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(LF) Spaces and Distributions on Compact Groups
and
Spectral Synthesis on R/2n Z
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Let EC R/2nZ be closed with Lebesgue measure 0. We imbed the pseudo-measures Tsupported
by E into a space of distributions on a specific compact connected group. The reason for this
approach is to make use of the more tractable differentiable absolutely convergent Fourier series
for the general problem to determine when Tis a measure. The specific results are outlined in the
Introduction. Applications of the techniques presented here are used to obtain new criteria that a
Helson set be a set of spectral synthesis in the author’s forthcoming work (viz., “A Support Pre-
serving Hahn-Banach Property and the Helson-S Set Problem” and “The Helson-S Set Problem
and Discontinuous Homomorphisms on Metric Algebras”).

Let ECR2nZ =T be closed with Haar measure m(E)=0. We imbed r
into a canonical compact connected group I'=G (§ 1) and note that if T is a
pseudo-measure with support in E, i.e., Te A'(E), then there is a corresponding
well-defined linear functional ¢t~ T on the space of C® functions on I". We
prove that T is a measure, i.e., Te M(E), if and only if ¢ is a distribution on T’
(Theorem 6.1), ie., te Py. We then give conditions that t~ Te A'(E) be a
distribution (Theorem 7.2); and prove that ¢ corresponding to any Te A'(E)
is always at least a slightly more general distribution, i.e., te @ or t &€ 2} (§9),
depending on whether T is a bounded pseudo-measure or not (Theorem 9.1).

We were led to this approach because of the general open problem to
determine if a Helson set E is a spectral synthesis set, ie., if A'(E)=M(E).
The analytic techniques available to study this question are valid, generally
speaking, on C°°(F) whereas definitive answers depend on behavior at every
q)eA(F) the space of absolutely convergent Fourier series [2, Chapter 2].
Thus, by determining C°°(F ) subgroups G of A(F) we are able to use these
techniques, while changing the setting to distributions on I'. A natural and
particular G, obviously depending on E, is defined in § 8.

Although distribution theory on (compact) groups has been exposited
by several authors it seems that specific problems demand different base
spaces, etc. (e.g., in at least one theory, the Schwartz space of test functions is
not contained in the space of absolutely convergent Fourier series!). In fact
our results mentioned above only become useful if Py is quite large and if
the set of elements ¢ for which t((p)=l=0 (for a given te %) are somehow
bounded. As such we choose 2y, 9y, and 2, to be definite (LF)-spaces (§4
and §9).

We refer to Dieudonné and Schwartz’s paper [3] for the theory of (LF)-
spaces, and to [5] and [4] for the other basic functional analysis and harmonic
analysis facts that we use.
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0. Notation for R2nZ
We consider EC[0,2n) and write ¥E= ) I, where I,=(4,.7,) and

0
Y — Am= &y F 1s the set of open and closed subsets of E with the induced
topology from R27 Z.
A’ (F )is the Banach space dual of A(F Ywhere p(y) =X a, e”‘y € A(F }is normed
by |||, =X |a,. We then let

A(E )E{TeA’(f)'suppTQE}

It is easy to check that if Te A'(E), T(0)=0, then T = f" distributionally, where
f= Z Ko trme () I7(I"). Thus we define the space of bounded pseudo measures

to be AYE)={Tec A'(E): fe L*(I)}.

1. The Imbedding Group

Let G C A(I") be a non-trivial additive subgroup of A(I’) consisting of real-
valued elements all of which vanish at some A'. We take G with the discrete
topology and let I be its compact dual.

We are able to write down explicitly a large number of elements of I
In fact, we say fe X, where f corresponds to a sequence {1;} CI" and {r;} CR
with X |r)| < co0, and define

VoeG, (f,p)=explir; (1)} ;
A

i

Proposition 1.1. a) I' is a compact connected group.

b) X CTI' is a dense subgroup.

