What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

What is a unipotent representation?

Lucas Mason-Brown

December 2020

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Big unsolved problem (Gelfand)

Let G be a real reductive Lie group. Classify

 $Irr_u(G) = \{ irreducible unitary representations of G \}$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Big unsolved problem (Gelfand)

Let G be a real reductive Lie group. Classify

 $Irr_u(G) = \{ irreducible unitary representations of G \}$

Conjecture (Arthur, Vogan, Adams, Barbasch,...)

The classification of $Irr_u(G)$ should reduce to the classification of a small finite subset

$$\mathrm{Unip}(G)\subset\mathrm{Irr}_u(G)$$

RHS built out of LHS by *parabolic induction*. LHS indexed by *nilpotent orbits*.

Goals

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

- 1 Propose a definition of unipotent representations of a complex reductive group (geometric and case-free)
- Describe key properties of unipotent representations (unitarity, restriction to K, maximality of annihilators, etc.)
- 3 Define an enhancement of Barbasch-Vogan duality
- 4 Give a classification of unipotent representations
- Speculate about applications to real reductive groups?

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Let

 \mathbb{F}_q = finite field with q elements

 ${f G}=$ connected reductive algebraic group defined and split over ${\Bbb F}_q$

 $\mathbf{G}(\mathbb{F}_q)=\mathbb{F}_q$ -points of \mathbf{G}

 $\operatorname{Irr}_{fd}(\mathbf{G}(\mathbb{F}_q)) = \operatorname{irreducible}$ finite-dim reps of $\mathbf{G}(\mathbb{F}_q)$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Let

 \mathbb{F}_q = finite field with q elements

 ${f G}=$ connected reductive algebraic group defined and split over ${\Bbb F}_q$

 $\mathbf{G}(\mathbb{F}_q) = \mathbb{F}_q$ -points of \mathbf{G}

 $\operatorname{Irr}_{fd}(\mathbf{G}(\mathbb{F}_q))=$ irreducible finite-dim reps of $\mathbf{G}(\mathbb{F}_q)$

Problem

Determine $\operatorname{Irr}_{fd}(\mathbf{G}(\mathbb{F}_q))$ for arbitrary \mathbf{G} .

Problem solved completely by Lusztig in early 1980s.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Construction of representations:

- Choose a Fr-stable maximal torus $\mathbf{T} \subset \mathbf{G}$ and a character $\theta: \mathbf{T}(\mathbb{F}_q) \to \mathbb{C}^{\times}$.
- Deligne-Lusztig define a virtual representation $R_{\mathbf{T}}(\theta)$ of $\mathbf{G}(\mathbb{F}_q)$ (obtained as the ℓ -adic cohomology of associated 'Deligne-Lusztig' variety)

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Construction of representations:

- Choose a Fr-stable maximal torus $\mathbf{T} \subset \mathbf{G}$ and a character $\theta: \mathbf{T}(\mathbb{F}_q) \to \mathbb{C}^{\times}$.
- Deligne-Lusztig define a virtual representation $R_T(\theta)$ of $\mathbf{G}(\mathbb{F}_q)$ (obtained as the ℓ -adic cohomology of associated 'Deligne-Lusztig' variety)

Theorem (Deligne-Lusztig, 1976)

Every irreducible representation of $\mathbf{G}(\mathbb{F}_q)$ appears in some $R_{\mathbf{T}}(\theta)$. Most $R_{\mathbf{T}}(\theta)$ are irreducible.

Unipotent Representations of Finite Groups of Lie Type

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Definition (Deligne-Lusztig, 1976)

A unipotent representation of $\mathbf{G}(\mathbb{F}_q)$ is an irreducible representation appearing in some $R_{\mathbf{T}}(1)$. Write

$$\mathrm{Unip}(\mathbf{G}(\mathbb{F}_q))\subset\mathrm{Irr}_{fd}(\mathbf{G}(\mathbb{F}_q))$$

for the set of unipotent representations.

Unipotent Representations of Finite Groups of Lie Type

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Definition (Deligne-Lusztig, 1976)

A unipotent representation of $\mathbf{G}(\mathbb{F}_q)$ is an irreducible representation appearing in some $R_{\mathbf{T}}(1)$. Write

$$\mathrm{Unip}(\mathbf{G}(\mathbb{F}_q))\subset\mathrm{Irr}_{fd}(\mathbf{G}(\mathbb{F}_q))$$

for the set of unipotent representations.

Since there are finitely-many conjugacy classes of maximal tori $\mathbf{T}(\mathbb{F}_q) \subset \mathbf{G}(\mathbb{F}_q)$, there are finitely-many unipotent representations of $\mathbf{G}(\mathbb{F}_q)$.

Unipotent Representations of Finite Groups of Lie Type

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Definition (Deligne-Lusztig, 1976)

A unipotent representation of $\mathbf{G}(\mathbb{F}_q)$ is an irreducible representation appearing in some $R_{\mathbf{T}}(1)$. Write

$$\mathrm{Unip}(\mathbf{G}(\mathbb{F}_q))\subset\mathrm{Irr}_{fd}(\mathbf{G}(\mathbb{F}_q))$$

for the set of unipotent representations.

Since there are finitely-many conjugacy classes of maximal tori $\mathbf{T}(\mathbb{F}_q) \subset \mathbf{G}(\mathbb{F}_q)$, there are finitely-many unipotent representations of $\mathbf{G}(\mathbb{F}_q)$.

Theorem (Lusztig, 1984)

The classification of $\operatorname{Irr}_{fd}(\mathbf{G}(\mathbb{F}_q))$ reduces to the classification of $\operatorname{Unip}(\mathbf{G}(\mathbb{F}_q))$.

