen

MPIM Bonn

November 10, 2021

Introduction

Recall: A **Shimura datum** is (roughly) a pair (G, X) where G/\mathbb{Q} is a connected reductive group and $X \simeq G(\mathbb{R})/K_{\infty}$ is a Hermitian symmetric domain.

Theorem (Baily-Borel, Shimura, Deligne, Borovoi, Milne)

Given (G,X) as above, and $K \subset G(\mathbf{A}_f)$ a sufficiently small open compact subgroup, the locally symmetric manifold

$$G(\mathbf{Q})\setminus (X\times G(\mathbf{A}_f))/K$$

is $\cong \operatorname{Sh}(G,X)_K(\mathbf{C})$ for a certain smooth quasiprojective algebraic variety $\operatorname{Sh}(G,X)_K$ defined over a number field E=E(G,X).

 \leadsto Get a tower $\{\operatorname{Sh}(G,X)_K\}_K$ with $G(\mathbf{A}_f)$ -action. When $(G,X)=(\operatorname{GL}_2,\mathfrak{H}^\pm)$, this is the usual tower of modular curves.

Introduction (cont.)

Shimura varieties give a wonderful tool/playground for working out ideas in arithmetic geometry and the Langlands program. Some particular instances of this:

- $\mathrm{Sh}(G,X)_K$ can often (but not always!) be interpreted as a moduli space of abelian varieties w. extra structures. (~"Shimura varieties of Hodge type.") \leadsto Canonical integral models / $\mathfrak{O}_E[1/N]$ (Katz-Mazur, Kottwitz, Kisin, ...) w. concrete description of their mod p points (Langlands-Rapoport, Kisin), canonical compactifications (Faltings-Chai, Lan, Madapusi Pera, ...), etc.
- $\lim_{K\to 1} H_{\operatorname{\acute{e}t}}^*(\operatorname{Sh}(G,X)_{K,\overline{E}},\overline{\mathbf{Q}_\ell})$ has commuting $G(\mathbf{A}_f)$ and $\operatorname{Gal}(\overline{E}/E)$ -actions. \leadsto Construction of Galois representations associated with automorphic forms in many instances. (Huge industry; cf. recent work of Kret-Shin for interesting examples involving a Shimura variety *not* of Hodge type.)

Question: Is there a local analogue of Shimura varieties?

Local Shimura varieties

Fix a prime p and a finite extension F/\mathbf{Q}_p with residue field \mathbf{F}_q . Set $\check{F} = \widehat{F^{\mathrm{unr}}} \circlearrowleft \sigma = \mathrm{lift}$ of $x \mapsto x^q$.

Definition (Rapoport-Viehmann)

A local Shimura datum is a triple $(G, \{\mu\}, b)$ where G/F is a connected reductive group, $\{\mu\}$ is a conjugacy class of minuscule cocharacters $\mathbf{G}_{m,\overline{F}} \to G_{\overline{F}}$, and $b \in G(\widecheck{F})$ is an element such that $b \in B(G, \mu)$.

(Can and do fix $\mu \in \{\mu\}$ defined over a minimal fin. extension $E = E(G, \{\mu\})/F$; ignore difference between μ and $\{\mu\}$. Set $\breve{E} = E.\breve{F}$.)

Example (Key example)

Take
$$F = \mathbf{Q}_p$$
, $G = \operatorname{GL}_n$, $\mu(z) = \operatorname{diag}(\underbrace{z, \ldots, z}_d, 1, \ldots, 1)$ for some

 $1 \le d < n$, b any element of $\mathrm{GL}_n(\mathbf{Q}_p)$ with characteristic polynomial $X^n - p^d$.

Conjecture (Rapoport-Viehmann)

Given $(G, \{\mu\}, b)$ as above, should have a natural tower of smooth rigid analytic spaces $\{\mathcal{M}_K = \mathcal{M}(G, \{\mu\}, b)_K\}_K$ over \check{E} , indexed by open compact $K \subset G(F)$, equipped with commuting actions of G(F) (on the whole tower) and $G_b(F) := \{j \in G(\check{F}) \mid \sigma(j) = bjb^{-1}\}$ (on each \mathcal{M}_K). Moreover,...

