Support Preserving Measure Algebras and Spectral Synthesis

JOHN J. BENEDETTO

In this paper we consider various subspaces of first order distributions (and, in particular, pseudo-measures) as algebras with a support preserving multiplication; that is, if supp S, supp $T \subseteq E$ then supp $ST \subseteq E$; $E \subseteq \mathbb{R}/2\pi \mathbb{Z} \equiv \Gamma$ will always be a perfect set with Lebesgue measure m(E) = 0. The main result says essentially that if the pseudo-measures supported by E form a Banach algebra then the pseudo-measures are not only bounded but are quite close to being measures.

In Sec. 1 we define our various notation, operations, and algebras, and consider first order distributions as finitely additive set functions. Then in Sec. 2 we see that M(E), the space of Radon measures with support in E, is a Banach algebra, and we calculate its maximal ideal space and see that M(E) is symmetric (our multiplication is obviously not convolution). Sec. 3 is devoted to describing associated algebras that seem interesting in themselves and which are used to pinpoint the pseudo-measures on E in Sec. 4.

1. Background, Notation, and Definition of Spaces

 $A(\Gamma)$ is the space of absolutely convergent Fourier series $\phi \sim \sum a_n e^{in\gamma}$ with norm $\|\phi\|_A \equiv \sum |a_n|$; $A'(\Gamma)$, the space of pseudo-measures, is the dual of $A(\Gamma)$ with canonical norm $\| \ \|_{A'}$; and $A'(E) \equiv \{T \in A'(\Gamma) : \text{supp } T \subseteq E\}$. We designate the total variation norm on M(E) by $\| \|_1$ and it is clear that $M(E) \subseteq A'(E)$.

Notationally, we set $\mathscr{C}E \equiv \bigcup_{j=1}^{\infty} I_j$ where $I_j \equiv (\lambda_j, \gamma_j)$, $\varepsilon_j \equiv \gamma_j - \lambda_j$; and we refer to

[4; 5] for preliminaries in pseudo-measures and Fourier analysis. Using the Hausdorff-Young theorem it is easy to see that if $T \in A'(E)$, $\widehat{T}(0) = 0$, then $T = f'_T$, distributionally, where

 $f_T = \sum_i k_j \chi_{I_j}$ a.e. (1.1)

and $f_T \in L^p(\Gamma)$ for each $p \ge 1$. As such we let $D_{\omega}(E)$ be the space of first order distributions T where $T = f'_T$, $f_T \in L^p(\Gamma)$ for all $p \ge 1$, and f_T is given by (1.1). Without loss of generality we assume that if $T \in A'(E)$ (resp., M(E)) then $\widehat{T}(0) = 0$; hence, $M(E) \subseteq A'(E) \subseteq D_{\omega}(E)$ and M(E), A'(E) remain Banach spaces. Now, given S, $T \in D_{\omega}(E)$ with corresponding $f_T = \sum_{i=1}^{\infty} k_i \chi_{I_i}$, $f_S = \sum_{i=1}^{\infty} h_i \chi_{I_i}$, we define

noting that

$$f_S f_T = \sum_{i} k_i h_i \chi_{I_i}$$
 a.e. (1.2)

Thus $U = f'_U$,

$$f_U \equiv \sum_{i} \chi_{I_j}$$
 a.e.,

is a multiplicative identity in $D_{\alpha}(E)$.

If $A_S'(E)$ consists of the elements T in A'(E) for which $\langle T, \phi \rangle = 0$ if $\phi = 0$ on E, $\phi \in A(\Gamma)$, then E is a spectral synthesis set if $A'(E) = A_S'(E)$, and E is a Helson set if $M(E) = A_S'(E)$. E is a set without true pseudo-measure (or strong spectral resolution set) if M(E) = A'(E). It is not known if every Helson set is a spectral synthesis set and so it is important to characterize sets of strong spectral resolution.

Since m(E)=0, E is totally disconnected and we let \mathscr{F} be the family of compact open sets in the topological space E. \mathscr{F} is a basis for the topology on E and an algebra of sets; and any distribution T with support in E is a finitely additive set function on \mathscr{F} where

$$T(F) \equiv \langle T, \psi_F \rangle$$
,

 $F \in \mathscr{F}$ and $\psi_F \in C^{\infty}(\Gamma)$ with $\psi_F = 1$ on a neighborhood of F in Γ and $\psi_F = 0$ on a neighborhood of E - F in Γ . As such, we define

$$||T||_v \equiv \sup_{F \in \mathscr{F}} |T(F)|,$$

and A'(E)=M(E) if and only if $||T||_v < \infty$ for each $T \in A'(E)$ (e.g., [2; 3] for related issues). We let \mathscr{FF} be the elements in \mathscr{F} such that real-valued ψ_F can be found with the further properties that $0 \le \psi_F \le 1$ and $0 < \psi_F < 1$ on only finitely many I_i . Then

Proposition 1.1. $\mathscr{F} = \mathscr{F}\mathscr{F}$.