Classification of Unipotent Representations of Finite Groups of Lie Type

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Let G be the associated complex reductive algebraic group, and let G^{\vee} be the dual group.

Classification of Unipotent Representations of Finite Groups of Lie Type

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

- Let G be the associated complex reductive algebraic group, and let G^{\vee} be the dual group.
- If $\mathcal{O}^{\vee} \subset \mathcal{N}^{\vee}$ is a *special* nilpotent orbit, there is a canonically defined quotient group

$$\pi_1^{G^\vee}(\mathcal{O}^\vee) \twoheadrightarrow \overline{A}(\mathcal{O}^\vee)$$

Classification of Unipotent Representations of Finite Groups of Lie Type

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

- Let G be the associated complex reductive algebraic group, and let G^{\vee} be the dual group.
- If $\mathcal{O}^{\vee} \subset \mathcal{N}^{\vee}$ is a *special* nilpotent orbit, there is a canonically defined quotient group

$$\pi_1^{G^{\vee}}(\mathcal{O}^{\vee}) \twoheadrightarrow \overline{A}(\mathcal{O}^{\vee})$$

Theorem (Lusztig, 1984)

There is a natural bijection between $\mathrm{Unip}(\mathbf{G}(\mathbb{F}_q))$ and the set of triples

$$(\mathcal{O}^{\vee} = \text{special nilp}, \ C = \text{conj class in } \overline{A}, \ \xi = \text{irrep of } \overline{A}^{c})$$

In particular, the classification is *independent of q*.

Recap

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

There is a finite set of irreducibles

$$\mathrm{Unip}(\mathbf{G}(\mathbb{F}_q))\subset\mathrm{Irr}_{fd}(\mathbf{G}(\mathbb{F}_q))$$

such that

- 1 Unip($G(\mathbb{F}_q)$) is classified by certain geometric data related to nilpotent orbits, and
- The classification of $\operatorname{Irr}_{fd}(\mathbf{G}(\mathbb{F}_q))$ reduces to the classification of $\operatorname{Unip}(\mathbf{G}(\mathbb{F}_q))$ (analagous to the Jordan decomposition of matrices).

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Replace

$$\mathbb{F}_q \leadsto k \in \{\mathbb{R}, \mathbb{C}\}$$

$$\mathbf{G}(\mathbb{F}_q) \leadsto \mathbf{G}(k)$$

$$\mathrm{Irr}_{fd}(\mathbf{G}(\mathbb{F}_q)) \leadsto \mathrm{Irr}_u(\mathbf{G}(k))$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Replace

$$\mathbb{F}_q \leadsto k \in \{\mathbb{R}, \mathbb{C}\}$$
 $\mathbf{G}(\mathbb{F}_q) \leadsto \mathbf{G}(k)$
 $\mathrm{Irr}_{fd}(\mathbf{G}(\mathbb{F}_q)) \leadsto \mathrm{Irr}_u(\mathbf{G}(k))$

Problem (Gelfand, 1930s)

Determine $Irr_u(\mathbf{G}(k))$ for arbitrary \mathbf{G} .

- Problem remains unsolved in general.
- Answer known in special cases: connected compact groups (Weyl, 1920s), $SL_2(\mathbb{R})$ (Bargmann, 1947), $GL_n(k)$ (Vogan, 1986), complex classical groups (Barbasch, 1989), some low-rank groups...

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

One possible strategy for solving this problem is to try to *imititate* the approach for $\mathbf{G}(\mathbb{F}_q)$:

Conjecture (Vogan, 1987)

There is a finite subset $\mathrm{Unip}(\mathbf{G}(k)) \subset \mathrm{Irr}(\mathbf{G}(k))$ which completes the following analogy

$$\operatorname{Unip}(\mathbf{G}(k))$$
 is to $\operatorname{Irr}_u(\mathbf{G}(k))$ as $\operatorname{Unip}(\mathbf{G}(\mathbb{F}_q))$ is to $\operatorname{Irr}_{fd}(\mathbf{G}(\mathbb{F}_q))$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

One possible strategy for solving this problem is to try to *imititate* the approach for $\mathbf{G}(\mathbb{F}_q)$:

Conjecture (Vogan, 1987)

There is a finite subset $\mathrm{Unip}(\mathbf{G}(k)) \subset \mathrm{Irr}(\mathbf{G}(k))$ which completes the following analogy

$$\operatorname{Unip}(\mathbf{G}(k))$$
 is to $\operatorname{Irr}_u(\mathbf{G}(k))$ as $\operatorname{Unip}(\mathbf{G}(\mathbb{F}_q))$ is to $\operatorname{Irr}_{fd}(\mathbf{G}(\mathbb{F}_q))$

What does this mean?

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

In light of Lusztig (1984), one expects:

- 1 Unip(G(k)) is classified by certain geometric objects related to nilpotent orbits, and
- The classification of $Irr_u(\mathbf{G}(k))$ reduces to the classification of $Unip(\mathbf{G}(k))$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

In light of Lusztig (1984), one expects:

- 1 Unip(G(k)) is classified by certain geometric objects related to nilpotent orbits, and
- The classification of $Irr_u(\mathbf{G}(k))$ reduces to the classification of $Unip(\mathbf{G}(k))$

Vogan describes some additional expected properties of $Unip(\mathbf{G}(k))$. Briefly:

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

In light of Lusztig (1984), one expects:

- 1 Unip(G(k)) is classified by certain geometric objects related to nilpotent orbits, and
- The classification of $Irr_u(\mathbf{G}(k))$ reduces to the classification of $Unip(\mathbf{G}(k))$

Vogan describes some additional expected properties of $Unip(\mathbf{G}(k))$. Briefly:

3 Annihilators are maximal, completely prime

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

In light of Lusztig (1984), one expects:

