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Support Preserving Measure Algebras
and Spectral Synthesis

JoHN J. BENEDETTO

In this paper we consider various subspaces of first order distributions
(and, in particular, pseudo-measures) as algebras with a support preserving
multiplication; that is, if supp S, supp T<E then supp STSE; ES R2rnZ=rI
will always be a perfect set with Lebesgue measure m(E)=0. The main result
says essentially that if the pseudo-measures supported by E form a Banach
algebra then the pseudo-measures are not only bounded but are quite close to
being measures. '

In Sec.1 we define our various notation, operations, and algebras, and
consider first order distributions as finitely additive set functions. Then in
Sec. 2 we see that M(E), the space of Radon measures with support in E, isa
Banach algebra, and we calculate its maximal ideal space and see that M(E) is
symmetric (our multiplication is obviously not convolution). Sec. 3 is devoted
to describing associated algebras that seem interesting in themselves and which
are used to pinpoint the pseudo-measures on E in Sec. 4.

1. Background, Notation, and Definition of Spaces
A(I') is the space of absolutely convergent Fourier series ¢~} a, e’ with
norm ||@| =Y. |a,l; A'(I), the space of pseudo-measures, is the dual of A(I")
with canonical norm || | ; and A'(E)={TeA'(l'): supp T<E}. We designate
the total variation norm on M(E) by || |; and it is clear that M(E)< A'(E).

Notationally, we set #E=\) I; where I;=(4;, 7)), &;=7,—4;; and we refer to
]
[4; 5] for preliminaries in pseudo-measures and Fourier analysis. Using the

Hausdorff-Young theorem it is easy to see that if Te A'(E), T(0)=0, then T=f7,
distributionally, where
fT=ZkJ XIJ' a.€. (1.1)
1

and freI?(I') for each p21. As such we let D, (E) be the space of first order
distributions T where T=fy, freI?(I') for all p21, and f; is given by (L.1).
Without loss of generality we assume that if Te A'(E) (resp., M(E)) then T(0)=0;
hence, M(E)= A'(E)= D, (E) and M(E), A’(E) remain Banach spaces. Now,
given S, TeD,(E) with corresponding fr=Y k; x1,» fs=2.h; 11, We define

1 1

ST=(fsfr)>
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noting that
fsz=ZthJXI] a.c. (1.2)
1
Thus U=f,
Jos)u, ae,
1

is a multiplicative identity in D (E).

If A5(E) consists of the elements T'in A'(E) for which (T, $>=0if ¢ =0 on E,
¢e A(T), then E is a spectral synthesis set if A'(E)= A5(E), and E is a Helson set
if M(E)=As(E). E is a set without true pseudo-measure (or strong spectral
resolution set) if M(E)= A’(E). It is not known if every Helson set is a spectral
synthesis set and so it is important to characterize sets of strong spectral
resolution.

Since m(E)=0, E is totally disconnected and we let & be the family of
compact open sets in the topological space E. # is a basis for the topology on E
and an algebra of sets; and any distribution T with support in E is a finitely
additive set function on # where

T(F)=<{T yr),

Fe# and ype C*(I') with Yz =1 on a neighborhood of F in I and yy=0on a
neighborhood of E—F in I'. As such, we define

ITll,=sup|T(F)I,
Fe#

and A'(E)=M(E) if and only if ||T||,<co for each Te A'(E) (e. g, [2; 3] for
related issues). We let # % be the elements in % such that real-valued Yy can be
found with the further properties that 0<y-<1 and 0<y, <1 on only finitely
many I;. Then

Proposition 1.1. # =% %

Proof.Let Fe# and take e C*(I)such that 0Ly <1,y=1ona neighbor-
hood of F in I', and ¥ =0 on a neighborhood of E— Fin I.,

Let I;have the property that 0 <yr <1 for some points of ;;and adjusti on I;
so that =0 on an open interval of I; but so that it retains all its other prop-
erties. Do this for each j and hence

lﬁ:Zwa

where 0 <y, <1 on only two I, Yr,=1 on a neighborhood of Fe & in I', and
Yr,=0 on a neighborhood of E—F;in I.
Thus {E} is an open cover of F so that F compact implies we can cover F
k

by E,, ..., F,; consequently, set Y=Y Y, QED.
1

We say that I, <1, if 1, <7, and if we consider E<[0, 27); also L<---=I,
is a partition P of E.
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Proposition 1.2. The following are equivalent for TeD,(E), fT=ij X

(a) TeM(E). !