Proof. Let $F \in \mathcal{F}$ and take $\psi \in C^{\infty}(\Gamma)$ such that $0 \le \psi \le 1, \psi = 1$ on a neighborhood of F in Γ , and $\psi = 0$ on a neighborhood of E - F in Γ .

Let I_j have the property that $0 < \psi < 1$ for some points of I_j ; and adjust ψ on I_j so that $\psi = 0$ on an open interval of I_j but so that it retains all its other properties. Do this for each j and hence

$$\psi = \sum \psi_{F_j}$$

where $0 < \psi_{F_j} < 1$ on only two I_k , $\psi_{F_j} = 1$ on a neighborhood of $F_j \in \mathscr{F}$ in Γ , and $\psi_{F_j} = 0$ on a neighborhood of $E - F_j$ in Γ .

Thus $\{F_j\}$ is an open cover of F so that F compact implies we can cover F by F_{n_1}, \ldots, F_{n_k} ; consequently, set $\psi_F \equiv \sum_{i=1}^k \psi_{F_{n_i}}$. Q.E.D.

We say that $I_n \leq I_m$ if $\lambda_n < \gamma_m$ and if we consider $E \subseteq [0, 2\pi)$; also $I_{n_1} \leq \cdots \leq I_{n_k}$ is a partition P of E.

Proposition 1.2. The following are equivalent for $T \in D_{\omega}(E)$, $f_T = \sum_i k_j \chi_{I_j}$:

- (a) $T \in M(E)$.
- (b) $f_T(\pm \gamma)$ is defined on all of Γ (by taking limits) and f_T is of bounded variation.
 - (c) There is M > 0 for which

$$\sup_{P} \sum_{1}^{k-1} |k_{n_{j+1}} - k_{n_{j}}| < M. \tag{1.3}$$

Proof. (b) is equivalent to (a) by the Riesz representation theorem, and (b) implies (c) since f_T is of bounded variation. Assume (c) and let f_T be real-valued.

Set

$$(V f_T)(\gamma) \equiv \sup_{P} \left\{ \sum_{1}^{k-1} |k_{n_{j+1}} - k_{n_{j}}| \colon \lambda_{n_{k}} < \gamma, \, \gamma \in I_j \text{ for some } j \right\}.$$

For $\gamma \in \bigcup_{i \in I_j} I_i$ define

$$\begin{split} f_1(\gamma) &\equiv \frac{1}{2} \left((V f_T) (\gamma) + f_T(\gamma) \right), \\ f_2(\gamma) &\equiv \frac{1}{2} \left((V f_T) (\gamma) - f_T(\gamma) \right). \end{split}$$

Clearly $f_T = f_1 + f_2$ and in the usual way we have that f_1 and f_2 are increasing functions on $\bigcup_{i=1}^{n} I_j$ considered as a subset of $[0, 2\pi)$.

Finally, for any $\gamma \notin \bigcup_{0} I_{j}$ set $f_{1}(\gamma -) \equiv \sup \{f_{1}(\lambda) : \lambda \in \bigcup_{0} I_{j}, \lambda < \gamma\}, f_{1}(\gamma +) \equiv \inf \{f_{1}(\lambda) : \lambda \in \bigcup_{0} I_{j}, \lambda > \gamma\}, \text{ and similarly for } f_{2}; \text{ because we are dealing with monotone functions these inf and sup exist and (b) follows. Q.E.D.$

We set $D_b(E)$ to be the space of those elements T in $D_{\infty}(E)$ for which $f_T \in L^{\infty}(\Gamma)$. Motivated by Proposition 1.2 and the properties of bounded variation functions we define the space $\mathscr{G}(E)$ of generalized measures to be those elements T of $D_b(E)$ such that the corresponding f_T has the properties that $f_T(\gamma \pm)$ exist for all $\gamma \in \Gamma$ and f_T has at most countably many jump discontinuities. Also let $A_b'(E) \equiv A'(E) \cap D_b(E)$; this is the space of bounded pseudo-measures.

Note that the mapping $T \leadsto f_T$ for all our subspaces of $D_{\omega}(E)$ is bijective.

