What is a

unipotent rep-

resentation?

Lucas
Mason-Brown

What is a unipotent representation?

. ucas Mason-Brown

December 2020



What is a

A Big unsolved problem (Gelfand)

Lucas

e B Let G be a real reductive Lie group. Classify

Irr,(G) = {irreducible unitary representations of G}



What is a

A Big unsolved problem (Gelfand)

Lucas

vason-Brown L€t G be a real reductive Lie group. Classify

Irr,(G) = {irreducible unitary representations of G}

Conjecture (Arthur, Vogan, Adams, Barbasch,...)

The classification of Irr,(G) should reduce to the classification
of a small finite subset

Unip(G) C Irr,(G)

RHS built out of LHS by parabolic induction. LHS indexed by
nilpotent orbits.
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Propose a definition of unipotent representations of a
complex reductive group (geometric and case-free)

Describe key properties of unipotent representations
(unitarity, restriction to K, maximality of annihilators,
etc.)

Define an enhancement of Barbasch-Vogan duality
Give a classification of unipotent representations

Speculate about applications to real reductive groups?
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Fo = finite field with g elements

Finite Groups

of Lie Type G = connected reductive algebraic group

defined and split over [
G(F,) = F4-points of G
Irre(G(Fg)) = irreducible finite-dim reps of G(IF)
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Fo = finite field with g elements

Finite Groups

of Lie Type G = connected reductive algebraic group

defined and split over [
G(F,) = F4-points of G
Irre(G(Fg)) = irreducible finite-dim reps of G(IF)

Determine Irrgy(G(F,)) for arbitrary G.

Problem solved completely by Lusztig in early 1980s.
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Construction of representations:

m Choose a Fr-stable maximal torus T C G and a character
0T, — C~.
m Deligne-Lusztig define a virtual representation Rt(6) of

G(F,) (obtained as the ¢-adic cohomology of associated
‘Deligne-Lusztig’ variety)
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Representations of Finite Groups of Lie Type

Construction of representations:

m Choose a Fr-stable maximal torus T C G and a character
0T, — C~.
m Deligne-Lusztig define a virtual representation Rt(6) of

G(F,) (obtained as the ¢-adic cohomology of associated
‘Deligne-Lusztig’ variety)

Theorem (Deligne-Lusztig, 1976)

Every irreducible representation of G(IF,) appears in some
Rt(0). Most Ry (6) are irreducible.
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Unipotent Representations of Finite Groups of Lie
Type

Definition (Deligne-Lusztig, 1976)

A unipotent representation of G(IF) is an irreducible
representation appearing in some Rt(1). Write

Unip(G(FF,)) C Irrgy(G(Fy))

for the set of unipotent representations.



What is a

unipotent rep-

resentation?
Lucas

Mason-Brown

Finite Groups
of Lie Type

Unipotent Representations of Finite Groups of Lie
Type

Definition (Deligne-Lusztig, 1976)

A unipotent representation of G(IF) is an irreducible
representation appearing in some Rt(1). Write

Unip(G(Fq)) C Irry(G(Fy))
for the set of unipotent representations.

Since there are finitely-many conjugacy classes of maximal tori
T(F,) C G(F,), there are finitely-many unipotent
representations of G(IFy).
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Unip(G(FF,)) C Irrgy(G(Fy))

for the set of unipotent representations.

Since there are finitely-many conjugacy classes of maximal tori
T(F,) C G(F,), there are finitely-many unipotent
representations of G(IFy).