(b) fr(xy) is defined on all of I (by taking limits) and fy is of bounded
variation.

(c) There is M >0 for which

k-1

sup Y. [k,,,,—k, | <M. (1.3)
P

Proof. (b) is equivalent to (a) by the Riesz representation theorem, and (b)
implies (c) since f7 is of bounded variation. Assume (c) and let f7 be real-valued.

Set 1
(V) (y)=sup { 2k, =k s An, <, y€l; for some j}
P 1

For ye( ) I; define
0 L= VDO + 200,

L=V ) - fr0).

Clearly f;=f, + f, and in the usual way we have that f, and f, are increasing
functions on | ) I; considered as a subset of [0, 2x).
4]

Finally, for any y¢( )I; set fi(y—)=sup {f,(A): 2e|JI,, A<y}, fily+)=
0 ]
inf { f;(4): /IEUI ;» A>7v}, and similarly for f,; because we are dealing with
0

monotone functions these inf and sup exist and (b) follows. Q.E.D.

Weset D, (E)to bethe space of those elements T'in D, (E) for which f.e L (I').
Motivated by Proposition 1.2 and the properties of bounded variation functions
we define the space ¥ (E) of generalized measures 1o be those elements T of
Dy (E) such that the corresponding fr has the properties that f;(y+) exist for
all yeI' and f; has at most countably many jump discontinuities. Also let
Ay (E)= A'(E)n Dy(E); this is the space of bounded pseudo-measures.

Note that the mapping T f for all our subspaces of D, (E) is bijective.

2. The Support Preserving Banach Algebra M(E)
For each Te M(E) define

1T, =T+ S e (2.1)
where T=/f7, fr=2 k;x1,, and | f7| o, =sup|k;|. Clearly
1 J

ITI =Tl =201 T},

Generally, when dealing with Banach spaces which have a separately continuous
multiplication and multiplicative unit U, we employ the usual trick and identify
20 Math. Z, Bd.118
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the space with an algebra of operators that has a norm | || which satisfies
ISTIZISIIT| and U] =1.

Proposition 2.1. M(E), with multiplication defined by (1.2) and with norm
given by (2.1), is a commutative Banach algebra with identity U.

Proof. Given S, Te M(E) with fs= Zk Xrp 1= Zh,XI
Letting I,, <--- <1, we have

m-—1 m—1 m—1

Z Ik"]+1 Nj+1 knjhnll— Z |k",+1 nj+1 th)l+ Z |h"_7(k"1+1 "J)l‘

ISTH = frlla IS+ 1 fslia TN SN TN, 00 18]]1, 0. Q.E.D.
We designate the Gelfand transform of Te M(E) by T.
Proposition 2.2. Let TeD,(E), fr=> k; x1;- The following are equivalent:
() TeM(E). '
() ITf,<o0.
(c) There is M >0 such that if I, <---<1I,, then

2

m

z (k"2j—[—k"2j)

j=1

<M. 2.2)

Proof. The equivalence of (a) and (b) is given in [3] and the sum in (c) is
{T g for some Y. Q.E.D.

We state Proposition 2.2 to observe the equivalence of (2.2) and (1.3).
Let’s now describe the obvious elements of .#(M(E)), the maximal ideal
space of M(E):

X, ={FeM(M(E): F(T)=k,, fr=) k;x1,, =1}
Xt ={Fes(M(E): E(T)=fr(y+), )lieE inaccessible}
X ={F,e.#(M(E)): E(T)=fr(y—), yeE inaccessible}
X}={F, e#(M(E): F,(T)=fr(4,—), some n}
X)={F, e#(M(E): E, (T)=fr(y,+), some n}.

Thus for X =X,u X UX; U X}UX] we have X = # (M(E)).

Proposition 2.3. (2) The elements of X are identified with monotone convergent
sequences {A, }, Am, accessible in E.

(b) FeX if and only if there is a subsequence {I,, } such that for all Te M(E),

= k 5
Ir ; i F(T)=limk,, . 2.3)

Proof. (a) Given {4,, } a monotone (decreasing, say) convergent sequence
in [0, 27) and let 4, — y; yeE since E is closed.
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For Te M(E), fr=) k; x1,, limk,, exists.
1 n

Weset F,(T)=lim k,, . F,is clearly a homomorphism, and, by monotonicity,

E(T)=frG+). °
Conversely, if F,e X then without loss of generality we have E,(T)= fr(y+)

for all Te M(E).