2. The Support Preserving Banach Algebra M(E)

For each $T \in M(E)$ define

$$||T||_{1,\infty} \equiv ||T||_1 + ||f_T||_{\infty} \tag{2.1}$$

where $T = f_T'$, $f_T = \sum_i k_j \chi_{I_j}$, and $||f_T||_{\infty} \equiv \sup_i |k_j|$. Clearly

$$||T||_1 \leq ||T||_{1,\infty} \leq 2 ||T||_1$$
.

Generally, when dealing with Banach spaces which have a separately continuous multiplication and multiplicative unit U, we employ the usual trick and identify Math. Z., Bd. 118

the space with an algebra of operators that has a norm $\| \|$ which satisfies $\|ST\| \le \|S\| \|T\|$ and $\|U\| = 1$.

Proposition 2.1. M(E), with multiplication defined by (1.2) and with norm given by (2.1), is a commutative Banach algebra with identity U.

Proof. Given
$$S$$
, $T \in M(E)$ with $f_S = \sum_i k_j \chi_{I_j}$, $f_T = \sum_i h_j \chi_{I_j}$. Letting $I_{n_1} \leq \cdots \leq I_{n_m}$ we have

$$\sum_{1}^{m-1} |k_{n_{j+1}} h_{n_{j+1}} - k_{n_{j}} h_{n_{j}}| \leq \sum_{1}^{m-1} |k_{n_{j+1}} (h_{n_{j+1}} - h_{n_{j}})| + \sum_{1}^{m-1} |h_{n_{j}} (k_{n_{j+1}} - k_{n_{j}})|.$$

Thus

$$||ST||_1 \le ||f_T||_{\infty} ||S||_1 + ||f_S||_{\infty} ||T||_1 \le ||T||_{1,\infty} ||S||_{1,\infty}.$$
 Q.E.D.

We designate the Gelfand transform of $T \in M(E)$ by \tilde{T} .

Proposition 2.2. Let $T \in D_{\omega}(E)$, $f_T = \sum_{i=1}^{n} k_i \chi_{I_j}$. The following are equivalent:

- (a) $T \in M(E)$.
- (b) $||T||_{v} < \infty$.
- (c) There is M > 0 such that if $I_{n_1} \leq \cdots \leq I_{n_{2m}}$ then

$$\left| \sum_{j=1}^{m} (k_{n_{2j-1}} - k_{n_{2j}}) \right| < M. \tag{2.2}$$

Proof. The equivalence of (a) and (b) is given in [3] and the sum in (c) is $\langle T, \psi_F \rangle$ for some ψ_F . Q.E.D.

We state Proposition 2.2 to observe the equivalence of (2.2) and (1.3).

Let's now describe the obvious elements of $\mathcal{M}(M(E))$, the maximal ideal space of M(E):

$$X_{a} \equiv \{F_{n} \in \mathcal{M}(M(E)) : F_{n}(T) \equiv k_{n}, f_{T} = \sum_{i} k_{j} \chi_{I_{j}}, n \geq 1\}$$

$$X_{i}^{+} \equiv \{F_{\gamma} \in \mathcal{M}(M(E)) : F_{\gamma}(T) \equiv f_{T}(\gamma +), \gamma \in E \text{ inaccessible}\}$$

$$X_{i}^{-} \equiv \{F_{\gamma} \in \mathcal{M}(M(E)) : F_{\gamma}(T) \equiv f_{T}(\gamma -), \gamma \in E \text{ inaccessible}\}$$

$$X_{a}^{\lambda} \equiv \{F_{\lambda_{n}} \in \mathcal{M}(M(E)) : F_{\lambda_{n}}(T) \equiv f_{T}(\lambda_{n} -), \text{ some } n\}$$

$$X_{n}^{\gamma} \equiv \{F_{\gamma} \in \mathcal{M}(M(E)) : F_{\gamma}(T) \equiv f_{T}(\gamma_{n} +), \text{ some } n\}.$$

Thus for $X \equiv X_a \cup X_i^+ \cup X_i^- \cup X_a^{\lambda} \cup X_a^{\gamma}$ we have $X \subseteq \mathcal{M}(M(E))$.

Proposition 2.3. (a) The elements of X are identified with monotone convergent sequences $\{\lambda_{m_n}\}$, λ_{m_n} accessible in E.

(b) $F \in X$ if and only if there is a subsequence $\{I_{m_n}\}$ such that for all $T \in M(E)$, $f_T = \sum_{i=1}^{n} k_i \chi_{I_j}$, $F(T) = \lim_{m_n} k_{m_n}$. (2.3)

Proof. (a) Given $\{\lambda_{m_n}\}$ a monotone (decreasing, say) convergent sequence in $[0, 2\pi)$ and let $\lambda_{m_n} \to \gamma$; $\gamma \in E$ since E is closed.

