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The ∆ Modular Form

Courtesy of David Lowry-Duda ( arXiv:2002.05234 [cs.GR]).
Color represents phase while contours express magnitude.
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Sums of Squares

Theorem (Fermat’s Sum of Two Squares Theorem)
Let n > 1 be an integer. Then, there exist integers a and b so that
n = a2 + b2 if and only if n contains no factor of the form p2k+1 where
p = 3 mod 4 in its prime decomposition where k is odd.

The following is our goal for the first part of this talk.

Theorem (Lagrange’s Four-Square Theorem)
Every natural number n can be written as a sum of four squares:

n = a2 + b2 + c2 + d2 for some a,b, c,d ∈ N.
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Our First q-Series

We can rephrase such problems with a kind of generating function.

Definition
Let q ∈ C with |q| < 1. Then, define the Jacobi θ function as

θ(q) :=
∑
n∈Z

qn2
= 1 + 2q + 2q4 + 2q9 + · · · .

Definition
Let k ∈ Z+. Define the sum of squares function by

rk (n) :=

∣∣∣∣∣∣
(a1,a2, . . . ,ak ) ⊂ Zk :

k∑
j=1

a2
j = n


∣∣∣∣∣∣ .
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Jacobi’s Theorem on Sums of Four Squares

Lemma (Euler, 1750)
For k a positive integer,

θ(q)k =
∞∑

n=0

rk (n)qn.

From this viewpoint, we prove a sharper result than Lagrange.

Theorem (Jacobi’s Four-Square Theorem, 1834)
Let n ∈ N. Then,

r4(n) = 8
∑
d |n

d ̸=0 mod4

d .
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Some Notation from Analysis

Definition
The set H := {z ∈ C : Im(z) > 0} is called the upper half plane.

Lemma
Let D∗ := {z ∈ C : |z| < 1} \ {0} be the punctured unit disk. The map
q : H → D∗ given by q(τ) = e2πiτ is a holomorphic surjection.

x = Re(z)

y = Im(z)

qτ ∈ H q(τ)

D∗
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Action on the Upper Half Plane

Definition
The modular group is the following set under matrix multiplication

SL2(Z) =
{(

a b
c d

)
: ad − bc = 1 and a,b, c,d ∈ Z

}
.

Theorem

The modular group is generated by S =

(
0 −1
1 0

)
& T =

(
1 1
0 1

)
.

Moreover, SL2(Z) acts on H by fractional linear transformations

SL2(Z)×H → H by γτ 7→ aτ + b
cτ + d

where γ =

(
a b
c d

)
.
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Recall Riemann’s zeta function ζ(s) :=
∑∞

n=1 n−s. Consider:

Eisenstein Series
For τ ∈ H, the Eisenstein series of weight k is

Gk (τ) :=
∑

(m,n)̸=(0,0)
(m,n)∈Z2

(mτ + n)−k .

Theorem
Let k ≥ 4 be an even integer. Let Bk be the k th Bernoulli number and
let σk (n) =

∑
d |n dk be the sum of divisors function. Then,

Ek (τ) :=
Gk (τ)

2ζ(k)
= 1 − 2k

Bk

∞∑
k=1

σk−1(n)qn.
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Definition
Let k be an integer. A holomorphic function f : H → C is called a
modular form of weight k for SL2(Z) provided:

1 For all γ ∈ SL2(Z), f satisfies the weight k modularity
condition

f (γτ) = (cτ + d)k f (τ) ∀τ ∈ H,

which is equivalent to the conditions that

f (τ + 1) = f (τ) and f
(
−1
τ

)
= τ k f (τ) ∀τ ∈ H;

2 The function is holomorphic at ∞, i.e., limImτ→∞ f (τ) exists.

Theorem
For each even k ≥ 4, the Eisenstein series Gk (τ) is a modular form of
weight k for SL2(Z).
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Theorem
Every modular form has a q-expansion (or Fourier expansion)

f (τ) = g(q(τ)) =
∞∑

n=0

anqn =
∞∑

n=0

an

(
e2πiτ

)n
for q ∈ D.

If a modular form has 0 as the constant term in its Fourier expansion,
then it is called a cusp form.

Theorem
1 The space Mk (SL2(Z)) of all weight k modular forms is a C-vector

space. The space of cusp forms Sk (SL2(Z)) is a subspace.
2 The spaces M(SL2(Z)) and S(SL2(Z)) of all modular and all cusp

forms, respectively, are graded rings.
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Examples of Modular Forms

The archetypal example of a modular form is the Eisenstein series.