¢) b is independent of the subgroup G C A(F ) that we choose with the above
properties (i.e., given G and X we form I', depending only on G, and b holds).

we frequently write f ~r;

Proof. a) I' is connected since G contains no compact subgroup different
from {0}.

b) X is a subgroup because X |r;| < oo for f ~r;, ;. Obviously we identify
the zero element of I' with any f ~r;, 4; for which ;=0 for all j, or (1)=0
for all j and all ¢ € G, etc. We choose 0= f~1".

If X+I we proceed in the standard way taking f + X+ X, some feT,
and defining F e F/X such that

(F,f+X)+1.

From this we define the continuous homomorphism ¢ € G with the property
g—(F, g + X); consequently, ¢ + 0.
Now, take any ywe G such that V f ~ 4, lel,

(p.f)=evP=1.
Thus, p(A)=2n k, some ke Z and all Ae r (since p is continuous).
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Clearly k=0 since p(1)=0; and so p=0. Therefore (p,I)=1 and in
particular ¢ =0, a contradiction.
¢) Clear. g.e.d.
Thus there is canonical map
j:F>r
Ao f~4,
that is, (j4, @) = e'*® for all ¢ € G. In order that j be injective we assume that
VA, yel, A%y, 3¢eG such that Vke Z

M) —o(*2rk.

Proposition 1.2. j isia continuous injection.

Proof. If 1,— A4 in I’ then o(A)—@(2) for all ¢eG; and so, YoeG,
(f., @)= (f, @) in I, where f, ~ A,, f ~ A, by the definition of the dual topology
on . g.e.d.

2. Associated Canonical Maps
For every ¥ e C(I') we associate the function
j¥:I'-c)
A= P(j4),

ie, (JW,A>=(¥,ji), the canonical transpose.

Proposntlon 2.1. ) j': C(F)—»C(F)

b) j: C(IN->C(I' ) is a continuous homomorphism (when both range and
domain have sup norm).

Proof. a) Clear since j is continuous.

b) The homomorphism part is obvious, and so the continuity follows
because we are dealing with Banach algebra and C (F ) is semi-simple.  q.e.d.

We next assume that G be a real vector space.
hom(G, R) is the space of continuous homomorphisms

h:G->R

where R is considered additively and G is hormed by | \g, where || |¢ is at
least as strong as uniform convergence on I hom(G, R) is then a real vector
space with canonical norm || |pom; We let hom(G, R)" be its Banach space dual

with norm | |
For all he hom(G, R) we define

%#.R—->T

where
VoeG, (#4(r),p)=e"™"?.

Obviously # is a well-defined homomorphism, and if =0 then Z=0.
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Remark. There is a natural map
X - hom(G, R)
where if f ~r;, A; we define the corresponding h as
VoeG, ho)=Zre4)).
h is certainly a homomorphism G—R, and if ||¢,];—0 we have

(@) £ 3 I 100 < lgllg X i =0

Proposition 2.2. There is a natural continuous injective homomorphism
k:G— hom(G, R)
(the domain G considered as a discrete group) where
Vhehom(G,R), <k(p),h)>=h(p).
Proof. To show k(¢) € hom(G, R)
k() (ay hy + a3 hy) = (o By + 22 h2) (@) = oy hy (@) + 02 by (@)

= 0 k() (h)) + a2 k(o) (h) .
If h,—0 then

sup {|h, (W)l : [yle=1} -0 andso k(@)= kie),h,>—0.

k is a homomorphism since
Ck(@y + @2), B> = h(@y) + h(@2) = <k(@,), h) + {k(@,), by = k(@) + kl@2), B -

To show k is injective take ¢ vy, ¢, € G and let ¢(1)+y(4); from the
previous Remark let h~Ael’, and hence he hom(G, R) has the property

h() = h(y). ge.d.