For $T \in M(E)$, $f_T = \sum_i k_i \chi_{I_j}$, $\lim_n k_{m_n}$ exists.

We set $F_{\gamma}(T) \equiv \lim_{n} k_{m_n}$. F_{γ} is clearly a homomorphism, and, by monotonicity, $F_{\gamma}(T) = f_T(\gamma + 1)$.

Conversely, if $F_{\gamma} \in X$ then without loss of generality we have $F_{\gamma}(T) = f_T(\gamma + 1)$ for all $T \in M(E)$.

Since the accessible points are dense in E we choose $\lambda_{m_n} \to \gamma$, and, since in this case we are dealing with right hand limit points, we take λ_{m_n} monotone decreasing to γ .

(b) For $F_y \in X$ we take a monotone sequence as in (a) and the corresponding intervals $\{I_{m_n}\}$.

For any $T \in M(E)$, since $F_{\gamma}(T) = f_T(\gamma + 1)$, say, and

$$\lim_{n} k_{m_n} = f_T(\gamma +), \quad f_T = \sum_{i} k_i \chi_{I_i},$$

we have (2.3).

Assume (2.3); that is, let $\{\lambda_{m_n}\}$ have the property that for all $T \in M(E)$, $f_T = \sum_{i=1}^{n} k_j \chi_{I_j}$, $\lim_{n \to \infty} k_{m_n}$ exists—we designate this limit by F(T).

It is easy to see that we can choose a monotone subsequence of $\{\lambda_{m_n}\}$, call it $\{\lambda_{m_n}\}$ again, and hence apply (a). Q.E.D.

Obviously in the correspondence of Proposition 2.3 there are many monotone subsequences for any $F \in X$. Also, in the second part of the argument of Proposition 2.3 b the existence of $\lim_{n} k_{m_n}$ for all T implies the existence of a limit γ of $\{\lambda_{m_n}\}$ with the property that $\lambda_{m_n} \geq \gamma$ (or $\gamma \geq \lambda_{m_n}$) for all but a finite number of the λ_{m_n} .

Theorem 2.1. (a) $X = \mathcal{M}(M(E))$.

(b) M(E) is a symmetric, semi-simple algebra with $\overline{X}_a = \mathcal{M}(M(E))$.

Proof. (a) Clearly $X \subseteq \mathcal{M}(M(E))$.

For $T \in M(E)$, $f_T = \sum_i k_j \chi_{I_j}$, we define $f_{\bar{T}} \equiv \sum_i \bar{k}_j \chi_{I_j}$ and note that for any partition $I_{n_1} \leq \cdots \leq I_{n_m}$,

$$\sum_{j=1}^{m-1} |\bar{k}_{n_{j+1}} - \bar{k}_{n_j}| = \sum_{j=1}^{m-1} |k_{n_{j+1}} - k_{n_j}|;$$

thus $f_T' \equiv \overline{T} \in M(E)$.

Also, if $F_{\gamma} \in X$ we define

$$M_{F_{\gamma}} \equiv \{ T \in M(E) \colon F_{\gamma}(T) = 0 \};$$

since $F_{\gamma}(T) = f_T(\gamma + 1)$, say, it is easy to see that $M_{F_{\gamma}}$ is a maximal (and hence closed) ideal in M(E).

Taking any proper ideal $I \subseteq M(E)$ we show $I \subseteq M_{F_{\gamma}}$ for some $F_{\gamma} \in X$, and this proves that X consists of all maximal ideals.

If $I \not\equiv M_{F_{\gamma}}$ for some $F_{\gamma} \in X$ then for all $F \in X$ there is $T_F \in I$ such that $F(T_F) \neq 0$; we get a contradiction to this assumption.

Define $S_{T_F} \equiv g'_{T_F}$ where

$$g_{T_F} \equiv f_{T_F} f_{\bar{T}_F},\tag{2.4}$$

so that since I is an ideal we have $g_{T_F} \in I$ and for all $G \in X$ and all T_F

$$G(S_{T_n}) \ge 0; \tag{2.5}$$

(2.5) follows by definition of X, from (2.4), and because $G \in X$.

We now show that X is closed in $\mathcal{M}(M(E))$, where, of course, we have the weak * topology from M(E).

First let $F \in X$ and say that for all $T \in M(E)$, $F(T) = f_T(\gamma +)$, some $\gamma \in E$. A subbasic neighborhood of F is

$$N \equiv \{H \in \mathcal{M}(M(E)): |H(T) - F(T)| < \varepsilon\},\,$$

and if $f_T = \sum_i k_j \chi_{I_j}$ we have $k_{n_j} \to F(T)$ where λ_{n_j} is monotone convergent (in $[0, 2\pi)$); thus if $F_{n_i} \in X_a$ corresponds to I_{n_i} we have $F_{n_i} \to F$.