Since the accessible points are dense in E we choose 4, — 7, and, since in
this case we are dealing with right hand limit points, we take 4,, monotone
decreasing to 7.

(b) For F,e X we take a monotone sequence as in (a) and the corresponding
intervals {I,, }.

For any Te M(E), since F,(T)= fr(y+), say, and

imk, =frG+)  fr=Yk;x,
n 1

we have (2.3).
Assume (2.3); that is, let {4, } have the property that for all Te M(E),
Sfr=2k; xr,, imk,, exists—we designate this limit by F(T).
1 n

It is easy- to see that we can choose a monotone subsequence of {1, },
call it {4,, } again, and hence apply (a). Q.E.D.

Obviously in the correspondence of Proposition 2.3 there are many mono-
tone subsequences for any FeX. Also, in the second part of the argument of
Proposition 2.3b the existence of limk,, for all T implies the existence of a
limit y of {4,,} with the property that A, =y (or y=4,,) for all but a finite
number of the 4,,.

Theorem 2.1. (a) X =.# (M (E)).

(b) M(E) is a symmetric, semi-simple algebra with X,=.#(M(E)).

Proof. (a) Clearly X c.# (M(E)).

For TeM(E), fr=) k;y1,, we define fr=Yk; 1, and note that for any

1 1

partition I, <--- <1, ,

m—1 _ m—1
Z 'knj.;.l_knjl: Z Iknj+1—knj';
— Jj=1 Jj=1
thus f7=TeM(E).

Also, if F,e X we define
Mg ={TeM(E): E(T)=0};

since F,(T)=fr(y+), say, it is easy to see that My is a maximal (and hence
closed) ideal in M(E).

Taking any proper ideal I = M(E) we show Ic M F, for some F,e X, and this
proves that X consists of all maximal ideals.

If I ¢ My, for some F,e X then for all FeX there is Tr€l such that F(T;)#0;
we get a contradiction to this assumption.
20*
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Define S, =g, where

81 =15 10> 2.4
so that since I is an ideal we have g, eI and for all Ge X and all T
G (S7,)20; (2.5)

(2.5) follows by definition of X, from (2.4), and because Ge X.

We now show that X is closed in .# (M (E)), where, of course, we have the
weak * topology from M(E).

First let Fe X and say that for all Te M(E), F(T)=f;(y+), some yeE.
A subbasic neighborhood of F is

N={He#(M(E): |[H(T)— F(T)|<g},
and if fr=Yk; x1; we have k, — F(T) where 7, is monotone convergent

(in [0, 27)); tlhus if F, € X, corresponds to I, we have F, — F.
Therefore X,= X where X has the induced weak = topology.
Thus X,= X where X is the weak * closure in .#(M(E)) of X.
Hence, for Fe X there is {F,} =X, such that F, — F — that is, if f7 =) kjxi,s
1

k,— F(T); consequently, we apply Proposition 2.3 and so Fe X and X is
closed in .#(M(E)).

Because X is weak = closed in .#(M(E)) and .# (M(E)) is weak » compact
we have X weak *compact in .# (M (E)).

Without loss of generality take F(Tz)=1 and hence F(Sy)=1.

Now, for all FeX let Ny=.#(M(E)) be a weak + neighborhood of F such
that |S =] >% on N; there is no problem about doing this since STF is continuous
and ST]F (F)= F(STF) 1.

Further, ST 1 on X Ny, and since X is weak * compact, X € Ny, ..., N,
FieX, and

S= Z > onX.

Therefore, I an ideal 1mp11es Sel. Thus, if fs=z h; s, there is fy-i=
1 .
;Ex,j with S~'e M(E) because X,=X and $>1 on X

Consequently, U=S8S "I and hence I =M(E), a contradiction.
(b) We showed X,=X in (a) so that since X =.#(M(E)) we have X,=
M(M(E)).
For the symmetry, recall from (a) that if Te M(E) then
T=feM(E).
Hence, T=T on X, which does it.

