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Abstract. We imbed the space of pseudo-measures A’(E) supported by a closed totally
disconnected set ES R/2n Z into a space of distributions on an “imbedding” group. The
basic technique is to find a sequence of measures ,, on E (non discrete measures generally)
associated with each Te A’(E), so that, with an additional arithmetic condition, {u,} con-
verges in a weaker than weak # topology to a measure g, and p= T, Using this framework
we prove that a Helson set is.a set of spectral synthesis if and only if certain of our distri-
butions have a support preserving extension. We also introduce a uniqueness criterion,
and show that the extension condition and uniqueness condition imply that 4'(E) is the
space of measures supported by E.

Ecl'=R2nZ is a closed totally disconnected set. We introduce a
method to associate a sequence of measures to a given pseudo-measure
supported by E (§5). We employ this approach to derive necessary and
sufficient conditions that Helson sets be sets of spectral synthesis (S)
(§8); the first set of conditions is in terms of a Hahn-Banach extension
property with “boundary” constraints (viz., (e;) of § 5). We also introduce
a (Cantor) uniqueness set type of criterion (§6) on E, which, when coupled
with (e), implies E is S (Prop. 6.1). This is interesting since we show that
the Cantor set (a non-Helson set) satisfies the uniqueness condition, and
are able to conclude that if a Helson set is to be an S set, then a property
of Helson sets must be used to verify (e;). Krner has recently constructed
independent Helson sets which are neither S sets nor uniqueness sets.

§0 contains the necessary notation and some remarks about the
general problem to associate measures with a given pseudo-measure.
§1-4 are necessary for §5-6, §8, and are used in §7 to prove an analytic
result on absolutely convergent Fourier series. In §1-3 we construct a
large group I' in which to imbed E, and define an LB space of functions
on I" which plays a key role in the sequel. The technique of §6 centers
about the notions of §5 and the Dieudonné-Grothendieck theorem.

0. Notation and Remarks

A(I") is the space of absolutely convergent Fourier series on I,
normed by || ,=3 |a,, where ¢(y)=Y a, e'*?. We define

k(E)={pcA({I’): $=0on E}
J(E)={¢ek(E): supp p nE=0};
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and set A(E)=A(I")/k(E), A;(E)= A(D)/j(E) with corresponding quotlent
norms, || e | 1+ If YeAU) we write ¥ ()=y()+ j(E). Also m is
Haar measure on I.

C(E) is the space of continuous functions on E with dual M(E), the
space of bounded Radon measures supported by E; the total variation
norm on M(E) is denoted by || ||,. The dual of A(E) (resp., A,(E)) is
AG(E) (resp., A'(E)). A'(E) is the space of pseudo-measures with support in
E. Ay(E)={TeA'(E): 11m T(n) 0} and My(E)=M(E)n Ay(E).

Eis an S-set if A’ (E) AS(E) an Helson set if AG(E)=M(E), and a set
of strong spectral resolution if A'(E)=M(E). E is a Kronecker set if for
every £>0 and for every ¢e C(E), |¢|=1, there is ne Z such that

sup |p(y)—e'"| <s.
yeE

E is a Cantor U-set (resp., weak U-set) if Ay(E)={0} (resp., My(E)= {O}).

Finally, let # be the family of alt open (in E) and closed subsets of E,
and set ¥E= UI where I, _(,lj,yj) is an open interval, m(I;)=g¢;, and
Ec=(0,2n). For each Fe,/' Pr€ € C*(I") denotes a function equal to1lon
a neighborhood of F and equal to 0 on a neighborhood of E—F.

Remark 1. Let TeA'(E). If m(E)=0 it is relatively straightforward [2]
to construct a sequence of measures g, with finite support such that
u,— T on C'(I*). The finite support is a mixed blessing since one cannot
hope to conclude weak = convergence of such a sequence except in the
simplest cases. Naturally, for a given Helson set E, it is desirable to find
a weak * convergent sequence of measures for T if E is to be S. This is the
motive for our approach in §5.