Therefore $\overline{X}_a = X$ where X has the induced weak * topology.

Thus $\overline{X}_a = \overline{X}$ where \overline{X} is the weak * closure in $\mathcal{M}(M(E))$ of X.

Hence, for $F \in \overline{X}$ there is $\{F_{n_j}\}\subseteq X_a$ such that $F_{n_j}\to F$ — that is, if $F_T = \sum_1 k_j \chi_{I_j}$, $k_{n_j}\to F(T)$; consequently, we apply Proposition 2.3 and so $F\in X$ and X is

closed in $\mathcal{M}(M(E))$. Because X is weak * closed in $\mathcal{M}(M(E))$ and $\mathcal{M}(M(E))$ is weak * compact we have X weak * compact in $\mathcal{M}(M(E))$.

Without loss of generality take $F(T_F) = 1$ and hence $F(S_{T_F}) = 1$.

Now, for all $F \in X$ let $N_F \subseteq \mathcal{M}(M(E))$ be a weak * neighborhood of F such that $|\tilde{S}_{T_F}| > \frac{1}{2}$ on N_F ; there is no problem about doing this since \tilde{S}_{T_F} is continuous and $\tilde{S}_{T_F}(F) \equiv F(S_{T_F}) = 1$.

Further, $\tilde{S}_{T_F} > \frac{1}{2}$ on $X \cap N_F$, and since X is weak * compact, $X \subseteq N_{F^1}, \dots, N_{F^k}$, $F^j \in X$, and

 $\tilde{S} \equiv \sum_{i=1}^{k} \tilde{S}_{T_{F^i}} > \frac{1}{2}$ on X.

Therefore, I an ideal implies $S \in I$. Thus, if $f_S = \sum_i h_i \chi_{I_j}$ there is $f_{S^{-1}} \equiv \sum_i \frac{1}{h_i} \chi_{I_j}$ with $S^{-1} \in M(E)$ because $X_a \subseteq X$ and $\tilde{S} > \frac{1}{2}$ on X.

Consequently, $U = SS^{-1} \in I$ and hence I = M(E), a contradiction.

(b) We showed $\overline{X}_a = X$ in (a) so that since $X = \mathcal{M}(M(E))$ we have $\overline{X}_a = \mathcal{M}(M(E))$.

For the symmetry, recall from (a) that if $T \in M(E)$ then

$$\overline{T} \equiv f_{\overline{T}}' \in M(E)$$
.

Hence, $\overline{T} = \overline{T}$ on X_a which does it.

For the semi-simplicity let $\tilde{T} \equiv 0$ on X, $T \in M(E)$. Then if $f_T = \sum_i k_j \chi_{I_j}$ we have each $k_j = 0$ since $\tilde{T}(F_j) = 0$ and $\tilde{T}(F_j) = F_j(T) = k_j$. Q.E.D.

3. The Algebras $D_{\omega}(E)$ and $\mathscr{G}(E)$

For $D_{\omega}(E)$ we define the natural metric topology given by the countable family of norms

 $||T||_p \equiv ||f_T||_p \equiv \left(\frac{1}{2\pi} \int_0^{2\pi} |f_T(\gamma)|^p d\gamma\right)^{1/p}, \quad T \in D_{\omega}(E), \ p = 1, 2, \dots$

Proposition 3.1. $D_{\omega}(E)$ is a Fréchet space and a continuous topological algebra with unit.

Proof. Note that the metric space $D_{\omega}(E)$ is complete; in fact, if $\{T_n\} \subseteq D_{\omega}(E)$ is Cauchy we have $f_T \in L^p(\Gamma)$ such that $\|f_T - f_{T_n}\|_p \stackrel{n}{\longrightarrow} 0$ for all $p \ge 1$. In particular $f_{T_n} \to f$ in measure and so there is a subsequence (call it $\{f_{T_n}\}$ again) which converges to f a.e.

Thus if γ , $\lambda \in I_j$ and $f_{T_n}(\gamma)$, $f_{T_n}(\lambda)$ converge to $f(\gamma)$, $f(\lambda)$, respectively, we have $f(\gamma) = f(\lambda)$ since $f_{T_n}(\gamma) = f_{T_n}(\lambda)$. Thus $f_T \in D_{\omega}(E)$.

Now, for S, $T \in D_{\omega}(E)$ and $q \ge 2$ we note that $(f_S f_T)^q \in L^1(\Gamma)$.