Theorem (Lusztig, 1984)

The classification of Irrg/(G(F,)) reduces to the classification
of Unip(G(Fy)).
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Classification of Unipotent Representations of
Finite Groups of Lie Type

m Let G be the associated complex reductive algebraic
group, and let GV be the dual group.
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Theorem (Lusztig, 1984)

There is a natural bijection between Unip(G(F,)) and the set
of triples

(O = special nilp, C = conj class in A, & = irrep of ZC)

In particular, the classification is independent of q.
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Recap

There i1s a finite set of irreducibles

Unip(G(Fq)) C Irr(G(Fy))

such that

Unip(G(F4)) is classified by certain geometric data related
to nilpotent orbits, and

The classification of Irre(G(F,)) reduces to the
classification of Unip(G(FF)) (analagous to the Jordan
decomposition of matrices).
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G(Fq) ~ G(k)
Irr(G(Fq)) ~ Irry,(G(k))

Real and
Complex
Groups
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Unipotent Representations of Real and Complex
Groups

Replace

Fq ~ Kk E {R, C}
G(Fq) ~ G(k)
Irr(G(Fq)) ~ Irry,(G(k))

Problem (Gelfand, 1930s)

Determine Irr,(G(k)) for arbitrary G.

m Problem remains unsolved in general.

m Answer known In special cases: connected compact groups
(Weyl, 1920s), SL>(R) (Bargmann, 1947), GL,(k)
(Vogan, 1986), complex classical groups (Barbasch, 1989),
some low-rank groups...
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Real and

S There is a finite subset Unip(G(k)) C Irr(G(k)) which
completes the following analogy

Unip(G(k)) isto Irr,(G(k))
Unip(G(F,)) isto Irrg(G(Fg))
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imititate the approach for G(F):

Conjecture (Vogan, 1987)

Complex There is a finite subset Unip(G(k)) C Irr(G(k)) which

Real and

Groups
completes the following analogy

Unip(G(k)) isto Irr,(G(k))
Unip(G(F,)) isto Irrg(G(Fg))

What does this mean?
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Unipotent Representations of Real and Complex
Groups

In light of Lusztig (1984), one expects:

Unip(G(k)) is classified by certain geometric objects
related to nilpotent orbits, and

The classification of Irr,(G(k)) reduces to the
classification of Unip(G(k))
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In light of Lusztig (1984), one expects:

Unip(G(k)) is classified by certain geometric objects
related to nilpotent orbits, and

The classification of Irr,(G(k)) reduces to the
classification of Unip(G(k))

Vogan describes some additional expected properties of
Unip(G(k)). Briefly:
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Groups

In light of Lusztig (1984), one expects:

Unip(G(k)) is classified by certain geometric objects
related to nilpotent orbits, and

The classification of Irr,(G(k)) reduces to the
classification of Unip(G(k))

Vogan describes some additional expected properties of
Unip(G(k)). Briefly:

Annihilators are maximal, completely prime
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Groups

In light of Lusztig (1984), one expects:

Unip(G(k)) is classified by certain geometric objects
related to nilpotent orbits, and

The classification of Irr,(G(k)) reduces to the
classification of Unip(G(k))

Vogan describes some additional expected properties of
Unip(G(k)). Briefly:
Annihilators are maximal, completely prime

Restriction to K has a very special form (global sections of
certain K-eqvt vector bundles)
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Unipotent Representations of Real and Complex
Groups

In light of Lusztig (1984), one expects:

Unip(G(k)) is classified by certain geometric objects
related to nilpotent orbits, and

The classification of Irr,(G(k)) reduces to the
classification of Unip(G(k))

Vogan describes some additional expected properties of
Unip(G(k)). Briefly:
Annihilators are maximal, completely prime

Restriction to K has a very special form (global sections of
certain K-eqvt vector bundles)

Infinitesimal characters are ‘as small as possible’ in their
translation families.
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Harish-Chandra Bimodules

Restrict to the case of k = C. Let G := G(C).
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Restrict to the case of k = C. Let G := G(C).

m Well-known equivalence
Rep(G) ~ HC(G)

(HC(G) is category of Harish-Chandra bimodules).
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Harish-Chandra Bimodules

Restrict to the case of k = C. Let G := G(C).

m Well-known equivalence
Rep(G) ~ HC(G)

(HC(G) is category of Harish-Chandra bimodules).
m If M € HC(G), can define left and right annihilators