2. Remark 1 leads to the general problem to study those weaker
than weak * topologies which preserve some of the important properties
of weak * convergence. This is the motivation for [3], § 2, and Prop. 5.1b.

1. The Imbedding Group I

Let G be the additive group of real-valued elements in A(D), taken
with the discrete topology; and let I' be its compact dual group. I' is
connected since {0} is the only compact subgroup of G, and thus I' is
also a divisible group.

For each yeI’ we identify the element f,el’ by

VoeG, (f,,¢)=¢*". (1.1)

Thus we have the injection
u: I'>T

yf,
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and by (1.1) and the definition of the topology on I', u is continuous. In
particular u E is compact in I

We could take G to have the further property that each ¢eG equal
zero at a fixed 1,¢E. This has the advantage of yielding an easy proof
of the fact that

{f~rj,'))j€r: (f;¢)=]._.[ eirj¢(yj)’2|’,j|<w, ,y}efv}

is dense in I (e.g. [3]).
Define 7 to be the set of trigonometric polynomials ¥ on I, i.e.

w(f)= ia,-(f, b). (12)

some ¢;€G. Then A(I'), the space of absolutely convergent Fourier
series on I', is the completion of 7~ where ¥ (of (1.2)) is normed by

l T”A(I‘):Z Iajl'
1

Finally, define k(uE) and j(uE) analogous to the way we defined k(E)
and j(E).
2. An LB Function Space on I'
For each ¥ e A(I') define

Gy={¢eG: P($)+0},
and for each integer k>0 let
A ={VeAl): VpeGy, ¢ <k}
Clearly,

Proposition 2.1. <, is a closed vector subspace of A(I').
Thus we define the LB space

d=U"Q¢k

noting that &/ is bornological, barrelled, and non-metrizable, and that
the dual &/’ is Fréchet. Obviously, .« = A(I') since = o, the imbedding
o/ — A(T') is continuous since <7 is bornological, and consequently we
have the natural imbedding A'(I'<s#". It is easy to check that A'(l)
is B(sf’, of) dense in .
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3. Canonical Maps
From the definition of .7,

Proposition 3.1. Let ¥ e/ Then
] W)=Y P(¢) eV (3.1
is an element of A(I').

v is thus a well-defined linear map o/ — A(I') and so we can define
the associated canonical linecar map

u: of — A,(E).

Proposition 3.2. u;.o/ = A(E).
Proof. Take ¢ (1)=Y a, e A" and ¥, (0)= Y, a,e™*".
lk[£n

Let N be a neighborhood of E with m(N)<2=n and choose ¢,eG
such that ¢, (y)=ky on N.

Define %(f)= Y. a,(f, ¢ )es/ noting that «'¥ =y, on N and
u B eAl). [kl <n

Since u' ¥, —,€j(E) we have u;¥,=1),,.

Therefore

W —u; %)= Ilkz—lpnll,él Y lal.  ged.

kl>n
Since & is bornological and by properties of bounded sets in o,

Proposition 3.3. u' and u; are continuous.

Example 3.1. Clearly, there are ¥YeA(I')~.«/ such that u;¥eA(E).
Take [¢yll 40, a=(/k?) exp { — l| ¢ 4}, and

0

Y=Y alf b

1

Thus | ¥|| 4, can be made as small as we like by choice of «, and ¥¢./
by choice of {¢,}. Now
. 1
12 ae' | 4= 1al ZF
1 1

so that u; ¥ eA,(E).

Using this example, the Baire category theorem yields

Proposition 3.4. a) u;.«, in nowhere dense in A(E).

b) A[(E)* ) v .