- $\mathcal{M}(G, \{\mu\}, b)_K$ should often (but not always!) coincide with the generic fiber of a formal scheme (a "Rapoport-Zink space") parametrizing p-divisible groups w./w.o. extra structures. Works for $G = \operatorname{GL}_n$, GSpin_n ... Doesn't work if e.g. $G = \operatorname{PGL}_n$, E_7 .
- Should have a canonical (non-effective) descent datum to $E \leadsto \lim_{K \to 1} H^*_{c,\text{\'et}}(\mathfrak{M}_{K,\overline{E}},\overline{\mathbf{Q}_\ell})$ has commuting G(F)-, $G_b(F)$ -, and W_F -actions.
- (Many more.)

Local Shimura varieties (cont'd)

Theorem (Scholze ∼late 2014, via Caraiani-Scholze, Fargues & Fargues-Fontaine, Kedlaya-Liu, Scholze-Weinstein)

Local Shimura varieties exist with all expected properties, as the solution to a natural moduli problem determined by the datum (G, μ, b) . In fact, they exist in the larger category of diamonds for any μ , and even for more general input data $(G, \{\mu_i\}_{1 \leq i \leq n}, b)$, in which case the resulting spaces live over "n copies of $\operatorname{Spa}(E)$ " in a precise sense.

This last construction is in parallel with the moduli spaces of local/global shtukas defined in equal characteristic p settings (Drinfeld, Varshavsky, Lafforgue, ...), which fiber over some finite self-product of copies of the base (which is either $\operatorname{Spec} \mathbf{F}_q((t))$ or a projective curve over \mathbf{F}_q). \leadsto Fargues-Scholze: Combining this with ideas of V. Lafforgue, get a construction associating a semisimple L-parameter with any irreducible smooth representation of any G(F), giving a candidate for the local Langlands correspondence.

Rough idea of construction

Fix (G, μ, b) as before, with E the field of def. of μ . Let C/\breve{E} be any complete algebraically closed extension. Let's unwind

$$\mathfrak{M}_{\infty}(C) \stackrel{\mathit{def}}{=} \lim_{\stackrel{\leftarrow}{\kappa}} \mathfrak{M}_{\kappa}(C).$$

Fargues-Fontaine: Any such $C \leadsto$ a certain "curve" $X = X_{C^{\flat},F}$ (a connected reg. Noeth. 1-dim'l scheme over $\operatorname{Spec} F$) together with a distinguished closed point $\infty \in X$ such that $\kappa(\infty) \cong C$.

Fargues: Any $b \in G(\check{F}) \rightsquigarrow$ a G-bundle \mathcal{E}_b over X, with $\operatorname{Aut}(\mathcal{E}_b) \supset G_b(F)$ (and sometimes with equality; in particular, $A_{\operatorname{aut}}(\mathcal{E}_b) \simeq G(F)$)

 $\operatorname{Aut}(\mathcal{E}_1) \cong G(F)$).

Idea

 $\mathcal{M}_{\infty}(C) = \{ \text{modifications } \mathcal{E}_1 \to \mathcal{E}_b \text{ supported at } \infty, \text{ of type } \mu \}, \text{ with the natural group actions on the r.h.s.}$

Can define a functor \mathcal{M}_{∞} representing essentially the same moduli problem on more general perfectoid spaces over \check{E} ; this turns out to be a diamond, and $\mathcal{M}_{K} \stackrel{def}{=} \mathcal{M}_{\infty}/K$ is a diamond too.