3. C” Spaces

Let 7 be the vector space of trigonometric polynomials on I', i.e., functions
of the form

w(f)= z af.0)=2a,%,(f),

¢;€G, a;eC.
A function ¥ : I'— C is differentiable in the direction h € hom(G, R) at the
point feI if

D)= - (P + Wm0

exists; in this case the derivative of ¥ in direction h at f is D, ¥(f). For h=0
we set Dy, V()= P(f).
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Proposition 3.1. V¢ € G and Vh e hom(G, R)

DY, (f)=ih@) ¥, (), F,(N=(,90).
Proof.

Dy Byl() = (4 + 1, Do = s 0)- (40, D)

= (f, ), _o = ih() (. ). Ged.

Let C®(I) be the vector space of functions ¥:I'-»C such that
VB < hom(G, R), norm bounded, and for every non-negative integer N

pen(¥)=sup{||Dy, ... D), |, :h;e B,k <N} <o0.

Clearly, 7 € C*(I')and the set of p; y defines alocaly convex topology on C*(I).

Proposition 3.2. C*(I') is metrizable.

Proof. Let B, ={hehom(G, R): | hllyom =7}
Given B £ hom(G, R) take B, 2 B.

Then

ViB,, NYS V.(B, N)
where, for example,
ViB,N)={¥ & C(I): ps 5(P) <&} .

Consequently, C*(I') is metrizable. q.ed.
We define the following subspaces of C*(I'):
(') — The completion of 4 in the C*(I') topology;
C7(I') — The elements ¥ e C®(I') which are represented by

Y Plo)(f, 9) (3.1)

G
in the C®{I') topology. ' .

Remark. VW e C*(T'), we can show supp ¥, to be o-compact, and hence
there is a sequence {@;} G, depending on ¥, so that Y7(g0)=0 whenever
o¢{p;:j=1,...}. As such the Fourier series formula (3.1) is meaningful.

We give C2(I') and C#(I') the induced topology from C®(I'). Let C¥(I") be
the completion of 7~ when the topology on  is defined by the family of norms

esn(P)=psn(P)+ ) |¥(9)l.

peG
Clearly CR(I') is dense in C2(I'), and of course, CS(I') € CX(I).
Proposition 3.3. C3(I') and C3(I') are Fréchet spaces.
Proof. Let {¥,} be Cauchy in C{(I'). Thus, there is ¥ € CX(I') such that
Pe.n(¥,— ¥)—0 for all B, N; and there is & € A(I') such that

Y ¥, (¢) — B(g)| - 0. (32)

Clearly, ¥ = & since (3.2) implies ¥, — @ uniformly on I". g.ed.
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The strong duals of C*(I), CHI), CF(I'), and C7(I') are D'(I'), D(I),
D(I"), and D) (I'), respectively; and we have the imbeddings

Dy (I') = Dp(I' € Dy(I') (3-3)

since I = C2(I).

4. Dy and Dy
For every k=1 define

Xe={PeCP():|Gy| =k}
where )
Gy={peG:¥(p)+0}
and
|Gyl =sup{liplic: e Gy}.

Proposition 4.1. Vk = 1, X, is a closed subspace of C (I') and thus is a Fréchet
space with the induced topology from C3(I).

Proof. Take ¥, 'V, e X, and let oy %,(p)+ o, P,(9)+0. Then ¥(p)+0
for some j and so |¢| o <k. Let ¥,—» ¥ in C(I), ¥, € X;. For each ¢ € Gy, we
show ||¢|lg < k. Note that

uMw—ﬂwgp%—wau

Consequently, 3N such thatVn > N, ¥,(¢) +0 and so || ol k. g.e.d.
Observe that
X, X, €,
and we set
Dy = U X,
1

taken with the inductive limit topology. Thus @y is an (LF)-space and, in
particular, is complete and is not metrizable. Recall that Z(R"), a la Schwartz,
is (L F). The fact that @y is not metrizable follows from Baire’s theorem and the
fact that 2, is complete is an application of K6the’s theorem on the completeness
of strict inductive limits of complete spaces.