For the semi- 51mp1101ty let T=0 on X, TeM(E). Then if f;= Z kjxi, we
have each k;=0 since T(F)=0 and T(F)=F,(T)=k;. QED.
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3. The Algebras D, (E) and %4 (E)

For D, (E) we define the natural metric topology given by the countable
family of norms "
1 T

1= 100 (5 Ilfr(v)l"dv) Y TeDuB), p=1,2, ..

Proposition 3.1. D, (E) is a Fréchet space and a continuous topological
algebra with unit.

Proof. Note that the metric space D, (E) is complete; in fact, if {T,} =D, (E)
is Cauchy we have frel?(I') such that || fr—fy || ,—"— 0 for all p=1. In parti-
cular f; — fin measure and so there is a subsequence (call it { f1. } again) which
converges to fa.e.

Thus if y, Ael; and f7, (y), fr, (A) converge to f(y), f(4), respectively, we have

S @)= f(2) since fr, (y)=fr,(4). Thus fre D, (E).
Now, for S, TeD,(E) and g=2 we note that (fs fr)%e L}(I).

1 1 .
Infact,ifs=1 f{, ffe (I'); and so if?+?=lwe havefée P (I), felf (I

so that (fs fr)?e LI') by Hélder’s inequality.
Hence STe D, (E), and, again by Holder, (ST)~ ST is continuous. Q.E.D.
Notationally we set .# (D, (E))={Fe(D,(E)): F£0, F(ST)=F(S) F(T)}.
Also if M(E)s B& D, (E) is any Banach algebra define .# (B)={FeB': F %0,
F(ST)=F(S) F(T)}; and for each TeB, T is the Gelfand transform of T. For
example, D,(E), when normed by | T|,= | frl »» T€D,(E), is a Banach algebra.
Proposition 3.2. (a) M(E)=D(E).
(b) X,=.#(D,(E)) and so M (D, (E)) is dense in .4 (M(E)).

Proof. (a) Let Te D, (E), fr=) k; x1,» and set fr, =3 k; ;.
1 1
Letting p=1

2n| o

P o
2n | T-T|5= | 2";‘7(1;()’)' dy= ), |kj”e;
0 |n+1 n+1
bllt 0
2|\ TI5=3 k;l? e;
1
and so Iim IT-T,,=0

(b) Let EeX, and let T,— 0 in D,(E), T,,eD,(E). If f = ka,XI and
p=1 we have F,(T,)=k,, , and

1 1

7 Pyt |km nlp 2_ Z m_]'p81=”Tm”g

Thus, with n and p fixed, k,, ,— 0 as m— oo since | T,,|l ,— 0; consequently,
E.e# (D, (E)).
Now if Fe .# (D, (E)) let Te D, (E) be such that F(T)=0.
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N
Setting fr =3 k; x1,let fr, =) k; 11, have the property that F(T)+0by (a).
1 1
Therefore, if n> N and S=y;,
F(S) F(Ty)=F(STy)=0
so that F(5)=0.
By linearity of F there is 1<n<N such that F(P)+0, P=y; ; if R=yx},,

k#+nand 1<k<N, then

so that F(R)=0. F(R) F(P)=F(RP)=0

Also F(P)=1 since F(P)=F(PP).

Hence, by applying (a) again, we have F(T)=k,andso F=FeX,. Q.ED.

Remark. 1. Since D,,(E) is not locally m-convex, a fact which is clear by the
properties of IP-spaces, we expect [7, p.355] that there is a non-invertible
TeD,,(E) such that for all Fe.#(D,(E)), F(T)=0; and this is obviously the
case.

2. It is also easy to see that .#(D,,(E)) is not weak * compact; for if it were,
X, would be weak * compact in #(M(E)), by the continuity of the natural
injection (by Proposition 3.2a) of .#(D,,(E)) into .# (M (E)), and this contradicts
Theorem 2.1b.

The following is easy to prove from the properties of D, (E), and we refer
to [1; 7] for general and related results.

Proposition 3.3. .#(D,,(E)) is the space of closed maximal ideals in D ,(E).

It is also clear (e.g., Theorem 4.1) that —

Proposition 3.4.

() 4(E) is a closed subalgebra of D,(E).

(b) M((E)) =4 (M(E)).

_ (c) The space C(#(%(E))) of continuous functions on M (9(E)) is precisely

{T: Te%(E)}.

4. Subalgebras of % (E)
Theorem 4.1. Let M(Ey=s B€ D, (E), B a Banach algebra with

M(B)= M(M(E)). 4.1)
Then
(a) #(B)=.#(M(E)), as sets and topologically.
(b) BS¥%(E).