Examples of Modular Forms
1 For all weights k , 0 is a modular form of weight k .
2 For weight zero, the constant functions are modular forms.
3 The j-invariant j(τ) := 1728 E4(τ)

3

E4(τ)3−E6(τ)2 is a modular function of
weight zero for SL2(Z).

4 The Dedekind eta function

η(τ) := q
1
24

∞∏
n=1

(1 − qn)

is a modular form of weight 1/2.
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A Fundamental Domain
The group SL2(Z) acts on H. The fundamental domain

F := {τ ∈ H : |τ | ≥ 1 and |Re(τ)| ≤ 1/2}
provides a visualization of the set of representatives of the orbits
so that a unique point of each orbit lies in F .

Courtesy of Wikimedia: The Modular Group’s Fundamental Domains.
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The Valence Formula

Definition
For a modular form f : H → C and for τ0 ∈ H, define the order of f
at τ0, denoted vτ0(f ), to be the unique integer n such that f (τ)

(τ−τ0)n is
non-zero and holomorphic. Further define v∞(f ) to be the first
index in the q-expansion that is non-zero.

Theorem (Valence Formula)
Let D = {τ ∈ F : Reτ = 1

2} ∪ {τ ∈ F : |τ | = 1,Reτ ≥ 0} ∪
{

e
2πi
3

}
.

If f ∈ Mk (SL2(Z)) is nonzero, then

v∞(f ) +
1
2

vi(f ) +
1
3

v
e

2πi
3
(f ) +

∑
F−D

vτ (f ) =
k
12

.
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Theorem (Valence Formula)
Let D = {τ ∈ F : Reτ = 1

2} ∪ {τ ∈ F : |τ | = 1,Reτ ≥ 0} ∪
{

e
2πi
3

}
. If

f ∈ Mk (SL2(Z)) is nonzero, then

v∞(f ) +
1
2

vi(f ) +
1
3

v
e

2πi
3
(f ) +

∑
F−D

vτ (f ) =
k
12

.

Courtesy of Serre’s Course in Arithmetic: The Valence Contour.

Joe Heavner (UMD) Modular Forms December 2023 15 / 26



Small Dimensions Computed

For small k , the Valence Formula is an easy-to-solve non-negative
integral equation of the form A + 1

2B + 1
3C = k

12 , which has no
solution or a unique one for a given k .

Almost immediately then, we obtain:

Corollary

dimC(Mk (SL2(Z)) =

{
0 k < 0, k = 2, or k odd
1 k = 0,4,6,8,10.
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The Modular Discriminant

∆(τ) :=
E4(τ)

3 − E6(τ)
2

1728
= q

∞∏
n=1

(1 − qn)24

is a weight 12 cusp form for SL2(Z).

Theorem (The Dimension Formula for Full Level)
Let k ≥ 0 be an even integer. Then,

dim(Mk (SL2(Z)) =

{
⌊ k

12⌋ k = 2 mod 12
⌊ k

12⌋+ 1 k ̸= 2 mod 12

and
dim(Sk (SL2(Z)) = dim(Mk (SL2(Z))− 1.
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A Basis for Modular Forms

Using Hecke’s Dimension Formula, we can characterize modular
forms for SL2(Z) in terms of Eisenstein series.

Theorem
The set

Bk =
{

E4(τ)
aE6(τ)

b : 4a + 6b = k with a,b ∈ Z≥0

}
is a basis for Mk (SL2(Z)).
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Modular Forms for Subgroups of SL2(Z)
The basic theory is similar to the full level case seen so far.

Definition
The principal congruence subgroup of level N is

Γ(N) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
=

(
1 0
0 1

)
mod N

}
.

Any subgroup Γ ⊂ SL2(Z) is a congruence subgroup if Γ(N) ⊂ Γ.

Definition

Γ0(4) :=
{(

a b
c d

)
∈ SL2(Z) : c = 0 mod 4

}
=

〈(
1 1
0 1

)
,

(
1 0
4 1

)
,

(
−1 0
0 −1

)〉
.
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Jacobi’s Four Squares

Lemma
Define E2,N := E2(τ)− NE2(Nτ). Then, E2,N ∈ M2(Γ0(N)). Moreover,
M2(Γ0(4)) is a 2-dimensional vector space with basis {E2,2(τ),E2,4(τ)}.