We let % be the strong dual of 9y and this will be our space of distributions.

Proposition 4.2. a) 7 C 9, C C(IN) C A(X).

b) t € Dy<>t is continuous on each X, taken with its induced topology from
Cce(D).

Q) A1) S DyI)EF,.

Proof. a) follows from definition and b) is a property of inductive limits.

c) Let te Dy(I) so that re X;, k=1, where X, has the induced topology
from C{(I). Thus t € 9% since

T =C2(I).
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To show A'(I') € D,(I') we need only note that 7 = A(I') which is clear by the
definition of A(I). g.ed.
(L F)-spaces are of course barrelled and bornological, and this latter property
implies 9 is complete. Also the topology induced on X, from 9y is precisely
that of the indiced topology from C%(I).
Note that if ¥ € @ and ¥(¢)+0 then there is n, such that Va>n,

Ff‘l’(f)(f,co)"df=0;

this follows since ¥ € X, and !|n<p||G >k for n large.

Proposmon 4.3. a) Yk, T N X, =

b) I = Dy.

Proof. a) Since CY(I') is a complete metric space, int X, 0, where X,
is considered as a subset of C3(I).

Take ¥ eint X.

Because J = C%(I) we let ¥,—» ¥, ¥, 7 ; hence we can take ¥, € X,.

Now let Y€ X, and ¢,- ¥, &, eintX,.

Vn, take ¥, e 7 nX, such that o(d,— ¥,)<1/n where ¢ is the metric
corresponding to the topology on CZ(I).

Thus ¥,— ¥ since ¢(¥ — ) Zo(¥V — @)+ 0($,— P,).

b) Assume 7 * Py and take ¥ e Dy — 7.

From the Hahn-Banach theorem let te %% have the properties that
(t,T>=0and {t, P>=1.

By definition, ¥ € X;, some k, and thus, from a), there is {¥,} .7 n X,
such that ¥,—» V.

Consequently, {t, ¥,> # 0 for some #, a contradiction. g.e.d.

5. Remarks

Let ¢ be a linear functional on 7. We associate the Fourier series

t~ Y Ho)(f, )

0cG
Ho) =<1, ¥_ > (5.1)

If {{(¢): ¢ € G} is bounded then t induces an element of A'(I') by defining
{1, @) =T i(g) Dg) (52)

for all @€ A(I'). (5.2) is well-defined since & vanishes off a countable set,
> |d> )| < o0, and t is bounded; clearly t € A'(I).
? Also,VTe A’ (F } we define a linear functional on 7 : Vg e G set

where

t, ¥, =(T,e?). (5.3)
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In fact, j/ 7, () =P, (jA) =€, and p e GC A(D), real-valued, gives €% € A(I’).
If t so defined uniquely determines an element of @} we write t € Z.
Clearly, for any linear functional ¢: 4 —C we can define its Fourier co-

efficients by (5.1).
Assume that the norm || = |-

Proposition 5.1. Let bC G be || ||, bounded by 1 (as functions on f). Then
b as a subset hom(G, R)' is bounded by 1.

Proof. For ¢ e hom(G, RY,
lol"= sup{i<e, B3| : | Allpom =1} .
Let @ €b, ¢>0. There is he hom(G, R), ||| p.m < 1, so that
lell’ —e =Ko, B> = h(o).
Now || Allpom =1 if and only if sup{|h(y)l : [yl =1, pe G} <1. Thus, h(p) =1

and so || 1. g.ed.
Proposition 5.2. Let bC G be || |, bounded by 1. ¥t € D% AK, > 0 such that
Yoeb ”
(- =K, .