) o and o4 are dense in A(E).
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We now define the canonical transpose
u;: AE)y—of',

noting that u; is a continuous 1-1 linear map since ; is continuous and
u;of = A,(E). By definition, if TeA'(E), t=u; T is given by

VPeod, <, ¥>={Tu¥>.
It follows that

Proposition 3.5. Let TeA'(E), u;T=t, and Yeo/. If supp ¥ "uE=90
then {t,V>=0."
4. Kronecker Sets in I

Let Fe C(E), |F|=1. Because F is uniformly continuous and E is
totally disconnected there is ¢ & C(E), real-valued, such that

VyeE, F(y)=¢9M,

Obviously, this statement can be strengthened considerably. The point
for us is that by using the Stone-Weierstrass theorem we can show

Proposition 4.1. © E is Kronecker (and therefore independent ).

Varopoulos [5] showed that Kronecker sets are S-sets in I and the
proof is readily extended to arbitrary compact abelian groups in which
the Kronecker set is 0-dimensional (e.g. [2, Chapter 2]).

Let us show that dimuE=0, i.e.,, that uE is totally disconnected.
Take /eE and let () F,={A}, F,€ %, noting that each E, is open and com-
pact. u continuous implies u F, compact, so that we will have the total dis-
connectedness of uE by Sura-Bura’s theorem once we prove uF is
open in uE(Fe%). Let ¢€G be equal to 1 on a neighborhood of Fe &
and equal to 0 on a neighborhood of E — F. Take 0 <& < |¢'— 1] and define
the following open sets of uE:

VieF, VA enuE={f; |[1—e@P-9M|<e},

Clearly, if f,e V,(4, e)nuE then yeF for otherwise we get le—1]<e by
our choice of ¢. Thus
uF={])[V,(A )" uE]
AeF
and so uF is open. Consequently, from Prop. 4.1, the fact that Kronecker
sets are Helson, and the Varopoulos theorem generalized to I' —

Proposition 4.2. A'(uE)=M (uE).

Actually, Sacki has extended Varopoulos’ result by dropping the
0-dimensionality hypothesis. For our purposes of dealing with uE it is
easier to proceed as we did than to invoke Saeki’s technique.
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5. Pseudo-Measures and Associated Measures

TeA'(E) is measure approximable (resp., synthesis measure approxi-
mable) if there is a sequence of subspaces X, < A;(E) and measures €
M(E) such that

a) [J X, =4;(E) (resp., | J X, =4;(E))

b) =T on X,.

We shall observe (Prop. 5.3) that under a certain extension condition
((e7), below) on TeA'(E), T is measure approximable. Clearly, if Te A'(E)
and E is synthesis measure approximable then TeM (E) for E Helson;
however, in light of Prop. 3.4, this approach is not promising.

Given tes/’ we know that te for each k and so there is s,€A'(I')
such that s,=t on .. Thus, because of the annihilating properties of
t=u, T, TeA'(E) (e.g, Prop. 3.5, Example 5.2 below), the following condi-
tion is meaningful:

Given t=u; T, Te A'(E), 3 infinitely many k for which (e7)

Is,eA'(uE), s,=t on .

We can not expect (e) to hold generally for all Te A'(E) (¢.g. Example 6.2).

Example 5.1. Note that if u;T=te A'(I') then TeM(E). In fact, if
there is K >0 such that for all ¢z€G, FeZ,

KT, &% |=|i(dp)l <K

then TeM(E) (e.g. [3]). Further, from Prop. 5.2, te M (uE).
Implicit in (e;) is the hypothesis that & contains a large number of
elements from j(uE) (modifications of this observation will appear in

forthcoming work).
On the other hand, there are many elements ¥ e.o/ which vanish on
uE and such that {z, ¥) =0 for t=u; T; and so it is reasonable to consider

“suppt”<cukE. In fact —

Example 5.2. Take U <V, two compact neighborhoods of E, and let
¢peG be 2n on U and 0 on €V. Thus, ¥(f)=1—(f,$)e and if t=u; T
then (t, ¥)> =0 since supp T < E. Assume without loss of generality that
U—N+N=V, N a neighborhood of origin. Then ¥e.= where

m(U — N)/m(N) < k?

by a standard approximate identity argument.