Some misc. remarks

- In the case of RZ spaces, Scholze-Weinstein had already reinterpreted their generic fibers in this language of modified vector bundles in 2012.
- For minuscule μ , not yet known in general whether \mathcal{M}_{∞} is representable by a perfectoid space. (True in situations related to RZ spaces, by Scholze-Weinstein, W. Kim,...)
- Local and global Shimura varieties are related by suitable uniformization isomorphisms: suitable pieces of global Shimura varieties should be uniformized by (quotients of) local Shimura varieties. Provably true in many cases (Rapoport-Zink, W. Kim, Howard-Pappas, Shen,...).

Expectations for cohomology

Fix (G, μ, b) . Want to decompose the cohomology $R\Gamma_c(\mathfrak{M}(G, \mu, b)_{\infty, \overline{E}}, \overline{\mathbf{Q}_\ell})$ representation-theoretically under the natural $G(F) \times G_b(F) \times W_E$ -action.

First problem: This object is too big to be studied meaningfully. (Too big = not admissible as a $G(F) \times G_b(F)$ -representation.)

Solution: Given (G, μ, b) , fix an admissible smooth $G_b(F)$ -representation ρ , and consider

$$H_c^i(G,\mu,b)[\rho] = H^i(R\Gamma_c(\mathfrak{M}_{\infty,\overline{E}},\overline{\mathbf{Q}_\ell}) \otimes^{\mathbf{L}}_{\mathfrak{H}(G_b(F))} \rho).$$

Still a $G(F) \times W_E$ -representation.

Theorem (Fargues-Scholze)

If ρ is admissible, then $H^i_c(G,\mu,b)[\rho]$ is an admissible G(F)-representation, and $H^i_c(G,\mu,b)[\rho]=0$ unless $0 \le i \le 2\dim \mathcal{M}(G,\mu,b)_K$.

Can we describe these groups?

Expectations for cohomology, cont'd

Two key conjectures (stated roughly):

• Kottwitz: Suppose b is "basic" (\iff G_b is an inner form of G). Let ρ be an irreducible smooth rep. of $G_b(F)$. Then

$$\rho \leadsto \mathcal{H}(G,\mu,b)[\rho] \stackrel{\mathsf{def}}{=} \sum_{i\geq 0} (-1)^i H_c^i(G,\mu,b)[\rho]$$

encodes the refined local Langlands correspondences for supercuspidal L-packets of G(F) and $G_b(F)$.

• Harris, Harris-Viehmann: Suppose b is not basic. Then

$$\mathcal{H}(G,\mu,b)[\rho] \simeq \bigoplus_{i \in I} \pm \operatorname{Ind}_{P_i(F)}^{G(F)} \mathcal{H}(M_i,\mu_i,b)[\rho]$$

for some explicit finite list of local Shimura data (M_i, μ_i, b) assoc. with Levi subgroups of G. In particular, no supercuspidal G(F)-reps should appear.

Key example of the Kottwitz conjecture

Take
$$F = \mathbf{Q}_p$$
, $G = \mathrm{GL}_n$, $\mu(z) = \mathrm{diag}(\underbrace{z, \ldots, z}_d, 1, \ldots, 1)$ for some

 $1 \leq d < n$, b any element with characteristic polynomial $X^n - p^d$. Then $G_b(\mathbf{Q}_p) = A^\times$, A/\mathbf{Q}_p central simple algebra of rank n^2 and Hasse invariant d/n. Jacquet-Langlands, Deligne-Kazhdan-Vignéras, Rogawski: Any supercuspidal representation π of $\mathrm{GL}_n(\mathbf{Q}_p)$ has a canonical transfer to a representation ρ_π of A^\times .

Conjecture (Kottwitz conjecture)

In this setup, should have $\mathfrak{H}(G,\mu,b)[\rho_{\pi}] \simeq \pm \pi \boxtimes \operatorname{sym}^d(\varphi_{\pi})$.

Here $\varphi_{\pi}:W_{\mathbf{Q}_p}\to \mathrm{GL}_n(\overline{\mathbf{Q}_{\ell}})$ is the L-parameter associated with π by local Langlands correspondence.

Proved for d=1 by Harris-Taylor in their work on local Langlands; proved for arbitrary d by Fargues and Shin.