In fact, if $s \ge 1$ f_S^q , $f_T^q \in L^s(\Gamma)$; and so if $\frac{1}{p} + \frac{1}{p'} = 1$ we have $f_S^q \in L^p(\Gamma)$, $f_T^q \in L^{p'}(\Gamma)$ so that $(f_S, f_T)^q \in L^1(\Gamma)$ by Hölder's inequality.

Hence $ST \in D_{\omega}(E)$, and, again by Hölder, $(ST) \leadsto ST$ is continuous. Q.E.D.

Notationally we set $\mathcal{M}(D_{\omega}(E)) = \{F \in (D_{\omega}(E))' : F \neq 0, F(ST) = F(S)F(T)\}$. Also if $M(E) \subseteq B \subseteq D_{\omega}(E)$ is any Banach algebra define $\mathcal{M}(B) = \{F \in B' : F \neq 0, F(ST) = F(S)F(T)\}$; and for each $T \in B$, \tilde{T} is the Gelfand transform of T. For example, $D_b(E)$, when normed by $||T||_b = ||f_T||_{\infty}$, $T \in D_b(E)$, is a Banach algebra.

Proposition 3.2. (a) $\overline{M(E)} = D_m(E)$.

(b)
$$X_a = \mathcal{M}(D_{\omega}(E))$$
 and so $\mathcal{M}(D_{\omega}(E))$ is dense in $\mathcal{M}(M(E))$.

Proof. (a) Let
$$T \in D_{\omega}(E)$$
, $f_T = \sum_{i=1}^{n} k_i \chi_{I_j}$, and set $f_{T_n} \equiv \sum_{i=1}^{n} k_i \chi_{I_i}$.

Letting $p \ge 1$

$$2\pi \|T - T_n\|_p^p = \int_0^{2\pi} \left| \sum_{n=1}^{\infty} k_j \chi_{I_j}(\gamma) \right|^p d\gamma = \sum_{n=1}^{\infty} |k_j|^p \varepsilon_j;$$

but

$$2\pi \|T\|_p^p = \sum_{1}^{\infty} |k_j|^p \,\varepsilon_j$$

and so

$$\lim_{n} \|T-T_n\|_p = 0.$$

(b) Let $F_n \in X_a$ and let $T_m \to 0$ in $D_{\omega}(E)$, $T_m \in D_{\omega}(E)$. If $f_{T_m} \equiv \sum_{j=1}^n k_{m,j} \chi_{I_j}$ and $p \ge 1$ we have $F_m(T_m) = k_{m,n}$ and

$$\frac{1}{2\pi} \, \varepsilon_n |k_{m,n}|^p \leq \frac{1}{2\pi} \, \sum_{j=1}^{\infty} |k_{m,j}|^p \, \varepsilon_j = \|T_m\|_p^p.$$

Thus, with n and p fixed, $k_{m,n} \to 0$ as $m \to \infty$ since $||T_m||_p \to 0$; consequently, $F_n \in \mathcal{M}(D_{\omega}(E))$.

Now if $F \in \mathcal{M}(D_{\omega}(E))$ let $T \in D_{\omega}(E)$ be such that $F(T) \neq 0$.

Setting $f_T \equiv \sum_{i=1}^{N} k_j \chi_{I_j} \operatorname{let} f_{T_N} \equiv \sum_{i=1}^{N} k_j \chi_{I_j}$ have the property that $F(T_N) \neq 0$ by (a).

Therefore, if n > N and $S \equiv \chi'_{I_n}$

$$F(S) F(T_N) = F(ST_N) = 0$$

so that F(S) = 0.

By linearity of F there is $1 \le n \le N$ such that $F(P) \ne 0$, $P = \chi'_{I_n}$; if $R = \chi'_{I_k}$, $k \ne n$ and $1 \le k \le N$, then

$$F(R) F(P) = F(RP) = 0$$

so that F(R) = 0.

Also F(P) = 1 since F(P) = F(PP).

Hence, by applying (a) again, we have $F(T) = k_n$ and so $F \equiv F_n \in X_a$. Q.E.D.

Remark. 1. Since $D_{\omega}(E)$ is not locally m-convex, a fact which is clear by the properties of E-spaces, we expect [7, p. 355] that there is a non-invertible $T \in D_{\omega}(E)$ such that for all $F \in \mathcal{M}(D_{\omega}(E))$, $F(T) \neq 0$; and this is obviously the case.

2. It is also easy to see that $\mathcal{M}(D_{\omega}(E))$ is not weak * compact; for if it were, X_a would be weak * compact in $\mathcal{M}(M(E))$, by the continuity of the natural injection (by Proposition 3.2a) of $\mathcal{M}(D_{\omega}(E))$ into $\mathcal{M}(M(E))$, and this contradicts Theorem 2.1b.