Ann; (M) C U(g) Anng(M) C U(yg)
and associated variety

V(M) = V(Ann;(M)) = V(Anng(M)) C N
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Harish-Chandra Bimodules

Restrict to the case of k = C. Let G := G(C).

m Well-known equivalence
Rep(G) ~ HC(G)

(HC(G) is category of Harish-Chandra bimodules).
m If M € HC(G), can define left and right annihilators

Ann; (M) C U(g) Anng(M) C U(g)

and associated variety

V(M) = V(Ann;(M)) = V(Anng(M)) C N

m If M is irreducible, then Ann; (M), Anng(M) are
primitive, and V(M) = O.
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Barbasch-Vogan define an important subset of Unip(G)
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Barbasch-Vogan define an important subset of Unip(G)
m Barbasch-Vogan duality:

d:NY/GY - N/G
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Barbasch-Vogan define an important subset of Unip(G)
m Barbasch-Vogan duality:

d:NY/GY - N/G

m Dual orbit OV determines infl char for g:

1
OV = (e, Y, h) = ShY € b = b’
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Barbasch-Vogan define an important subset of Unip(G)
m Barbasch-Vogan duality:

d:NY/GY - N/G

m Dual orbit OV determines infl char for g:

1
OV = (e, Y, h) = ShY € b = b’

m And hence a unique maximal ideal J1,, C U(g).
2
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Special Unipotent Representations

Barbasch-Vogan define an important subset of Unip(G)
m Barbasch-Vogan duality:

d:NY/GY - N/G

m Dual orbit OV determines infl char for g:

1
OV = (e, Y, h) = ShY € b = b’

m And hence a unique maximal ideal J1,, C U(g).
2

. V(J%Ov) = d(OV).
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2

to @V is an irreducible HC bimodule M such that

Ann; (M) = Anngr(M) = J%hv

Special
Unipotent

Representa- Write

tions of

Complex Unlp%\/ (G) C IIT( G)

Groups
for the set of special unipotent representations attached to OV

and
Unip*(G) :=| |Unip}v(G)
(f)\/
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Unip®(G) are known to satisfy many of Vogan's desiderata.
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Unip®(G) are known to satisfy many of Vogan's desiderata.

m Infinitesimal characters are ‘as small as possible.’
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Unip®(G) are known to satisfy many of Vogan's desiderata.
m Infinitesimal characters are ‘as small as possible.’

m Annihilators are maximal.
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Special Unipotent Representations

Unip®(G) are known to satisfy many of Vogan's desiderata.
m Infinitesimal characters are ‘as small as possible.’
m Annihilators are maximal.

m Unitary (Barbasch, Barbasch-Ciobotaru).
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Special Unipotent Representations

Unip®(G) are known to satisfy many of Vogan's desiderata.
m Infinitesimal characters are ‘as small as possible.’
m Annihilators are maximal.
m Unitary (Barbasch, Barbasch-Ciobotaru).

m Classified by geometric objects related to nilpotent orbits:

Theorem (Barbasch-Vogan, 1985)

There is a natural bijection

Unippv (G) ~ A(OY)"

Respects tensor products.
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Special Unipotent Representations

Let G = Sp(2n) and let O C N be the minimal nilpotent orbit.

m Joseph ideal J C U(g). Maximal, completely prime,
V(J) = 0.

m Oscillator representations M~. Unitary, irreducible,
Ann; (M*) = Anng(M*) = J.

m Since O is rigid, M= cannot be induced.
m Since O is not special, M* ¢ Unip®(G).
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Special Unipotent Representations

Let G = Sp(2n) and let O C N be the minimal nilpotent orbit.

m Joseph ideal J C U(g). Maximal, completely prime,
V(J) = 0.

m Oscillator representations M~. Unitary, irreducible,
Ann; (M*) = Anng(M*) = J.

m Since O is rigid, M= cannot be induced.
m Since O is not special, M* ¢ Unip®(G).

Conclusion
Unip®(G) € Unip(G)
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m Joseph ideal J C U(g). Maximal, completely prime,
V(J) = 0.

m Oscillator representations M~. Unitary, irreducible,
Ann; (M*) = Anng(M*) = J.