- 1 Unip(G(k)) is classified by certain geometric objects related to nilpotent orbits, and
- The classification of $Irr_u(\mathbf{G}(k))$ reduces to the classification of $Unip(\mathbf{G}(k))$

Vogan describes some additional expected properties of $Unip(\mathbf{G}(k))$. Briefly:

- 3 Annihilators are maximal, completely prime
- Restriction to K has a very special form (global sections of certain K-eqvt vector bundles)

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

In light of Lusztig (1984), one expects:

- 1 Unip(G(k)) is classified by certain geometric objects related to nilpotent orbits, and
- The classification of $Irr_u(\mathbf{G}(k))$ reduces to the classification of $Unip(\mathbf{G}(k))$

Vogan describes some additional expected properties of $Unip(\mathbf{G}(k))$. Briefly:

- 3 Annihilators are maximal, completely prime
- Restriction to K has a very special form (global sections of certain K-eqvt vector bundles)
- Infinitesimal characters are 'as small as possible' in their translation families.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Restrict to the case of $k = \mathbb{C}$. Let $G := \mathbf{G}(\mathbb{C})$.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Restrict to the case of $k = \mathbb{C}$. Let $G := \mathbf{G}(\mathbb{C})$.

■ Well-known equivalence

$$\operatorname{Rep}(G) \simeq \operatorname{HC}(G)$$

(HC(G)) is category of *Harish-Chandra bimodules*).

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Restrict to the case of $k = \mathbb{C}$. Let $G := \mathbf{G}(\mathbb{C})$.

Well-known equivalence

$$\operatorname{Rep}(G) \simeq \operatorname{HC}(G)$$

(HC(G)) is category of *Harish-Chandra bimodules*).

■ If $M \in HC(G)$, can define left and right annihilators

$$\operatorname{Ann}_L(M) \subset U(\mathfrak{g}) \qquad \operatorname{Ann}_R(M) \subset U(\mathfrak{g})$$

and associated variety

$$V(M) = V(\operatorname{Ann}_{L}(M)) = V(\operatorname{Ann}_{R}(M)) \subset \mathcal{N}$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Restrict to the case of $k = \mathbb{C}$. Let $G := \mathbf{G}(\mathbb{C})$.

■ Well-known equivalence

$$\operatorname{Rep}(G) \simeq \operatorname{HC}(G)$$

(HC(G)) is category of *Harish-Chandra bimodules*).

■ If $M \in \mathrm{HC}(G)$, can define left and right annihilators

$$\operatorname{Ann}_L(M) \subset U(\mathfrak{g}) \qquad \operatorname{Ann}_R(M) \subset U(\mathfrak{g})$$

and associated variety

$$V(M) = V(\operatorname{Ann}_{L}(M)) = V(\operatorname{Ann}_{R}(M)) \subset \mathcal{N}$$

If M is irreducible, then $\mathrm{Ann}_L(M), \mathrm{Ann}_R(M)$ are primitive, and $V(M) = \overline{\mathcal{O}}$.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Barbasch-Vogan define an important subset of Unip(G)

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Barbasch-Vogan define an important subset of Unip(G)

Barbasch-Vogan duality:

$$d: \mathcal{N}^{\vee}/G^{\vee} \to \mathcal{N}/G$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Barbasch-Vogan define an important subset of Unip(G)

Barbasch-Vogan duality:

$$d: \mathcal{N}^{\vee}/G^{\vee} \to \mathcal{N}/G$$

■ Dual orbit \mathcal{O}^{\vee} determines infl char for \mathfrak{g} :

$$\mathcal{O}^{\vee} \mapsto (e^{\vee}, f^{\vee}, h^{\vee}) \mapsto \frac{1}{2}h^{\vee} \in \mathfrak{h}^{\vee} \simeq \mathfrak{h}^*$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Barbasch-Vogan define an important subset of Unip(G)

Barbasch-Vogan duality:

$$d: \mathcal{N}^{\vee}/G^{\vee} \to \mathcal{N}/G$$

■ Dual orbit \mathcal{O}^{\vee} determines infl char for \mathfrak{g} :

$$\mathcal{O}^{\vee} \mapsto (e^{\vee}, f^{\vee}, h^{\vee}) \mapsto \frac{1}{2}h^{\vee} \in \mathfrak{h}^{\vee} \simeq \mathfrak{h}^*$$

■ And hence a unique maximal ideal $J_{\frac{1}{2}h^{\vee}} \subset U(\mathfrak{g})$.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Barbasch-Vogan define an important subset of Unip(G)

Barbasch-Vogan duality:

$$d: \mathcal{N}^{\vee}/G^{\vee} \to \mathcal{N}/G$$

■ Dual orbit \mathcal{O}^{\vee} determines infl char for \mathfrak{g} :

$$\mathcal{O}^{\vee} \mapsto (e^{\vee}, f^{\vee}, h^{\vee}) \mapsto \frac{1}{2}h^{\vee} \in \mathfrak{h}^{\vee} \simeq \mathfrak{h}^*$$

- And hence a unique maximal ideal $J_{\frac{1}{2}h^{\vee}} \subset U(\mathfrak{g})$.
- $V(J_{\frac{1}{2}\mathcal{O}^{\vee}}) = \overline{d(\mathcal{O}^{\vee})}.$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Definition (Barbasch-Vogan, 1985)

The special unipotent ideal attached to \mathcal{O}^{\vee} is the maximal ideal $J_{\frac{1}{2}h^{\vee}} \subset U(\mathfrak{g})$. A special unipotent representation attached to \mathcal{O}^{\vee} is an irreducible HC bimodule M such that

$$\operatorname{Ann}_{L}(M) = \operatorname{Ann}_{R}(M) = J_{\frac{1}{2}h^{\vee}}$$

Write

$$\mathrm{Unip}^{\mathrm{s}}_{\mathcal{O}^{\vee}}(\mathsf{G}) \subset \mathrm{Irr}(\mathsf{G})$$

for the set of special unipotent representations attached to \mathcal{O}^{\vee} and

$$\mathrm{Unip^s}(G) := \bigsqcup_{\mathcal{O}^{\vee}} \mathrm{Unip^s_{\mathcal{O}^{\vee}}}(G)$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

 $\mathrm{Unip^s}(G)$ are known to satisfy many of Vogan's desiderata.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

 $\mathrm{Unip^s}(G)$ are known to satisfy many of Vogan's desiderata.