Example 5.3. There are other extension conditions to guarantee
that TeP'(E) be measure approximable and hence to deduce that if E
is Helson and satisfies one of these conditions then Te M (E). For example,
noting that for all k there is s,eA'(I') such that s, =t on 24,, we assume
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Si=4; S, S €A'(E). Thus S, e M (E) and s,e M (uE) by Example 5.1, and
so T is measure approximable.

The following is clear from Prop. 4.2 and the definition of inductive
limit topologies.

Proposition 5.1. Assume that (e;) is satisfied. Then there is {v, }<
M (uE) such that

a) Vk,>k,, t=v, =v, on s .

b) v, —tin p(L’, o) where (', ) is the strong topology on of'.

By standard measure theory —

Proposition 5.2. u;: M(E)— M (uE) is a bijective continuous linear map

where M(E) has the induced topology from A'(E) and M(uE) has the
induced topology from of'.

Prop. 5.2 is true for M(X) and M (uX), with any closed X =T
Summing up the previous observations and letting X, =ujaf, we
have —

Proposition 5.3. Assume (e) is satisfied. Then TeA'(E) is measure
approximable; further, the subspaces X, can be taken to be increasing and
U=ty on X, if m=k.

6. Conditions for Strong Spectral Resolution

We begin with the following definition. E has the weak uniqueness
property Uy if there is N satisfying the following condition:

VvI1,I,<[0,27n), for which I,=(4,,y,)
for infinitely many k, 3 nl, =(4,,7,) such that

d(ij_l,ij)gNmin(skj_l,skj) for j=1,...,n,
where k,=a and k, ,=b

(and where d(I, J) is the distance between I and J).

Remark 1. We refer to Uy as a weak uniqueness property because the
classical necessary conditions for weak uniqueness due to Bary and
Civin-Chrestenson [1, Chapter 14, § 13]; their result is only stated for U
sets but it is shown that M, (E)= {0} in the proof. In this regard, consider
the following condition, U,, which is weaker than U, :

For every interval J, which contains infinitely many I,, 3 L, I,,sJ
such that

(I, I ,)Smin(g, , & ).
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Thus if E is not U, and if we build E by throwing out the largest I;
between any given I (which have already been thrown out), we have

g/d(I,, 1)<1/3 (6.1)

since ¢;=<min(e,, ¢,). One of Bary’s necessary conditions for weak
uniqueness is that ratios such as (6.1) tend to 0, and for a long time it was
thought that such convergence was all that was necessary.

2. Since we are interested in whether certain Helson sets are S sets,
and since Helson sets are weak U-sets [2, Chapter 7], it is not unexpected
to have uniqueness conditions for strong spectral resolution (e. g. Prop. 6.1
below).

Example 6.1. Clearly every countable E is U,. On the other hand
E={0,1/n:n=1, ...} is not Uy for any N. In fact, given I,=[ —=, 0) and
Li=1,=(1/n+1), 1/n), if m>n with I,=(1/(m+ 1), 1/m)

I/m=d(I,, I,)>1/m(m+1)=min(e, ¢,);

P’q

and if n is chosen large enough, 1/m> N/m(m+1) for m>n. Note that
{0, 1/n: n=1, ...} is not Helson. Now take E={0, 1/3": n=1, ...} (resp.,
{0, 1/2": n=1, ...}) which is Helson. Let I, be as above and fet I=I=
(1/37*1, 1/3") (resp L=1I —(1/2"+1 1/2). “Then for m>n

1/37% (resp,, 1/2" ) =d(I,, 1,) £2/3"** (resp., 1/2"+) =min(e,, s,,),

and hence these Helson sets are U;. We mention both the 1/2” and 1/3"
cases since {0, 1/2"} is close to the “boundary” of being a Helson set, a
fact which is illustrated by observing that the above inequality is not as
strong for the 1/2" case as for the 1/3" case.

Example 6.2. The Cantor ternary set E is U, (and, of course, not
Helson). Again, this is an easy calculation. In light of Prop. 6.1 and the
fact that AG(E)+ M(E), (er) is not satisfied for some Te A'(E).