Today: First general results towards the Kottwitz conjecture.

Interlude: Local Langlands correspondence

Setup: Fix F/\mathbb{Q}_p a finite extension, G/F a connected reductive group, C an algebraically closed field of characteristic zero.

Expectation: There should be a "natural" finite-to-one map

$$\operatorname{Irr}_{\mathcal{C}}(G(F)) \to L - \operatorname{parameters} \varphi : W_F \to {}^LG(\mathcal{C})$$

with many good properties. Write $\Pi_{\varphi}(G)$ for the fiber of this map over a given φ .

The precise structure of the fibers should be governed by the group $S_{\varphi}=\operatorname{Cent}_{\widehat{G}}(\varphi)$ (or variants thereof).

Local Langlands correspondence cont'd

The group S_{φ} is a (possibly disconnected) reductive group, containing $Z(\hat{G})^{\Gamma_F}$ as a central subgroup.

Vague idea, redux: The structure of the packet $\Pi_{\varphi}(G)$ should be governed by the algebraic representations of S_{φ} .

Better idea (Vogan): Should try to parametrize **all** the packets $\Pi_{\varphi}(H)$ as H varies over inner forms of G.

Our next goal is to make this precise.

Isocrystal local Langlands correspondence

Set $B(G) = G(\check{F})/(b \sim gb\sigma(g)^{-1})$. Kottwitz's set of isocrystals with G-structure.

This comes with a natural subset $B(G)_{\rm bas}$ of basic elements, and there is a natural bijection

$$\kappa: B(G)_{\mathrm{bas}} \to X^*(Z(\hat{G})^{\Gamma_F}).$$

For any $b \in B(G)_{\mathrm{bas}}$, get an inner form G_b as before. **Refined local Langlands conjecture, "isocrystal form" (Kottwitz, Kaletha).** If G is quasisplit and φ is **supercuspidal**, then for every $b \in B(G)_{\mathrm{bas}}$, should have a natural bijection

$$\iota: \Pi_{\varphi}(G_b) \to \operatorname{Irr}(S_{\varphi}, \kappa(b)).$$

Here $\operatorname{Irr}(S_{\varphi}, \kappa(b))$ denotes the set of irreducible **algebraic** representations of S_{φ} whose restriction to $Z(\hat{G})^{\Gamma_F}$ is $\kappa(b)$ -isotypic.

Example one: $G = GL_n$

Let's take $G=\mathrm{GL}_n$. Then $\hat{G}=\mathrm{GL}_n$, and φ is supercuspidal iff it is irreducible. In this situation, get $S_{\varphi}=Z(\hat{G})^{\Gamma_F}=\mathbf{G}_m$. Hence

$$B(G)_{\mathrm{bas}} \cong X^*(Z(\hat{G})^{\Gamma_F}) \cong \mathbf{Z}.$$

Concretely, if $\kappa(b) = d$, then $G_b(F) = A^{\times}$, A/F the central simple algebra of rank n^2 and Hasse invariant $d/n \mod 1$. (So G_b depends only on $d \mod n$.)

Refined LLC then boils down to the expectation that each $\Pi_{\varphi}(G_b)$ is a singleton. This is known; moreover, the elements of these packets are "Jacquet-Langlands transfers" of each other (Jacquet-Langlands, Deligne-Kazhdan-Vignéras, Rogawski).

Example two: $G = GSp_4$

Now take $G = \mathrm{GSp}_4$. Then $\hat{G} = \mathrm{GSp}_4$ (accidentally!) and $Z(\hat{G})^{\Gamma_F} = \mathbf{G}_m$, so again

$$B(G)_{\mathrm{bas}} \cong X^*(Z(\hat{G})^{\Gamma_F}) \cong \mathbf{Z}.$$

Concretely, if $\kappa(b)=d$, then G_b depends only on the parity of d: get GSp_4 if d is even, and $J=\mathrm{GU}_2(D)$ (unique inner form!) if d is odd. But now it gets interesting: if φ is supercuspidal, can look at $\mathrm{std}\circ\varphi:W_F\to\mathrm{GL}_4$. It turns out that one of two things can happen:

- std $\circ \varphi$ is irreducible. Then $S_{\varphi} = \mathbf{G}_m$, and $\Pi_{\varphi}(G)$ and $\Pi_{\varphi}(J)$ are singletons.
- std $\varphi \simeq \varphi_1 \oplus \varphi_2$ with φ_i two-dimensional, distinct and irreducible (and with equal determinants). Then S_{φ} is disconnected with neutral component \mathbf{G}_m of index two. Both $\Pi_{\varphi}(G)$ and $\Pi_{\varphi}(J)$ contain **two** elements.

Kottwitz conjecture: setup

Fix a local Shimura datum (G, μ, b) as before, with b basic. For any $\rho \in \operatorname{Irr}_{\overline{\mathbf{Q}_{\ell}}}(G_b(F))$, consider the virtual $G(F) \times W_E$ representation

$$\mathcal{H}(G,\mu,b)[\rho] \stackrel{\text{def}}{=} \sum_{i\geq 0} (-1)^i H_c^i(G,\mu,b)[\rho].$$

How to describe this explicitly?

First observation: From μ , get an algebraic representation $r_{\mu}: {}^{L}G \to \operatorname{GL}_{m}$. For any L-parameter φ , the composition $r_{\mu} \circ \varphi|_{W_{E}}$ is a representation of $W_{F} \times S_{\omega}$ (think about def. of S_{ω}).

Second observation: From refined LLC, given any $\pi \in \Pi_{\varphi}(G)$ and $\rho \in \Pi_{\varphi}(G_b)$, can extract an algebraic representation $\delta_{\pi,\rho}$ of S_{φ} which measures the "relative positions" of π and ρ . For G quasisplit this is given by $\iota(\pi) \otimes \iota(\rho)^{\vee}$, but there is a general recipe.

Kottwitz conjecture: statement

Conjecture (Kottwitz)

Fix a basic local Shimura datum (G, μ, b) and a supercuspidal L-parameter $\varphi: W_F \to {}^L G(\overline{\mathbf{Q}_\ell})$. Let $\rho \in \Pi_{\varphi}(G_b)$ be any element. Then

$$\mathcal{H}(G,\mu,b)[\rho] = (-1)^{\langle 2\rho,\mu\rangle} \sum_{\pi \in \Pi_{\wp}(G)} \pi \boxtimes \operatorname{Hom}_{S_{\wp}}(\delta_{\pi,\rho}, r_{\mu} \circ \varphi|_{W_{\mathcal{E}}})$$

as virtual $G(F) \times W_E$ representations.

Strictly speaking, I am ignoring a Tate twist.

Weakened Kottwitz conjecture: statement

If we ignore the Weil group action on the cohomology, the statement becomes simpler.

Conjecture (Kottwitz)

Fix a basic local Shimura datum (G, μ, b) and a supercuspidal L-parameter $\varphi: W_F \to {}^LG(\overline{\mathbf{Q}_\ell})$. Let $\rho \in \Pi_{\varphi}(G_b)$ be any element. Then

$$\mathcal{H}(G,\mu,b)[\rho] = (-1)^{\langle 2\rho,\mu\rangle} \sum_{\pi \in \Pi_{\omega}(G)} [\dim \operatorname{Hom}_{S_{\varphi}}(\delta_{\pi,\rho},r_{\mu})] \pi$$

as virtual G(F) representations.

The full Kottwitz conjecture is only known in a handful of situations:

- The Lubin-Tate/Drinfeld towers (Harris-Taylor)
- Local Shimura varieties of "unramified EL" type (Fargues, Shin)
- Some unitary local Shimura varieties of "unramified PEL" type (Bertoloni-Meli–Nguyen)

All of these works rely crucially on **global** methods (comparison with cohomology of global Shimura varieties). For the weakened Kottwitz conjecture, purely **local** methods can be brought to bear.