Infinitesimal characters are 'as small as possible.'

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

 $\mathrm{Unip^s}(G)$ are known to satisfy many of Vogan's desiderata.

- Infinitesimal characters are 'as small as possible.'
- Annihilators are maximal.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

 $\mathrm{Unip^s}(G)$ are known to satisfy many of Vogan's desiderata.

- Infinitesimal characters are 'as small as possible.'
- Annihilators are maximal.
- Unitary (Barbasch, Barbasch-Ciobotaru).

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

 $\mathrm{Unip^s}(G)$ are known to satisfy many of Vogan's desiderata.

- Infinitesimal characters are 'as small as possible.'
- Annihilators are maximal.
- Unitary (Barbasch, Barbasch-Ciobotaru).
- Classified by geometric objects related to nilpotent orbits:

Theorem (Barbasch-Vogan, 1985)

There is a natural bijection

$$\mathrm{Unip}^{\mathrm{s}}_{\mathcal{O}^{\vee}}(G)\simeq \overline{A}(\mathcal{O}^{\vee})^{\wedge}$$

Respects tensor products.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Problem

Let G = Sp(2n) and let $\mathcal{O} \subset \mathcal{N}$ be the minimal nilpotent orbit.

- Joseph ideal $J \subset U(\mathfrak{g})$. Maximal, completely prime, $V(J) = \overline{\mathcal{O}}$.
- Oscillator representations M^{\pm} . Unitary, irreducible, $\operatorname{Ann}_{L}(M^{\pm}) = \operatorname{Ann}_{R}(M^{\pm}) = J$.
- Since \mathcal{O} is *rigid*, M^{\pm} cannot be induced.
- Since \mathcal{O} is not special, $M^{\pm} \notin \mathrm{Unip}^{s}(G)$.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Problem

Let G = Sp(2n) and let $\mathcal{O} \subset \mathcal{N}$ be the minimal nilpotent orbit.

- Joseph ideal $J \subset U(\mathfrak{g})$. Maximal, completely prime, $V(J) = \overline{\mathcal{O}}$.
- Oscillator representations M^{\pm} . Unitary, irreducible, $\operatorname{Ann}_{L}(M^{\pm}) = \operatorname{Ann}_{R}(M^{\pm}) = J$.
- Since \mathcal{O} is *rigid*, M^{\pm} cannot be induced.
- Since \mathcal{O} is not special, $M^{\pm} \notin \mathrm{Unip}^{s}(G)$.

Conclusion

 $\mathrm{Unip}^{s}(G) \subsetneq \mathrm{Unip}(G)$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Problem

Let G = Sp(2n) and let $\mathcal{O} \subset \mathcal{N}$ be the minimal nilpotent orbit.

- Joseph ideal $J \subset U(\mathfrak{g})$. Maximal, completely prime, $V(J) = \overline{\mathcal{O}}$.
- Oscillator representations M^{\pm} . Unitary, irreducible, $\operatorname{Ann}_{L}(M^{\pm}) = \operatorname{Ann}_{R}(M^{\pm}) = J$.
- Since \mathcal{O} is *rigid*, M^{\pm} cannot be induced.
- Since \mathcal{O} is not special, $M^{\pm} \notin \mathrm{Unip}^{s}(G)$.

Conclusion

 $\mathrm{Unip}^{s}(G) \subsetneq \mathrm{Unip}(G)$

I will propose a natural definition of Unip(G) which generalizes BV.

Nilpotent Covers

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Unipotent representations of *G* will be parameterized by *nilpotent covers*.

Nilpotent Covers

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Unipotent representations of *G* will be parameterized by *nilpotent covers*.

■ A nilpotent cover is a triple consisting of a nilpotent orbit $\mathcal{O} \subset \mathcal{N}$, a homogeneous space $\widetilde{\mathcal{O}}$ for G, and a finite G-equivariant map $\widetilde{\mathcal{O}} \to \mathcal{O}$.

Nilpotent Covers

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Unipotent representations of G will be parameterized by nilpotent covers.

- A nilpotent cover is a triple consisting of a nilpotent orbit $\mathcal{O} \subset \mathcal{N}$, a homogeneous space $\widetilde{\mathcal{O}}$ for G, and a finite G-equivariant map $\widetilde{\mathcal{O}} \to \mathcal{O}$.
- Choose $e \in \mathcal{O}$ and $x \in \widetilde{\mathcal{O}}$ over e. Then

$$\pi_1^G(\mathcal{O}) \simeq G_e/G_e^o$$

and

This defines a Galois correspondence between nilpotent covers of \mathcal{O} (up to isomorphism) and subgroups of $\pi_1^G(\mathcal{O})$ (up to conjugacy).