Proof. t € 9y implies ¢ is continuous on each X,. Taking p=1, fixed, we
can therefore find C,>0, B < hom(G, R) bounded, and N so that V¥ e X,

IKt, PO = C, 0p,n(P)-
B < hom(G, R) and b < hom(G, R) bounded (from Prop. 5.1) imply
sup{|K@,h)|:peb,he B}=M < 0.
Thus, for any hy, ..., b, € B, we have
Dy, ... Dy P_ () < M*
Voeband Vfel (from Prop. 3.1).
Consequently, since ) |¥,(yp)=1and {¥,:peb}LX,,
L'
Yoeb, [t(—@)=Kt ¥ I =CM"+1)=K,. qed
Note that M(I') € D#(I). In fact, if ue M(T), p is defined on CZ(I) € C(I),
and if @,—0 in C¥(I') then $,—0 in C&).
6. Sets of Strong Spectral Resolution

Assume that VFe F G contains a yge C*(I') where 0<ypr=1, pe=1
on a neighborhood of F, and yy=0 on a neighborhood of E —F.
Proposition 6.1. Let Te A'(E) and assume that AM >0 such that VF e &
KT, e <M. (6.1)
Then Te M(E).
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Proof. Let Fe #. YA eI we write
© K
e =Y, 1 e

It is then easy to see that
X © sk
(L) =(T. 1+ (T (6.2
T k!

There are several ways to prove (6.2). For example, if we write f'=T,
f=Zk,x,, € LI), we calculate

© ik+1

(T, eV = —i{f, eV yppy=—) o < Pk

ik
k—<T 1PF>

I
oMs o

using Lebesgue’s convergence theorem.
Now, supp TC E and yr=1 on a neighborhood of F, y;=0 on a neigh-
borhood of E — F gives

Vkz1, (T, p;> =T, pp>.
Thus,
e

. 21
(T, e —<T,1>=(T, 1PF>>ZF>
= k!
and so since c=e' — 1= (¥/k!)+0
1

KT, wel = |<T 1| +—|<T evryl.

Hence, by (6.1), T, as a finitely additive set function on &, is bounded; therefore
we apply [1; 2, Chapter 2] and have Te M(E). g.e.d.

Theorem 6.1. Let Te A(E). Te M(E) if and only if te Dy (where t is
defined in (5.3),.

Proof. Let Te M(E). 7 is dense in C(I') since G separates the points of I
and by Stone-Weierstrass. If ¥, —» ¥ in C(I') topology on J thenj¥,—j¥in
C(F) topology by Prop. 2.1; and so {T,j¥,—j ¥>—0.

Since <t, &> =(T,j®) we have te M(I')C D%, where the last inclusion
follows from § 5 or Prop. 4.2¢.

Conversely, let t € 9.

b={ypp: Fe %} is sup norm bounded by 1 and so is a bounded set of
hom(G, RY (Prop. 5.1).

Also ¢ is bounded on b (Prop. 5.2).

Consequently, from (5.3) and Prop. 6.1 we have T'e M (E). q.ed.

Corollary. Let t correspond to Te M (f ) by (5.3). Then te M(I).
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7. Conditions for Strong Spectral Resolution

Assume G C C°°(f ). B
Let Te A'(E) and suppose, without loss of generality, that T(0)= 0. There
is {k,} € C such that, for

7;1 = Z km(élm - 5ym) ’
1

VoeCl(I), 1im(T,, ¢>=<T, o)
and
X elhmle < o0, some r>0

[2, Chapter 2]. For each n we associate t, € M(j E) defined by

VWeCl), <, ¥>=<T,J¥>.

Thus "

tn = Z km(éjlm - 5j}’m) :
1

Consider the expression

sup sup
n @peGy

defined for ¥ € A(I') and for all ¢ € Gy,.

Theorem 7.1. Given Te A'(E) with corresponding T,, t,, k,,. Assume that
Jor each ¥ e A(I'), (7.1) is bounded. Then

a) te A(I).

b) Te M(E).