Special

Unipotent m Since O is rigid, M* cannot be induced.
Representa- 4 S

tions of " " " 1

fons of m Since O is not special, M= ¢ Unip®(G).
Groups

Conclusion

Unip®(G) € Unip(G)

| will propose a natural definition of Unip(G) which generalizes
BV.
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Unipotent representations of G will be parameterized by
nilpotent covers.
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Nilpotent Covers

Unipotent representations of G will be parameterized by
nilpotent covers.

m A nilpotent cover is a triple consisting of a nilpotent orbit
O C N, a homogeneous space O for G, and a finite
G-equivariant map O — O.
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m A nilpotent cover is a triple consisting of a nilpotent orbit
O C N, a homogeneous space O for G, and a finite
G-equivariant map O — O.
m Choose e € @ and x € O over e. Then
F(0) ~ Ge/G?
m1 (O) > Ge/ G
and N
it o ™1 (0) = 6/ G € Ge/ G =~ 1 (0)
Unipotent . . . .
Repees?nta- This defines a Galois correspondence between nilpotent
tions o . .
Complex covers of O (up to isomorphism) and subgroups of 7 (O)
Groups

(up to conjugacy).
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Quantizations of Nilpotent Covers

m There is a G-eqvt symplectic form w € Q*(O) (Kostant),
inducing a G-eqvt symplectic form p*w € Q?(O).
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Groups

Quantizations of Nilpotent Covers

m There is a G-eqvt symplectic form w € Q*(O) (Kostant),
inducing a G-eqvt symplectic form p*w € Q?(O).

m Symplectic form induces graded G eqvt Poisson bracket on

ClO]

A quantization of O is a pair (A, #) consisting of a filtered
algebra A such that

[Agm,Agn] C A§m+n—1
and an isomorphism of graded Poisson algebras

0 : gr(A) ~ C[O]
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Quantizations of Nilpotent Covers

Every O defines
A Levi subgroup L C G.
A finite group W acting on 3([) by reflections.

Theorem (Loseu, Loseu-MB-Matvieievskyi)

There i1s a canonical bijection

{quantizations of O} ~ 3(1)/ W
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Quantizations of Nilpotent Covers

Every O defines
A Levi subgroup L C G.
A finite group W acting on 3([) by reflections.

Theorem (Loseu, Loseu-MB-Matvieievskyi)

There i1s a canonical bijection

{quantizations of O} ~ 3(1)/ W
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Quantizations of Nilpotent Covers

Let @ C N be the principal nilpotent orbit. Then

L=T W= W(G)
Conclusion:
t*/W(G) ~ {quantizations of N}
In this case, bijection Is very easy to describe.

A — U(g)/(ker xx)
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Canonical Quantizations

If O is an egvt nilpotent cover, there is a distinguished
quantization corresponding to 0 € 3([)/W. We call this
quantization the canonical quantization and denote it by Ap.
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If O is an egvt nilpotent cover, there is a distinguished
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uantization the canonical quantization and denote it by Ap.

"he canonical quantization has many distinguishing properties

Loseu, MB, Matvieievskyi):



What is a

unipotent rep-

resentation?

Lucas
Mason-Brown

A New
Definition of
Unipotent
Representa-
tions of
Complex
Groups

Canonical Quantizations

If O is an egvt nilpotent cover, there is a distinguished

q
q

(

uantization corresponding to 0 € 3(I)/W. We call this
uantization the canonical quantization and denote it by Ap.

"he canonical quantization has many distinguishing properties

Loseu, MB, Matvieievskyi):

m A is the unique even quantization of O.
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If O is an eqvt nilpotent cover, there is a distinguished
quantization corresponding to 0 € 3([)/W. We call this
quantization the canonical quantization and denote it by Ap.