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

■ There is a G-eqvt symplectic form $\omega \in \Omega^2(\mathcal{O})$ (Kostant), inducing a G-eqvt symplectic form $p^*\omega \in \Omega^2(\widetilde{\mathcal{O}})$.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

- There is a G-eqvt symplectic form $\omega \in \Omega^2(\mathcal{O})$ (Kostant), inducing a G-eqvt symplectic form $p^*\omega \in \Omega^2(\widetilde{\mathcal{O}})$.
- Symplectic form induces graded G eqvt Poisson bracket on $\mathbb{C}[\widetilde{\mathcal{O}}]$

Definition

A quantization of $\tilde{\mathcal{O}}$ is a pair (\mathcal{A}, θ) consisting of a filtered algebra \mathcal{A} such that

$$[\mathcal{A}_{\leq m}, \mathcal{A}_{\leq n}] \subseteq \mathcal{A}_{\leq m+n-1}$$

and an isomorphism of graded Poisson algebras

$$\theta: \operatorname{gr}(\mathcal{A}) \simeq \mathbb{C}[\widetilde{\mathcal{O}}]$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Every $\widetilde{\mathcal{O}}$ defines

- **1** A Levi subgroup $L \subset G$.
- 2 A finite group W acting on $\mathfrak{z}(\mathfrak{l})$ by reflections.

Theorem (Loseu, Loseu-MB-Matvieievskyi)

There is a canonical bijection

$$\{\text{quantizations of } \widetilde{\mathcal{O}}\} \simeq \mathfrak{z}(\mathfrak{l})/W$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Every $\widetilde{\mathcal{O}}$ defines

- **1** A Levi subgroup $L \subset G$.
- 2 A finite group W acting on $\mathfrak{z}(\mathfrak{l})$ by reflections.

Theorem (Loseu, Loseu-MB-Matvieievskyi)

There is a canonical bijection

$$\{\text{quantizations of } \widetilde{\mathcal{O}}\} \simeq \mathfrak{z}(\mathfrak{l})/W$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Example

Let $\mathcal{O} \subset \mathcal{N}$ be the principal nilpotent orbit. Then

$$L = T$$
 $W = W(G)$

Conclusion:

$$\mathfrak{t}^*/W(G)\simeq\{ ext{quantizations of }\mathcal{N}\}$$

In this case, bijection is very easy to describe.

$$\lambda \longmapsto U(\mathfrak{g})/\langle \ker \chi_{\lambda} \rangle$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Observation

If $\widetilde{\mathcal{O}}$ is an eqvt nilpotent cover, there is a distinguished quantization corresponding to $0 \in \mathfrak{z}(\mathfrak{l})/W$. We call this quantization the *canonical quantization* and denote it by \mathcal{A}_0 .

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Observation

If $\widetilde{\mathcal{O}}$ is an eqvt nilpotent cover, there is a distinguished quantization corresponding to $0 \in \mathfrak{z}(\mathfrak{l})/W$. We call this quantization the *canonical quantization* and denote it by \mathcal{A}_0 .

The canonical quantization has many distinguishing properties (Loseu, MB, Matvieievskyi):

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Observation

If $\widetilde{\mathcal{O}}$ is an eqvt nilpotent cover, there is a distinguished quantization corresponding to $0 \in \mathfrak{z}(\mathfrak{l})/W$. We call this quantization the *canonical quantization* and denote it by \mathcal{A}_0 .

The canonical quantization has many distinguishing properties (Loseu, MB, Matvieievskyi):

lacksquare \mathcal{A}_0 is the unique *even* quantization of $\widetilde{\mathcal{O}}$.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Observation

If $\widetilde{\mathcal{O}}$ is an eqvt nilpotent cover, there is a distinguished quantization corresponding to $0 \in \mathfrak{z}(\mathfrak{l})/W$. We call this quantization the *canonical quantization* and denote it by \mathcal{A}_0 .

The canonical quantization has many distinguishing properties (Loseu, MB, Matvieievskyi):

- lacksquare \mathcal{A}_0 is the unique *even* quantization of \mathcal{O} .
- \mathcal{A}_0 has a large automorphism group (all Poisson automorphisms of $\mathbb{C}[\widetilde{\mathcal{O}}]$ lift to filtered automorphisms of \mathcal{A}_0).

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Observation

If $\widetilde{\mathcal{O}}$ is an eqvt nilpotent cover, there is a distinguished quantization corresponding to $0 \in \mathfrak{z}(\mathfrak{l})/W$. We call this quantization the *canonical quantization* and denote it by \mathcal{A}_0 .

The canonical quantization has many distinguishing properties (Loseu, MB, Matvieievskyi):

- lacksquare \mathcal{A}_0 is the unique *even* quantization of \mathcal{O} .
- \mathcal{A}_0 has a large automorphism group (all Poisson automorphisms of $\mathbb{C}[\widetilde{\mathcal{O}}]$ lift to filtered automorphisms of \mathcal{A}_0).
- \mathcal{A}_0 is G-eqvt (i.e. G-action on $\mathbb{C}[\mathcal{O}]$ lifts to \mathcal{A}_0).

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

The G-action on \mathcal{A}_0 is Hamiltonian, i.e. there is a (quantum) co-moment map

$$\Phi:U(\mathfrak{g}) o \mathcal{A}_0$$

lifting the (classical) co-moment map

$$\mathcal{S}(\mathfrak{g})\simeq \mathbb{C}[\mathfrak{g}^*] o \mathbb{C}[\widetilde{\mathcal{O}}]$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

The G-action on \mathcal{A}_0 is Hamiltonian, i.e. there is a (quantum) co-moment map

$$\Phi: U(\mathfrak{g}) o \mathcal{A}_0$$

lifting the (classical) co-moment map

$$\mathcal{S}(\mathfrak{g})\simeq \mathbb{C}[\mathfrak{g}^*] o \mathbb{C}[\widetilde{\mathcal{O}}]$$

Definition (Loseu-MB-Matvieievskyi)