Proof. b) follows from Theorem 6.1, a) and the fact that A'(I") C D

a) Take ¥ e A'(I). Then

Yk, (90m) — giotm) (7.1)

1

Cto ¥y =Fhn| 3 o) (00— o0m)
1 oGy ) (72)
— Z lj/(q)) (Z k, (et¢tm — ei(P()'m))) .
oGy 1
By our hypothesis and the fact that ¥e A(I), lim<{t,, ¥>={s, ¥) exists
for each ¥ e A(I').
Consequently we have se A'(I') by the Banach-Steinhaus theorem.
Take ¥,. Then <t, ¥, >=(T,e*) =1lim(T,, "> =limt,, ¥,>={s, ¥,>.
Therefore, t =s and te A'(I). q.ed.
In the following result, part a) may seem weaker than Theorem 7.1a but,
because we need only consider ¥ € &y, we have the more useful criterion that
sup{llo|l.. : @ € Gy} < oo for applications.

Theorem 7.2. Given Te A'(E) with corresponding T,, t,, k,. Assume that
Jor each ¥ € 9y, (1.1) is bounded. Then

a) teDy.

b) Te M(E).
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Proof. Once again b) is clear from Theorem 6.1 and a).

a) We have (7.2) for ¥ € @y; so that since ¢ € C*(I') and X |¥(¢) < 0,
lim<{t,, P> ={s, ¥) exists for each ¥ € Py. Because Py is barrelled we can
again use the Banach-Steinhaus theorem and so s € 9'y.

Now s=1¢ on 7 and therefore t € Py since T = Dy. g.ed.

Remark. In the representation of Te A'(E) as f’, f=Z k,x;,,,» we make the
following calculation with regard to Prop. 6.1:

(T, 6%y = —iCf, ey = X [+ k] (2 (K, — knz,._))

Thus, if

m

; (knzj - k"zj— 1)

<A, <A

nzj—1 n2j n2j+1°

where 4

is bounded for all partitions then we can show that T is a measure, and, in
fact, that the converese is true.

8. A Particular G

Given E we shall now construct G so that Theorem 7.2 is applicable.

First, take A’ e (4, yo) ¢ 1).

Recall that in § 7 G is a real vector space {under addition) of real-valued
elements of C°°(F ), and that the following conditions are satisfied:

Ga) V4, ye[‘ A+7,3pe G such that Vke Zo() — o(p) +2nk;

Gb) VFe %, 3¢ e G such that ¢ =1 on a neighborhood of F, p=0 on a
neighborhood of E— F,and 0Z ¢ =<1

We designate any collection satisfying G b) by bz. We need the following —

Lemma 8.1. Let o> 0 and define
B(x)=eexp{—a?/(@® —x)}, xe[0,0).

a) 0 is C* on [0, a], 6™(0)=0"(x) =0 for each n, and 3r >0, independent
of o, such that .
sup |9’(x)|— —

xe[0,a]
b) Let a,<¢, and let p € C°°(F), real-valued, have the form
p(x)=ceexp{—oiflom—(x—4,)")}, ceR,

on [Aly, A+ 0] € (A, ¥y)- Then

clr
sup {19/ (9] € iy Zy ]} = 1

"
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Proof. b) is clear from a).

2) ' 2xa’e sya 2
W= i P~ —x)
and
a*—3x*
0" (x)= —2ea? o — ) P {—o?/(0* —x*)}.
We then compute the sup of 8. q.e.d.

For a given E we now construct G. Take I, I, 4;<y, j+k, and assume
A ¢(A; 7). Let pe C°°(F ), real-valued, satisfy

Ea) ¢ =1 on some (), #*) containing [y;, A].

Eb) ¢ =0 on [0, H)U(¥*, 2n] where 4, </ <y and * <y* <y,.

Ec) ¢ has the “form™ of  (in Lemma 8.1) in [, v/] and [A¥, y*].
We designate such a ¢ by ¢;, for the moment. If A’ € (4, y,) we further consider ¢
of the form

P=Qj0+ Pox
where we stipulate that
A< <y°.