The following is easy to prove from the properties of $D_{\omega}(E)$, and we refer to [1;7] for general and related results.

Proposition 3.3. $\mathcal{M}(D_{\omega}(E))$ is the space of closed maximal ideals in $D_{\omega}(E)$.

It is also clear (e.g., Theorem 4.1) that -

Proposition 3.4.

- (a) $\mathscr{G}(E)$ is a closed subalgebra of $D_b(E)$.
- (b) $\mathcal{M}(\mathcal{G}(E)) = \mathcal{M}(M(E))$.
- (c) The space $C(\mathcal{M}(\mathcal{G}(E)))$ of continuous functions on $\mathcal{M}(\mathcal{G}(E))$ is precisely $\{\tilde{T}: T \in \mathcal{G}(E)\}.$

4. Subalgebras of $\mathcal{G}(E)$

Theorem 4.1. Let $M(E) \subseteq B \subseteq D_{\omega}(E)$, B a Banach algebra with

$$\mathcal{M}(B) \subseteq \mathcal{M}(M(E)). \tag{4.1}$$

Then

- (a) $\mathcal{M}(B) = \mathcal{M}(M(E))$, as sets and topologically.
- (b) $B \subseteq \mathcal{G}(E)$.

Proof. Since $\overline{M(E)} = D_{\omega}(E)$ we have $\overline{B} = D_{\omega}(E)$ and hence the canonical adjoint $D'_{\omega}(E) \to B'$ is injective; thus

$$\mathcal{M}(D_{\omega}(E)) \subseteq \mathcal{M}(B)$$
.

From Theorem 2.16, Proposition 3.26, and (4.1) we have

$$\overline{\mathcal{M}(B)} = \mathcal{M}(M(E)). \tag{4.2}$$

It is easy to check that the natural injection $\mathcal{M}(B) \to \mathcal{M}(M(E))$ is continuous, where both domain and range have their respective weak * topologies.

By this continuity and (4.2) we have $\mathcal{M}(B) = \mathcal{M}(M(E))$ as sets and (a) follows by properties of compact spaces.

Let $T \in B$; then there is $\{T_n\} \subseteq M(E)$ such that $\tilde{T}_n \to \tilde{T}$ in the sup norm topology of $C(\mathcal{M}(M(E)))$ since M(E) is symmetric.

Because $X_a \subseteq \mathcal{M}(B)$ and $\tilde{T}_n(F_j) = k_{n,j}$, for $f_{T_n} = \sum_{j=1}^n k_{n,j} \chi_{I_j}$ and $F_j \in X_a$, we have $f_{T_n} \to f_T$ uniformly on $\cup I_j$.

Similarly, if $F_{\gamma} \in X - X_a$ assume, without loss of generality, that $\tilde{S}(F_{\gamma}) = F_{\gamma}(S) = f_{S}(\gamma +)$, γ an inaccessible point of E and $S \in M(E)$.

Let $\{\lambda_{m_j}\}$ be monotone decreasing (as a subset of $[0, 2\pi)$) and with the property that for all $S \in M(E)$, $f_S(\gamma +) = \lim_j h_{m_j}$ where $f_S = \sum_i h_j \chi_{I_j}$; we can do this from the results of Sec. 2.

By hypothesis, $\lim_{n} \tilde{T}_{n}(F_{\gamma}) = \tilde{T}(F_{\gamma})$ exists, and we show that

$$\lim_{j} k_{m_{j}} = \tilde{T}(F_{\gamma}), \quad f_{T} = \sum_{1} k_{j} \chi_{I_{j}}. \tag{4.3}$$

Now given $\varepsilon > 0$, for any j,

$$|\tilde{T}(F_{\gamma})-k_{m_i}| \leq |\tilde{T}(F_{\gamma})-\tilde{T}_n(F_{\gamma})|+|\tilde{T}_n(F_{\gamma})-k_{m_i}|,$$

and

$$|\tilde{T}_n(F_{\gamma}) - k_{m_j}| \le |f_{T_n}(\gamma +) - k_{n, m_j}| + |k_{n, m_j} - k_{m_j}|.$$

There is N such that for all $n \ge N$ and for all j,

$$|k_{n,m_i}-k_{m_i}| < \varepsilon/4$$
 and $|\tilde{T}(F_{\gamma})-\tilde{T}_n(F_{\gamma})| < \varepsilon/2$.

For this N there is J_N such that for all $j \ge J_N$, $|f_{T_N}(\gamma +) - k_{N,m_i}| < \varepsilon/4$.