The unipotent ideal attached to $\widetilde{\mathcal{O}}$ is the primitive ideal

$$J(\widetilde{\mathcal{O}}) := \ker \left(\Phi : \mathit{U}(\mathfrak{g})
ightarrow \mathcal{A}_0
ight) \subset \mathit{U}(\mathfrak{g})$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Two important examples:

Example

Let $\mathcal{O} = \{0\}$. Then $\mathcal{A}_0 = \mathbb{C}$, $\Phi : U(\mathfrak{g}) \to \mathbb{C}$ is the augmentation map, and $J(\mathcal{O})$ is the augmentation ideal. In particular $\lambda(\mathcal{O}) = \rho$.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Two important examples:

Example

Let $\mathcal{O} = \{0\}$. Then $\mathcal{A}_0 = \mathbb{C}$, $\Phi : U(\mathfrak{g}) \to \mathbb{C}$ is the augmentation map, and $J(\mathcal{O})$ is the augmentation ideal. In particular $\lambda(\mathcal{O}) = \rho$.

Example

Let $\mathcal{O} = \mathcal{O}_{\text{prin}}$. Then $\mathcal{A}_0 = U(\mathfrak{g})/\langle \ker \gamma_0 \rangle$, $\Phi : U(\mathfrak{g}) \to \mathcal{A}_0$ is the quotient map, and $J(\mathcal{O}) = \langle \ker \gamma_0 \rangle$. In particular, $\lambda(\mathcal{O}) = 0$.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Example

Let G = SL(2) and let $\widetilde{\mathcal{O}} \to \mathcal{O}_{\mathrm{prin}}$ be the 2-fold G-eqvt cover.

$$\widetilde{\mathcal{O}} \hookrightarrow \mathbb{C}^2 \\
\downarrow \qquad \qquad \downarrow \\
\mathcal{O} \hookrightarrow \mathcal{N}$$

The Weyl algebra $\mathbb{C}[x,\partial x]$ is the *unique* quantization of \mathbb{C}^2 . Has a \mathbb{Z}_2 action (by negation). There is a surjection $\Phi: U(\mathfrak{g}) \twoheadrightarrow \mathbb{C}[x,\partial x]^{\mathbb{Z}_2}$

$$e \mapsto \frac{1}{2}x^2$$
 $f \mapsto -\frac{1}{2}\partial x^2$ $h \mapsto x\partial x + \frac{1}{2}$

with kernel $\Omega + \frac{3}{4}$. Recall $\gamma_{\lambda}(\Omega) = \lambda^2 - 2\lambda$. Hence, $\lambda(\widetilde{\mathcal{O}}) = \frac{1}{2}$.

Properties of Unipotent Ideals

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Theorem (Loseu-MB-Matvieievskyi)

The following are true:

(i)
$$V(J(\widetilde{\mathcal{O}})) = \overline{\mathcal{O}}$$

- (ii) $J(\widetilde{\mathcal{O}})$ is completely prime
- (iii) $J(\tilde{\mathcal{O}})$ is maximal.
- (iv) $m_{\overline{\mathcal{O}}}(J(\widetilde{\mathcal{O}})) = 1$ if and only if $\widetilde{\mathcal{O}} \to \mathcal{O}$ is Galois.

Unipotent Ideals for G = Sp(4)

What is a unipotent representation?

Lucas Mason-Brown

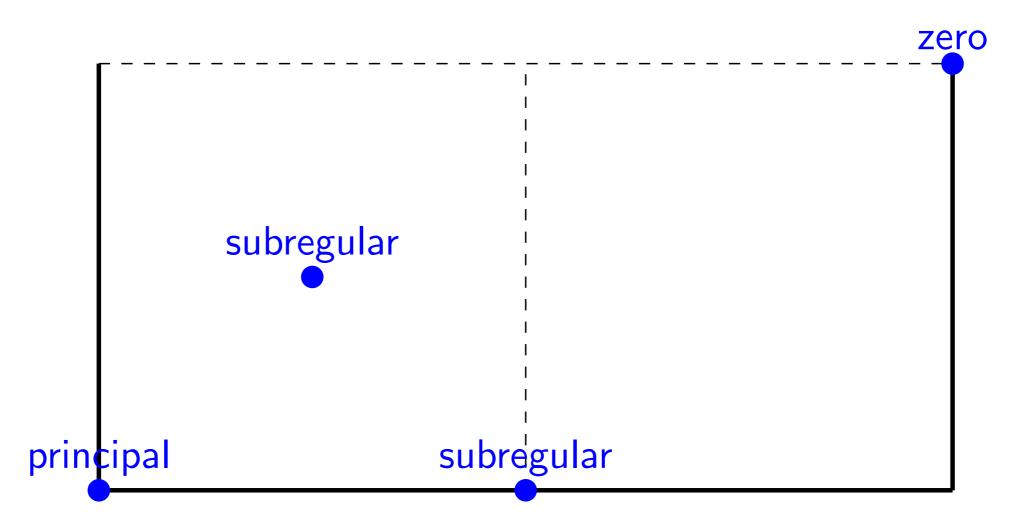
Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?



Unipotent Ideals for G = Sp(4)

What is a unipotent representation?