Also when 1’ € (1, v,) we take those ¢ which are equal to 1 and 0 in Ea) and Eb),
respectively, as well as being C°°(F) real-valued, and satisfying Ec); then we
include the corresponding ¢ for the case A" ¢ (4;, ).

Let By be the set of all such ¢ for all j, k and all permissible A7, 7, 1%, y*
and let G be the real vector space generated by By,

Ga) is satisfied since we are taking all possible A/, 9/, A¥, v*. For Gb) we
need the following lemma which is clear (e.g., [2, Prop. 2.1]) from our de-
finitions and a compactness argument.

Lemma 8.2. Vg there is ¢ € G such that ¢ = 1 on a neighborhood of F, ¢ =0
on a neighborhood of E—F, and 0< o £ 1.

9. The (LF)-Spaces &, and 2, for Estimating Pseudo-Measures

Take the G of § 8.
Define

Y, ={PeC3(I):|Gyl<k and VYpeGy,Vm=k¢'=0 on I}.
Z,={VYeC3(I:|Gy|<k and VoeGy,¢'+0 for at most kI s}.
Chus, for each k> 1
%CZ,CX,.

As with Prop. 4.1 the following is trivial —

Proposition 9.1. Each Y, (resp., Z,) is a Fréchet space with the induced
opology from C3(I).
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We have
Y, ZyCZ,C
and we form the (L F)-spaces
gy = U Yk 5 gz: U Zk
1 1

and corresponding “distribution” spaces, 9y and 5.
Remark. In a similar manner we can define the space 9y in terms of

U={¥PeC(IN:PeY, and |¢|=Zk YpeGy}.
As such 2y has the property that

Jj Dy S CHI) S AT
since R
iZ ¥(p) @' () oD

converges uniformly. We shall not investigate &y, at this time.
The easy argument of Prop. 4.3 is general and gives

Proposition 9.2. 7 C Dy, Yk T N Y, =Y, and T = Dy (resp., for Z, and D).

If ¢ defined by (5.3) uniquely determines an element of 2y (resp., 97) we
write t € 9y (resp., Z7).
Next note that 9,CD,C D,
and because of general properties of inductive limits and various dense sub-
spaces with which we are dealing, we extend (3.3) and Prop. 4.2¢ to
M(I) € D AT € Dy(T) Dy S Dy € Dy .

Theorem 9.1. If Te A'(E) (resp., Ay(E)) then the corresponding te Dy
(resp., 93).

Proof. Let Te A'(E) and define ¢ by (5.3). We show that V¥ e @y, (7.1)
is bounded. This will prove t € 9} by the same argument as in Theorem 7.2

since 9y is barrelled.
If Y9, and p e Gy let

F,={m20:¢'40 on (i 7w}

Then card F, <3 for all ¢ € By.
Also, ¥ ¢ Y,, some k, and so

VoeGy, Ymzk, ¢'=0 on I,.
There are &, £ such that (7.1) (for this ¥ € 9y) equals

sup sup Zk [—&n sin@ (&) @' (E,) + ien cos @(&) ¢'(E)]

n @eGy
) ©.1)
25up sup 3, [l & SUp I/ ()] J

n ¢eGy ,cF,
msn
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We must now show that we can take ¢ € Gy with corresponding «,, (§8)
satisfying o, =¢,,/2.
Given ¢ € Gy and let p € G have the properties:
a) p=@ona neighborhood of E,
b) Vm=k, v'=0 on
¢) Vm<k and A7, 7y} corresponding to (as in §8) let yj — A} =a,, =¢,/2.
It is necessary to prove

(i Py = Y sff(q»)(ikm(eiw“m>—ew<w)). 92)
Now, oeor 1 .
(b > = (T f W5 = (T, S H(0) (£, 9 93)

Dy CAT), Y. Y7(<pj) (f> ;)= ¥(f) uniformly on I', and j' is a continuous map
1

C(I'— C(I') (Prop. 2.1).
Thus, the right hand side of (9.3) is
Y PeKT, e =Y P@)<T,e"
0eGy 9eGy
by the definition of T,. This gives (9.2).
Consequently, we can replace (9.1) by

Ksup sup Y |km| RS 9.4
weG"’meF m
m<n
from the way we've chosen %y.
Therefore, since sup{meF,: ¢ € Gy} <k for our ¥, (9.4) is bounded by

k
K'Y |k,| and so t € ;.