Thus, for $\varepsilon > 0$ we've found $J \equiv J_N$ so that if $j \ge J$, $|\tilde{T}(F_\gamma) - k_{m_j}| < \varepsilon$ and hence (4.3) holds.

Finally, to show $B \subseteq \mathcal{G}(E)$ we must prove that $f_T(\gamma +) \neq f_T(\gamma -)$ for at most countably many $\gamma \in E$.

Given k>0. There is N>0 such that for all $n \ge N$ and for all $\gamma \in E$

$$|f_T(\gamma \pm) - f_{T_n}(\gamma \pm)| < 1/4k$$
.

For any fixed $n \ge N$ there are at most countably many γ for which

$$|f_{T_n}(\gamma+)-f_{T_n}(\gamma-)|>1/k;$$

thus for any λ , not one of these γ ,

$$\begin{split} |f_{T}(\lambda+) - f_{T}(\lambda-)| \\ & \leq |f_{T}(\lambda+) - f_{T_{n}}(\lambda+)| + |f_{T_{n}}(\lambda+) - f_{T_{n}}(\lambda-)| + |f_{T_{n}}(\lambda-) - f_{T}(\lambda-)| \\ & \leq 1/k. \end{split}$$

Therefore for a given k there are at most countably many γ for which $|f_T(\gamma+)-f_T(\gamma-)|>1/k$. Q.E.D.

Corollary 4.1.1. Let $M(E) \subseteq B \subseteq D_{\omega}(E)$, B a Banach algebra, and assume M(E) is weakly dense (and hence norm dense) or dense in the spectral norm in B. Then

- (a) $\mathcal{M}(B) = \mathcal{M}(M(E))$, as sets and topologically.
- (b) $B \subseteq \mathcal{G}(E)$.

Proof. By the weak denseness or spectral denseness (4.1) holds, and we apply the theorem. Q.E.D.

Remark. If E is Helson and a spectral synthesis set then A'(E) is the Banach algebra M(E). If E is not Helson but A'(E) is a Banach algebra (containing M(E)) then $A'(E) \subseteq \mathcal{G}(E)$ if E satisfies either of the denseness conditions of Corollary 4.1.1, or, more generally, if (4.1) is satisfied.

Theorem 4.2. Let $M(E) \subseteq B \subseteq D_{\omega}(E)$, B a Banach algebra, and assume that the identity homomorphism $M(E) \to M(E)$ extends to a homomorphism $j: B \to M(E)$. Then $B \subseteq \mathcal{G}(E)$.

Proof. Since j is surjective j(B) is dense in M(E) with the spectral norm.

Thus $\mathcal{M}(M(E)) \hookrightarrow \mathcal{M}(B)$ homeomorphically.

For $T \in B$, \tilde{T}_r is the restriction of \tilde{T} to $\mathcal{M}(M(E))$.

Since $\tilde{T}_r \in C(\mathcal{M}(M(E)))$ and M(E) is symmetric \tilde{T}_r is the uniform limit of \tilde{T}_n , $T_n \in M(E)$.

By the calculation at the end of Theorem 4.1, $B \subseteq \mathcal{G}(E)$. Q.E.D.

Remark. Generally, when one wishes to show M(E) = Y, for some subspace Y of A'(E), it is natural to extend the identity map $M(E) \to M(E)$ to a linear transformation $j \colon Y \to M(E)$, Y a Banach space [2; 6]; this process has built into it that j is injective. In Theorem 4.2 we need more initial structure on the space (viz., B must be a Banach algebra not just a Banach space) and on the map (viz., j must be a homomorphism) but we do not make any requirements concerning injectiveness.

Bibliography

- 1. Arens, R.: Linear topological division algebras. Bull. Amer. Math. Soc. 53, 623-630 (1947).
- 2. Benedetto, J.: A strong form of spectral resolution. Ann. Mat. Pura Appl. 86, 313-324 (1970).
- 3. Sets without true distributions. Bull. Soc. Roy. Sci. Liège 5-6, 245-248 (1970).
- 4. Kahane, J. P., Salem, R.: Ensembles parfaits et séries trigonométriques. Paris: Hermann 1963.
- 5. Rudin, W.: Fourier analysis on groups. New York: John Wiley 1962.
- Varopoulos, N.Th.: Sur les ensembles parfaits et les séries trigonométriques. C.R. Acad. Sci. Paris 260, 3831-3834 (1965).
- Želazko, W.: On the locally bounded and m-convex topological algebras. Studia Math. 19, 333-356 (1960).

Dr. John J. Benedetto Scuola Normale Superiore Pisa, Italia