Lucas Mason-Brown

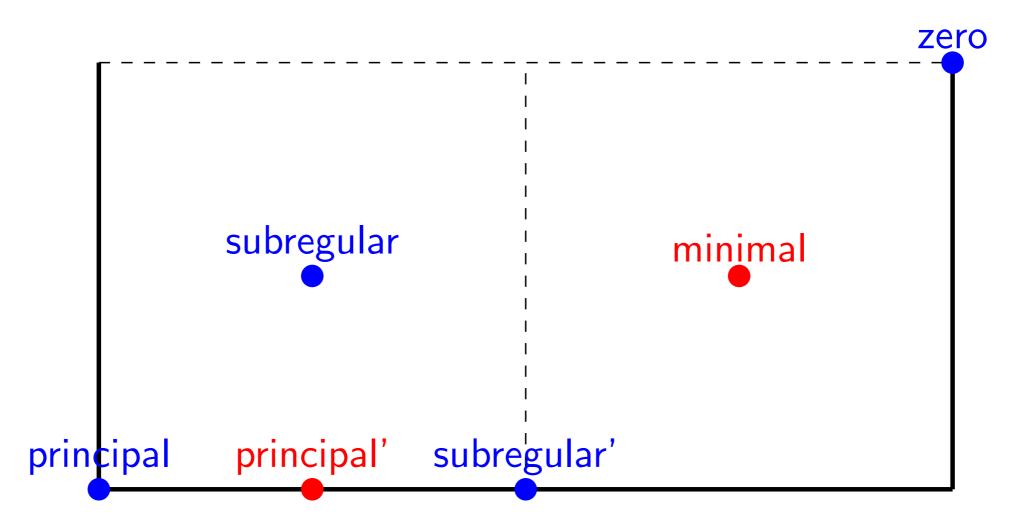
Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?



Unipotent Ideals for G = Sp(8)

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

The unipotent ideals $J(\widetilde{\mathcal{O}})$ are the maximal ideals with the following infl chars:

Õ	$\lambda(ilde{\mathcal{O}})$	$ ilde{\mathcal{O}}$	$\lambda(ilde{\mathcal{O}})$	Õ	$\lambda(ilde{\mathcal{O}})$
(8)	(0,0,0,0)	$(42^2)_2$	$(1,1,rac{1}{2},0)$	$(3^22)_2$	$(\frac{3}{2},1,\frac{1}{2},\frac{1}{2})$
(8) ₂	$(\frac{1}{2},0,0,0)$	$(42^2)_2$	$(\frac{3}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2})$	(3^21^2)	$(2,1,\frac{1}{2},\frac{1}{2})$
(62)	$(\frac{1}{2},\frac{1}{2},0,0)$	$(42^2)_2$	$(\frac{3}{2},\frac{1}{2},\frac{1}{2},0)$	(2^4)	$(\frac{3}{2},\frac{3}{2},\frac{1}{2},\frac{1}{2})$
$(62)_2$	$(\frac{1}{2},\frac{1}{2},\frac{1}{2},0)$	$(42^2)_4$	$(\frac{3}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2})$	$(2^4)_2$	(2, 1, 1, 0)
$(62)_2$	(1,0,0,0)	(421^2)	(2,1,0,0)	(2^31^2)	$(\frac{5}{2},\frac{3}{2},\frac{1}{2},\frac{1}{2})$
$(62)_2$	$(1, \frac{1}{2}, 0, 0)$	$(421^2)_2$	(2, 1, 0, 0)	$(2^31^2)_2$	$(rac{ar{5}}{2},rac{ar{3}}{2},rac{ar{1}}{2},rac{ar{1}}{2})$
$(62)_4$	$(1, \frac{1}{2}, 0, 0)$	$(421^2)_2$	(2,1,0,0)	(2^21^4)	(3, 2, 1, 0)
(61^2)	$(\frac{3}{2},\frac{1}{2},0,0)$	$(421^2)_2$	$(2,1,\frac{1}{2},0)$	$(2^21^4)_2$	(3, 2, 1, 0)
$(61^2)_2$	$(\frac{3}{2},\frac{1}{2},0,0)$	$(421^2)_4$	$(2,1,\frac{1}{2},0)$	(21^6)	$(\frac{7}{2}, \frac{5}{2}, \frac{3}{2}, \frac{1}{2})$
(4^2)	$(rac{1}{2},rac{1}{2},rac{1}{2},rac{1}{2})$	(41^4)	$(\frac{5}{2},\frac{3}{2},\frac{1}{2},0)$	$(21^6)_2$	$(\frac{7}{2}, \frac{5}{2}, \frac{3}{2}, \frac{1}{2})$
$(4^2)_2$	$(1, \frac{1}{2}, \frac{1}{2}, 0)$	$(41^4)_2$	$(\frac{5}{2},\frac{3}{2},\frac{1}{2},0)$	(1^8)	(4, 3, 2, 1)
(42^2)	(1, 1, 0, 0)	(3^22)	(1, 1, 1, 0)		

Blue = special unipotent. Note: all such appear.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Definition (Loseu-MB-Matvieievskyi)

Suppose $\widetilde{\mathcal{O}}^1$ and $\widetilde{\mathcal{O}}^2$ are eqvt covers of \mathcal{O} . We say $\widetilde{\mathcal{O}}^1$ and $\widetilde{\mathcal{O}}^2$ are equivalent if the affine varieties $\operatorname{Spec}([\widetilde{\mathcal{O}}^1])$ and $\operatorname{Spec}([\widetilde{\mathcal{O}}^2])$ have the same codimension 2 singularities. Denote the equivalence classes by $[\widetilde{\mathcal{O}}]$.

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Definition (Loseu-MB-Matvieievskyi)

Suppose $\widetilde{\mathcal{O}}^1$ and $\widetilde{\mathcal{O}}^2$ are eqvt covers of \mathcal{O} . We say $\widetilde{\mathcal{O}}^1$ and $\widetilde{\mathcal{O}}^2$ are equivalent if the affine varieties $\operatorname{Spec}([\widetilde{\mathcal{O}}^1])$ and $\operatorname{Spec}([\widetilde{\mathcal{O}}^2])$ have the same codimension 2 singularities. Denote the equivalence classes by $[\widetilde{\mathcal{O}}]$.