"he canonical quantization has many distinguishing properties
(Loseu, MB, Matvieievskyi):

m A is the unique even quantization of O.

m A has a large automorphism group (all Poisson
Definnt automorphisms of C[O] lift to filtered automorphisms of

Definition of

Unipotent

Representa- AO) -
tions of

Complex

Groups
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If O is an eqvt nilpotent cover, there is a distinguished
quantization corresponding to 0 € 3([)/W. We call this
quantization the canonical quantization and denote it by Ap.

"he canonical quantization has many distinguishing properties
(Loseu, MB, Matvieievskyi):

m A is the unique even quantization of O.

m A has a large automorphism group (all Poisson

A automorphisms of C[O] lift to filtered automorphisms of
Unipotent A )

Representa- 0)-

tions of . ] . N .

Complex m Ap is G-eqvt (i.e. G-action on C[O] lifts to Ap).

Groups
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Unipotent ldeals

The G-action on Ag is Hamiltonian, i.e. there is a (quantum)
co-moment map

o U(g) — Ao

lifting the (classical) co-moment map

S(g) ~ C[g*] — C[O]
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o U(g) — Ao

lifting the (classical) co-moment map

S(g) ~ C[g*] — C[O]

Definition (Loseu-MB-Matvieievskyi)

A New

Definition of

Unipotent

Representa- ~

’goﬁs <I>f t J(O) — ker ((b : U(g) — AO) C U(g)
omplex

Groups

The unipotent ideal attached to O is the primitive ideal
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Two important examples:

Let O = {0}. Then Ao =C, ®: U(g) — Cis the
augmentation map, and J(QO) is the augmentation ideal. In
particular A(O) = p.
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Let O = {0}. Then Ao =C, ®: U(g) — Cis the
augmentation map, and J(QO) is the augmentation ideal. In
particular A(O) = p.

Let O = Oprin. Then Ag = U(g)/(kervo), ®: U(g) = Ao is
A New . .
Definition of the quotient map, and J(O) = (ker~p). In particular,

Unipotent

Representa- )\(O) == O
tions of

Complex

Groups
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Let G = SL(2) and let O = Oprin be the 2-fold G-eqvt cover.

O — C?
L
O s N

The Weyl algebra Clx, 9x] is the unique quantization of C2.
Has a Z; action (by negation). There is a surjection

® : U(g) — C[x, Ox]*

1, 1

1
e oX f'—>—§6’x2

with kernel Q + 2. Recall 7,(2) = A2 — 2\. Hence, AO) = 3
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Properties of Unipotent |deals

Theorem (Loseu-MB-Matvieievskyi)

The following are true:
(i) V(J(0) =0
(i) J(O) is completely prime
(iii) J(O) is maximal.
(iv) m5(J(5)) — 1 if and only if © — O is Galois.
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Unipotent Ideals for G = Sp(8)

What is a
unipotent rep-

resentation? he unipotent ideals J(@) are the maximal ideals with the
Lucas following infl chars:

Mason-Brown

[ [ [

O A(O) O A(O) O A(O)
(8) (0,0,0,0) (427), (1,1, %,0) (322 | (3,1,3, %)
(8)2 (%,o, 0, 0) (422)2 (%3, ;1 %1 %) (3212) (5, L %1, %1)
(62) (27 OO) (422)2 (357157157?) (24) (5757575)
(62)2 (2727270) (42 )4 (§7§7§7§ (2 )2 (717170)
(62)2 (1,0,0,0) (421°) (2,1,0,0) 2°1") | (3,3,%,3)
(62)2 (1, 2,o 0) (421°), (2,1,0,0) | (2°1°)2 | (3,3, 3, 5)
(62)4 (1, 2,o 0) | (421%), (2,1,0,0) (2°1%) (3,2,1,0)
(61°) (2, 2,0 0) | (421%), | (2,1,3,0) | (2°1%), (3,2,1,0)
(612)2 (27 270 O) (4212)4 (27 ]-7 %70) (216) (%7 %7 %7 %)
(422) (3, %,%,%) (4144) (gé,%,o) (212)2 (£,2,32,2)
ANeW (4 )2 (1 2 570) (41 )2 (5757570) (1) (737271)
REafEer o (427) (1,1,0,0) (3°2) (1,1,1,0)
Unipotent
Representa-
tions of
Complex