Proof Idea.
Because θ4 ∈ M2(Γ0(4)), we can expand in the basis

θ4(τ) =
∞∑

n=0

r4(n)qn = −1
3

E2,4(τ) = 1 + 8
∞∑

n=1

 ∑
0<d |n

4∤d

d

qn,

so reading off coefficients gives r4(n) = 8
∑
d |n

d ̸=0 mod4

d as desired.
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The Geometry of Modular Forms
Associated to any congruence subgroup Γ, there is a curve
Y (Γ) = {Γτ : τ ∈ H} that can be made into a Riemann surface X (Γ).

Theorem (Riemann-Roch)
Let X be a compact Riemann surface and div(λ) be a canonical divisor
on X . Then for any D ∈ Div(X ),

ℓ(D) = deg(D)− g + 1 + ℓ(div(λ)− D).

Theorem (Riemann-Hurwitz)
Let f : X → Y be nonconstant holomorphic between compact Riemann
surfaces of degree d . Let gX and gY be the genus of X and Y
respectively. Then,

2gX − 2 = d(2gY − 2) +
∑
x∈X

(ex − 1).
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The Dimension Formula in General

Theorem
For k = 0, dim(Mk (Γ)) = 1. For k < 0, dim(Mk (Γ)) = 0.
For even k ≥ 2,

dim(Mk (Γ)) = ℓ(⌊div(f )⌋) = (k − 1)(g − 1) +
⌊

k
4

⌋
ϵ2 +

⌊
k
3

⌋
ϵ3 +

k
2
ϵ∞,

dim(Sk (Γ)) = ℓ(⌊div(f )−
∑

i

xi⌋) = ℓ(⌊div(f )⌋)−ϵ∞ = dim(Mk (Γ))−ϵ∞.

The odd case is similar but more technical.
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Contemporary Applications

1 Operator theory on modular forms.
2 Count the number of partitions of an integer, p(n).
3 Provide natural functions on elliptic curves through lattice view.
4 The Modularity Theorem and its classical partial converse: For

any rational newform f ∈ S2(Γ0(N)), there is an elliptic curve
E/Q such that the L-function of f is the L-function of E .

5 Monstrous moonshine (Borcherds, et al.).
6 Sphere packing in 8D and 24D (Viazovska, et al.).
7 Physics: quantum and statistical mechanics, CFT, string theory.
8 Properties of ζ and irrationality proofs (ζ(2k), ζ(3), etc.).
9 “Explain why” eπ

√
163 ≈ 262537412640768743.9999999999992.

10 “LMFDB universe” of automorphic forms, Galois
representations, L-functions, motives.
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The E8 Lattice

Courtesy of the American Institute of Mathematics.

Joe Heavner (UMD) Modular Forms December 2023 24 / 26

https://aimath.org/E8/mcmullen.html


Further Reading

1 2021 AWS: A friendly introduction to the theory of modular forms
(Alex Barrios). An introduction to modular groups (Lori Watson).

2 A Course in Arithmetic. J.P. Serre.
3 The 1-2-3 of Modular Forms. Don Zagier, et al.
4 Introduction to Modular Forms. Keith Conrad. CTNT 2016.
5 A First Course in Modular Forms. Fred Diamond & Jerry Shurman.
6 Elliptic Curves, Modular Forms, and Their L-Functions. Álvaro

Lozano-Robledo.
7 Modular Forms: A Computational Approach. William Stein.
8 Tutorial on modular forms. Sam Marks. Harvard, Summer 2020.
9 Modular Forms. Richard Borcherds. YouTube.

10 The Geometry of SL(2,Z). Kristaps Balodis (“K-Theory”). YouTube.
11 A Beautiful Group, SL2(Z). Roy Williams.

Joe Heavner (UMD) Modular Forms December 2023 25 / 26

https://swc-math.github.io/aws/2021/index.html
https://people.math.harvard.edu/~smarks/mod-forms-tutorial/
https://www.youtube.com/playlist?list=PL8yHsr3EFj51HisRtNyzHX-Xyg6I3Wl2F
https://youtube.com/playlist?list=PLnNqTHlK5sGJ7JOdRY7Cx8d2lnNlyLCYS&si=59zmNVUfEmWgCLcZ
https://roywilliams.github.io/play/js/sl2z/


Thank You!
Questions? Comments?
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