Theorem (Loseu-MB-Matvieievskyi)

The map $\widetilde{\mathcal{O}}\mapsto J(\widetilde{\mathcal{O}})$ defines a bijection

 $\{ \text{equivalence class of covers} \} \simeq \{ \text{unipotent ideals} \}$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Example

Let G = SL(2).

{0}	0	$\widetilde{\mathcal{O}}$
J_1	J_0	$J_{\frac{1}{2}}$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Example

Let G = SL(2).

{0}	0	$\widetilde{\mathcal{O}}$
J_1	J_0	$J_{rac{1}{2}}$

Example

Let \mathcal{O} be the minimal orbit (for any G). Unless dim(\mathcal{O}) = 2, $\operatorname{Spec}(\mathbb{C}[\mathcal{O}])$ has *no* codim 2 singularities. Hence, all covers of \mathcal{O} are equivalent. Corresponding ideal is Joseph ideal.

Enhanced BV Duality

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Want to show that all special unipotent ideals are unipotent.

Enhanced BV Duality

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Want to show that all special unipotent ideals are unipotent.

Theorem (Loseu-MB-Matvieievskyi)

There is an injective map

$$\widetilde{d}: \{\mathcal{O}^{\vee}\} \hookrightarrow \{[\widetilde{\mathcal{O}}]\}$$

with the following properties:

- (i) $\widetilde{d}(\mathcal{O}^{\vee})$ covers $d(\mathcal{O}^{\vee})$
- (ii) $\frac{1}{2}h^{\vee} = \text{infl char of } J(\widetilde{d}(\mathcal{O}^{\vee})).$

Enhanced BV Duality

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Want to show that all special unipotent ideals are unipotent.

Theorem (Loseu-MB-Matvieievskyi)

There is an injective map

$$\widetilde{d}: \{\mathcal{O}^{\vee}\} \hookrightarrow \{[\widetilde{\mathcal{O}}]\}$$

with the following properties:

- (i) $\widetilde{d}(\mathcal{O}^{\vee})$ covers $d(\mathcal{O}^{\vee})$
- (ii) $\frac{1}{2}h^{\vee} = \text{infl char of } J(\widetilde{d}(\mathcal{O}^{\vee})).$

Since unipotent ideals are maximal, this shows that special unipotent \implies unipotent.

New Definition of Unipotent Representations

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Real Groups?

Definition (Loseu-Mason-Brown-Matvievskyi)

A unipotent representation attached to $\tilde{\mathcal{O}}$ is an irreducible HC bimodule M such that

$$\operatorname{Ann}_{L}(M) = \operatorname{Ann}_{R}(M) = I_{0}(\widetilde{\mathcal{O}})$$

Write

$$\mathrm{Unip}_{\widetilde{\mathcal{O}}}(G)\subset\mathrm{Irr}(G)$$

for the set of unipotent representations attached to $\ensuremath{\mathcal{O}}$ and

$$\mathrm{Unip}(G) := \bigsqcup_{\widetilde{\mathcal{O}}} \mathrm{Unip}_{\widetilde{\mathcal{O}}}(G)$$

Properties of Unipotent Representations

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Theorem (Loseu-MB-Matvieievskyi)

If G is linear classical all representations in Unip(G) are unitary.

Properties of Unipotent Representations

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

Theorem (Loseu-MB-Matvieievskyi)

If G is linear classical all representations in Unip(G) are unitary.

Let G and $\widetilde{\mathcal{O}}$ be arbitrary. We prove a conjecture of Vogan:

Theorem (Loseu-MB-Matvieievskyi)

Let $V \in \operatorname{Unip}_{\widetilde{\mathcal{O}}}(G)$. Then there is a distinguished good filtration on V giving rise to an isomorphism of G-representations

$$V \simeq_{\mathcal{G}} \Gamma(\mathcal{O}, \operatorname{gr}(V))$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

■ Want to classify $\operatorname{Unip}_{\widetilde{\mathcal{O}}}(G)$ for arbitrary G, $\widetilde{\mathcal{O}}$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

- Want to classify $\operatorname{Unip}_{\widetilde{\mathcal{O}}}(G)$ for arbitrary G, $\widetilde{\mathcal{O}}$
- Replace $\widetilde{\mathcal{O}}$ with maximal cover in its equivalence class $[\widetilde{\mathcal{O}}]$ (always exists!)

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

- Want to classify $\operatorname{Unip}_{\widetilde{\mathcal{O}}}(G)$ for arbitrary G, $\widetilde{\mathcal{O}}$
- Replace $\widetilde{\mathcal{O}}$ with maximal cover in its equivalence class $[\widetilde{\mathcal{O}}]$ (always exists!)
- Consider the finite group

$$\Gamma(\widetilde{\mathcal{O}}) := \operatorname{Gal}(\widetilde{\mathcal{O}}/\mathcal{O})$$

What is a unipotent representation?

Lucas Mason-Brown

Finite Groups of Lie Type

Real and Complex Groups

Special
Unipotent
Representations of
Complex
Groups

A New
Definition of
Unipotent
Representations of
Complex
Groups

- Want to classify $\operatorname{Unip}_{\widetilde{\mathcal{O}}}(G)$ for arbitrary G, $\widetilde{\mathcal{O}}$
- Replace $\widetilde{\mathcal{O}}$ with maximal cover in its equivalence class $[\widetilde{\mathcal{O}}]$ (always exists!)
- Consider the finite group

$$\Gamma(\widetilde{\mathcal{O}}) := \operatorname{Gal}(\widetilde{\mathcal{O}}/\mathcal{O})$$

Theorem (Loseu-MB-Matvieievskyi)

There is a natural bijection

$$\operatorname{Unip}_{\widetilde{\mathcal{O}}}(G) \simeq \Gamma(\widetilde{\mathcal{O}})^{\wedge}$$