Main theorem

Theorem (H.-Kaletha-Weinstein)

Fix a basic local Shimura datum (G, μ, b) and a supercuspidal L-parameter $\varphi : W_F \to {}^L G(\overline{\mathbf{Q}_\ell})$. Let $\rho \in \Pi_{\varphi}(G_b)$ be any element. Then

$$\mathcal{H}(G,\mu,b)[\rho] = (-1)^{\langle 2\rho,\mu\rangle} \sum_{\pi \in \Pi_{\varphi}(G)} [\dim \mathrm{Hom}_{S_{\varphi}}(\delta_{\pi,\rho},r_{\mu})] \pi + \mathrm{err}$$

as virtual G(F) representations, where err is a non-elliptic virtual representation.

Recall that a regular semisimple element $g \in G(F)$ is elliptic if the torus $\operatorname{Cent}_G(g)/Z(G)$ is anisotropic. A virtual representation is non-elliptic if its Harish-Chandra character vanishes on all elliptic elements.

Here we assume a certain refined form of LLC due to Kaletha. **Assuming** a certain compatibility between this and the Fargues-Scholze construction of L-parameters, we can also show that err = 0 as expected.

Commentary

- We actually prove a more general result, for general moduli of local shtukas (no restriction on μ). Here one essentially needs to take **intersection cohomology** in the definition of $\mathcal{H}(G,\mu,b)[\rho]$.
- We also prove a result for more general **discrete** *L*-parameters. Here the error term can definitely be nonzero!
- The key idea, of using the Lefschetz trace formula in some form, goes back to a (literal) dream of Harris in the early 90s.
- There are previous results of Faltings (for GL_2), Strauch (for GL_n), and Mieda (for GSp_4), also using trace formula methods. However, our implementation of this idea is totally different, and uses the full force of "modern" p-adic geometry a la Scholze.

Proof sketch

Key idea: Define an **explicit** operator

 $T_{b,\mu}^{G_b \to G} : C(G_b(F)_{ell}//G_b(F), \overline{\mathbf{Q}_\ell}) \to C(G(F)_{ell}//G(F), \overline{\mathbf{Q}_\ell})$, and then prove two separate claims.

Claim 1: There is an equality

$$T_{b,\mu}^{G_b o G}(\Theta_
ho)(g) = (-1)^{\langle 2
ho, \mu
angle} \sum_{\pi \in \Pi_\varphi(G)} [\dim \operatorname{Hom}_{\mathcal{S}_\varphi}(\delta_{\pi,
ho}, r_\mu)] \Theta_\pi(g)$$

for all elliptic g.

Claim 2: There is an equality

$$T_{b,\mu}^{G_b o G}(\Theta_
ho)(g)=\Theta_{\mathfrak{H}(G,\mu,b)[
ho]}(g)$$

for all elliptic g and any $\rho \in \operatorname{Irr}_{\overline{\mathbf{Q}_{e}}}(G_{b}(F))$.

These two claims immediately imply the theorem.

Proof sketch cont'd

Claim 1 follows from a direct (though subtle) analysis of the operator $T_{b,\mu}^{G_b \to G}$, using the **endoscopic character identities** in the refined LLC. Claim 2 follows from an application of the Lefschetz trace formula, together with a subtle continuity argument to reduce to the case where ρ admits a $\overline{\mathbf{Z}_{\ell}}$ -lattice. Some key inputs:

- Lu-Zheng's new point of view on the Lefschetz trace formula, via the symmetric monoidal 2-category of cohomological correspondences.
- The monumental work of Fargues-Scholze: $\mathcal{H}(G,\mu,b)[\rho]$ in terms of Hecke operators on the stack Bun_G , ULA sheaves in p-adic geometry, geometric Satake for the B_{dR} -affine Grassmannian,...
- Recent work of Varshavsky on local terms in the Lefschetz trace formula.

Introduction Cohomology Local Langlands correspondence Kottwitz conjecture Main result

Thank you for listening!