Groups Blue = special unipotent. Note: all such appear.
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Classification of Unipotent ldeals

Definition (Loseu-MB-Matvieievskyi)

Suppose O and O? are eqvt covers of O. We say Ol and O?
are equivalent if the affine varieties Spec([0*]) and Spec([O?])
have the same codimension 2 singularities. Denote the
equivalence classes by [O].
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Classification of Unipotent ldeals

Definition (Loseu-MB-Matvieievskyi)

Suppose O and O? are eqvt covers of O. We say Ol and O?
are equivalent if the affine varieties Spec([0*]) and Spec([O?])
have the same codimension 2 singularities. Denote the
equivalence classes by [O].

Theorem (Loseu-MB-Matvieievskyi)

The map O — J(O) defines a bijection

{equivalence class of covers} ~ {unipotent ideals}
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Let G = SL(2).

)

0} | O
ho | do | J

N | =

A New Let O be the minimal orbit (for any G). Unless dim(QO) = 2,
Unipotent Spec(C|[O]) has no codim 2 singularities. Hence, all covers of
ohresenta: O are equivalent. Corresponding ideal is Joseph ideal.

Complex

Groups
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Want to show that all special unipotent ideals are unipotent.
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Theorem (Loseu-MB-Matvieievskyi)

There iIs an injective map
d : {0"} <= {[O]}

with the following properties:
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Theorem (Loseu-MB-Matvieievskyi)

There iIs an injective map
d : {0"} <= {[O]}

with the following properties:

(i) d(OV) covers d(OV)

A New (i) 3hY = infl char of J(d(OY)).

Definition of

Unipotent

At Since unipotent ideals are maximal, this shows that special

Complex unipotent — unipotent.
Groups
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New Definition of Unipotent Representations

Definition (Loseu-Mason-Brown-Matvievskyi)

A unipotent representation attached to O is an irreducible HC
bimodule M such that

~

Ann; (M) = Anng(M) = [H(O)

Write
Unips(G) C Irr(G)

for the set of unipotent representations attached to O and

Unip(G) := LI Unipz(G)
O
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Properties of Unipotent Representations

Theorem (Loseu-MB-Matvieievskyi)

If G is linear classical all representations in Unip(G) are unitary.
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Lucas Theorem (Loseu-MB-Matvieievskyi)

Mason-Brown

If G is linear classical all representations in Unip(G) are unitary.

Let G and O be arbitrary. We prove a conjecture of Vogan:

Theorem (Loseu-MB-Matvieievskyi)

Let V' € Unips(G). Then there is a distinguished good
filtration on V' giving rise to an isomorphism of

G-representations

A New

Definition of

Unipotent ~ ( ( ))
Representa- \/ —G r O’ gr \/
tions of

Complex

Groups



What is a

unipotent rep-

resentation?

Lucas
Mason-Brown

A New
Definition of
Unipotent
Representa-
tions of
Complex
Groups

Classification of Unipotent Representations

~

m Want to classify Unipz(G) for arbitrary G, O
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m Replace O with maximal cover in its equivalence class [O]
(always exists!)
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Classification of Unipotent Representations

~

m Want to classify Unipz(G) for arbitrary G, O

m Replace O with maximal cover in its equivalence class [O]
(always exists!)

m Consider the finite group

[(0) := Gal(O/0)



Classification of Unipotent Representations

What is a

tontations. m Want to classify Unipz(G) for arbitrary G, O
s m Replace O with maximal cover in its equivalence class [O]

(always exists!)
m Consider the finite group
[(O) := Gal(0/0)
Theorem (Loseu-MB-Matvieievskyi)

A New . . .
Do of There is a natural bijection

nipotent
Rep[:esenta- N

ions o : N
Eomplix Unlpé(G) a r(O)

Groups



