Notations:

F non orch bozal field with valuation rivy
$$\partial_F$$
 and residue field then
 $\breve{F} = \widehat{F}^{un}$ with valuation rivy ∂_F and residue field $k = \overline{F}_q$
 σ Frob morphism of \breve{F} over F.
G conn reductive gp /F. $I \subseteq G(\breve{F})$ σ -stable Invahri subgp.
 \widetilde{W} Invahri - Weyl gp.
Then $G(\breve{F}) = \coprod I \quad I \cong I$
 $If G is unvarified, (at $K \supset I$ be a hyperspecial paraheric subgp.
Then $G(\breve{F}) = \coprod K \amalg K.$
 J dominant$

Affine Flag variety
$$Fl = G(\tilde{E}) / I$$

Affine Given mannin $G_{Y} = G(\tilde{E}) / I.$
Def (Reprint) Let $b \in G(\tilde{E}), w \in \tilde{W}$, and μ dominant (if G unvarified)
 $X_{U}(b) = fgI \in Fl; g^{-1}b\sigma(g) \in IwI$?
 $ADLV$
 $X_{\mu}(b) = fgK \in G_{Y}; g^{-1}b\sigma(g) \in K \mu K$?
Rink. ADLV plays an important vole in the study of veduction of Shimura var.
Def (kothuit 2- Viehmann, Lusztig)
Let $\gamma \in G(\tilde{E})$ vegular semisivple, $w \in \tilde{W}$, μ dominant.
 $GASE$
 $Y_{\mu}(\gamma) = \{gK \in G_{Y}; g^{-1}\gamma g \in IwI\}$?
Rink. GASE excodes orbital integrals of spherical and Twabori Hecke functions.

H	13	ton	1

Problem	ADLV	GASF
Nonemptiness patter n	In Gr, Rapoport-Richarz '96, Kottwitz '03, Gashi 10 In Fl for basic b, Görtz-Haines-Kottritz-Remman 10 Görtz-HNie 15	In Gr fir split groups Kottovitz-Viehmann 12 Chi 19
Dimension for mulu	In Gr, Gövtz-Haines-Kottritz-Reuman & Viehmann '06 (Rapoport conjectue) Hamachen '15, X. Zhu '17. In FL, Gövtz-Haines-Kottritz-Reuman '10 conjectue basic b, H. '14 & '16. Norbasic H. '20 t	In Gr for split gps in equal char, Bouthier 'IS, Chi '19 Via global argument
Tvv Comp	In Gry. Chen-Zhu conjecture Zhou-Y.Zhu '20 & Nie '19+ HZhou-Zhu. Nie Congoing)	In Gr, Chi Confecture proved for split gps in equilation for split P.

My work in progress:
Motto: Information on ADLV + ASF (would affine Springer fiber)
boad orgument
To formation on GASF.
First step: How to motch [b] with Y?
Let G be a residually split gp over F (so that G acts trivially on
$$\tilde{W}$$
)
[b] $\in B(G) = G(\tilde{F})/S G(\tilde{F})$
H. $(1+)$
 $B(W) = [W/W]_{Str}$
 $H - Nie'2e$
Kottwitz'85
H. $Nie'14$
 $T_{1}(G)p \times X_{*}(T) = U$

where ce : Under a mild assumption on the residue char (might be removable)
(1)
$$Y_{\mu}(v) \neq \phi$$
 aff the Mazur's inequality is satisfied, i.e.
 $k(\mu) = k(v)$ and $v_{\nu} \leq \mu^{\circ}$. Here k is the kottritz map and
 v_{ν} is the Newton pt.
In this case, dim $Y_{\mu}(v) = \langle \mu, \rho \rangle + \frac{1}{2} (d(v) - c(v)),$
where $d(v)$ is the discriminant valuation of V, is val of det (Id-adv: $\vartheta(F)/g_{\nu}(F)^{\circ 2}$).
and $c(v) = \operatorname{rank}(G) - \operatorname{rank}_{F}(Z_{G}(v))$
(2) Let $w = \chi t^{\lambda w} y$ with χ, y is finite Weybyp, and $t^{\lambda w} y$ is in don charber.
If $\lambda_{w} \geq v_{\nu} + 2\rho^{\vee}$, then $Y_{\omega}(v) \neq \phi$ iff $k(w) = k(v), y \chi \in Wo$ has full support.
In this case, dim $Y_{\omega}(v) = \frac{1}{2} (U(w) + U(y) + d(v) - c(v^{\rho_{2}}))$
(3) If $Y_{\mu}(v) \neq \phi$, then \exists natural bijections
 $Z_{G}(v)^{\circ} \setminus \operatorname{Trr}^{\pm v} Y_{\mu}(v) = MV_{\mu}(\lambda_{G}(v)) \cong B_{\mu}(X_{G}(v))$
Here $\lambda_{G}(v)$ is the 'best integral approximation'' of v_{ν} .