1
For the Te A,(E) case we proceed in the same way replacing
(9.1) by an estimate (corresponding to (9.4)) which is ‘bounded by

Csup{2|k |lim;eZ, m >1}

This procedure is possible by the definition of &, and we get the required
boundedness of (7.1) (so that t € 23) since {|k,,|} is bounded. g.e.d.
Because of Theorem 9.1 we define the map

J: A(E)> Dy

(and the canonical injection A'(E)/kerj— @y); it is easy to check that j is linear.
Also, by the properties of bounded sets in &y and the proof of Theorem 9.1
we see that t,—t in f(Dy, Z@y)=p. Now, if §,— S in A'(E) and s,—¢ in f3, with
jS,=s, and S, € A'(E) (not necessarily in the form of § 7) then we have jS=t¢
on , and hence the graph ofj is closed. Thus, we can use the lovely new closed
graph theorems (Marc de Wilde’s, say) noting that 2 is bornant since it is
the dual of an L F-space. Consequently —
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Corollary 9.1.1. j is a continuous linear map from (A'(E), | || 4) into (2y, B).

It is therefore interesting to note that if E is Helson and j A'(E) is a barrelled
subspace of (2%, ) then E is a spectral synthesis set. For this line of thinking
-one is lead to consider the completion C4(I') of  with the “X ['f’((p)l” norm
along with

W={¥eC,I):Yoely, |lo|,<k, ad Vm=k, ¢'=0 on I}

and the corresponding LB-space Py . In fact, since 2y, is a strict inductive
limit of Banach spaces, 2y, is Fréchet; so that since the analogue to Theorem 9.1
still holds we have that E is a spectral synthesis set if E is Helson and j A'(E)
is closed in (94, B). Note that if a closed set F CF is Helson then m(F)=0
[2, Chapter 7]. In any case we see that generally j A’(E) is neither barrelled nor
closed for otherwise we’d be able to argue that the measures with finite support
in E are strongly dense in M(E), a statement which is obviously not true for
perfect E.

Remark 1. Since we are dealing with inductive limits and because b, ¢ Z,
(or Y,) for any k we do not have b, bounded in Z, (or Y;) and so we can’t argue
as in Theorem 6.1 to prove Te M(E). In fact, we can easily construct countable
closed F < I’ which support Te A(E)— A,(E).

2. Theorem 9.1 is obviously true for a much larger class of distributions
supported by E than A'(E) (resp., A,(E)).

10. Projective Limit Spaces and Pseudo-Measures

Using inductive limits we saw that if Te A’(E) then the corresponding ¢
was a canonical distribution but that b, was not a bounded set in our spaces
of test functions. We now note that b, is a bounded set in certain natural
projective limit spaces but that the corresponding dual spaces of distributions
are too small to contain the images of pseudo-measures.

We again use G of § 8.

Let

S,u={peG:|o|,<k and ¢ =0 on all but at most kI,’s}

and
Sp={peG:|o|,<k and ¢'=0 on I, forall m=k}.
Clearly Sy, C Sz and we give () Z, and (] Y, the projective limit topologies
induced by the maps
FZk:UZj—>Zk, FYk:UYj—>Yk
E@) ()= ¥ o) () o)

@eSk

where

we denote the resulting topological vector spaces by &, , and %y ,. From the
properties of projective limits it is easy to see that by is bounded in both
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Dy, ,» and Dy , but that, of course, the corresponding duals are too small to
obtain a result like Theorem 9.1 - which would be necessary to use the technique
of Theorem 6.1.
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