Proof. Since M(E)=D,(E) we have B =D, (E) and hence the canonical
adjoint D, (E)— B' is injective; thus

M (D, (E))< 4 (B).
From Theorem 2.16, Proposition 3.26, and (4.1) we have
M(B)=M(M(E)). 4.2)
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Ttiseasy to check that the natural injection .#(B) — .# (M (E)) is continuous,
where both domain and range have their respective weak = topologies.

By this continuity and (4.2) we have .#(B)=.#(M(E)) as sets and (a) follows
by properties of compact spaces.

Let TeB;then thereis {7,} = M(E)such that T, — T in the sup norm topology
of C(.#(M(E))) since M(E) is symmetric.

Because X, = .#(B) and T,(F)=k, ;, for f = an jx1,and FeX,, we have
Sz, —fr uniformly on U I;.

Similarly, if F,e X — X, assume, without loss of generality, that S(Fy)=

E(S)=fs(y+), y an inaccessible point of E and Se M(E).

Let {4,,} be monotone decreasing (as a subset of [0, 27z)) and with the
property that for all SeM (E), fs(y—l—)—hm h.., where fs—z ; X1;; We can do

this from the results of Sec. 2.
By hypothesis, lim T, (F. = T(Fv) exists, and we show that

lim k= TE),  fr=3 ks, (43)

Now given &> 0, for any j,

| T(F) — k| S I T(E) = T,(E) + 1T, (F) — Ko |,
and
| T (F) = kony | S S, 7 ) = Ko |+ Vi, — Ko |-

There is N such that for all n2> N and for all j,
ey — k| <64 and | T(E)—Ty(F)l<e/2.
For this N there is Jy such that for all j2Jy, | fr,, (y +) — ky, ,| <&/4.

Thus, for >0 we’ve found J=Jy so that if j=J, |T(F) k,,| <& and hence
(4.3) holds.

Finally, to show B= % (E) we must prove that f7(y + )+ f3(y —) for at most
countably many yeE.

Given k> 0. There is N >0 such that for all n= N and for all yeE

|fr(y£)—fr,(y L) <1/4k.

For any fixed n= N there are at most countably many y for which

| fr,(v+)—Sr,(r =) >1/k;
thus for any J, not one of these y,
Lfr(A+)—fr(A-)]
@A) —fr, A+ fr,A+) = fr, A=)+ fr, (A=) = fr(A-)
<1/k.

Therefore for a given k there are at most countably many y for which
lfr(y+)—fr(r—)I>1/k. QE.D.
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Corollary 4.1.1. Let M(EYsB= D, (E), B a Banach algebra, and assume
M(E) is weakly dense (and hence norm dense) or dense in the spectral norm in B.
Then

(a) M (B)=.#(M(E)), as sets and topologically.

(b) BS%(E).

Proof. By the weak denseness or spectral denseness (4.1) holds, and we
apply the theorem. Q.E.D.

Remark. If E is Helson and a spectral synthesis set then 4'(E) is the Banach
algebra M(E). If E is not Helson but A'(E) is a Banach algebra (containing
M(E)) then A'(E)=%(E) if E satisfies either of the denseness conditions of
Corollary 4.1.1, or, more generally, if (4.1) is satisfied.

Theorem 4.2. Let M(EYc B= D, (E), B a Banach algebra, and assume that
the identity homomorphism M(E) — M (E) extends to a homomorphismj: B— M(E).
Then B %(E).

Proof. Since j is surjective j(B) is dense in M(E) with the spectral norm.

Thus .# (M (E))—.#(B) homeomorphically.

For TeB, T, is the restriction of T'to .#(M(E)).

Since T.e C(#(M(E))) and M(E) is symmetric 7, is the uniform limit of 7,
T,e M(E).

By the calculation at the end of Theorem 4.1, BE%(E). Q.E.D.

Remark. Generally, when one wishes to show M(E)=, for some subspace
Y of A’(E), it is natural to extend the identity map M(E)— M(E) to a linear
transformation j: Y— M(E), Y a Banach space [2; 6]; this process has built
into it that j is injective. In Theorem 4.2 we need more initial structure on the
space (viz., B must be a Banach algebra not just a Banach space) and on the
map (viz., j must be a homomorphism) but we do not make any requirements
concerning injectiveness.
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