Example 6.3. There is a standard technique to construct perfect Helson
sets E due to Carleson, Kahane-Salem, and Rudin [2, Chapter 5]. We
shall show that such an E is Uy.

Take A} €(0, n/2) such that {r, 4!} is independent (over the rationals),
choose y26(37r/2 2m), and form the interval Iy=(y}, A})S[—n, ) of
length ¢;,. We next take A} <yl <Al <yb such that o2 y}—/11=y§—

AZ—LI, {m, 2}, A3} is 1ndependent and &) =A}—yl=L,; and write
(4, yi1=S}, E'=S{uS}, I?=(y}, A%). For the mductlve step we first
recall from Kroneckers theorem [2, Chapter 5] that if {r, A%,..., A5,}

is independent and a measure y is supported by {1}, ..., A%} then there
is N, for which
,Sup | >3 llply 5

<m<Ny,
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next we note that if {=m, A}, ..., 4%.} is independent and ¥, ..., V. are
intervals disjoint from the A}, = then there are 4,eV; such that

{7, A5, ooy Ay Ay oens Apn}
is independent [2, Chapter 4]. We form E ="} E" where E" =S} U---US}a,
m(S=I, 83;_,, 85;=8;7", and {m, 11, ..., 3.} is independent. Thus at
the n-th stage we throw out the open intervals I;.‘"l of length s;.“l,
j=1,...,2""1, subject to the conditions

L™, j=1,..,2"7
and
lim N, 2" I£2=0.

We need these two conditions to show A'(E)=M (E), and the inequality
obviously tells us that E is U

Proposition 6.1. Let E be a Uy set. If (eg) is satisfied for Te A'(E) then
TeM(E).

Proof. Take X, = u o and i, as in the definition of measure approxi-
mable and Prop. 5.3.

Without loss of generality assume N=1.

Let V< E be open (in the relative topology obviously).

We shall show that lim g, (V) exists so that by the Grothendieck-
Dieudonné theorem, g, converges in the weak topology on M(E) to a
measure p; consequently, y, — p in the weak * topology.

For gel ) X,, with §eX,,, say, we have

thus T=p on a dense subset of 4;(E) and so T=p.
Now, since Vis open, we write
v=UE,
where E,c V, F,e %, and F,€F, ;.
Recall that the de la Vallée-Poussin kernel ¢, , about yel" is non-
negative, equals 1 on an e-neighborhood of y, equals 0 outside a 2¢-
neighborhood of y, and has the property that || ¢, || , <3 [2, Chapter 1].

For each F, we observe that there is a finite number of de la Vallee-
Poisson kernels ¢, ..., ¢, ,, (for various &’s and y’s in F)), such that

supp @, ; " supp ¢, =9,
VyeF,, 3j suchthat ¢, ;(y)=1, (6.2)

V'})EE—E,, VJ: ¢n,j(')))=0'



A Support Preserving Hahn-Banach Property to Determine Helson-S Sets 223

To see this we first note that since V is open. V=En(u J,) where J,,
is an open interval; and a straightforward compactness argument shows
that Fe# is the intersection of E with a finite number of intervals each
having their endpoints in the I’s.

By the previous observation Fe 4%, F, n J,, determines a finite number
of I, , I, depending on n and m, and for each of these we use the U;

J J
property. Let us label all the closed intervals in J,, contiguous to the I’s
(obtained from U;) by H,, ..., H,.

Consequently we choose ¢, ; about ye H, so that it is equal to 1 on
H,, and we have (6.2).

Now, for a given F,, define ¢,e 4;(E) by

1 L
— Nk — iPn, ('Y)] .
S =7 [ , j;e

Clearly, ,e X since ||¢, ;I 4<3.
Because of (6.2) we note that if yeF,,

1 .
=——[k,~(k,—1)—¢']=
$,0) =75 k= (k=)= ¢1=1,
since ¢, ;(y)=1 for precisely one j and ¢, ;(y)=0 for the remaining j;

similarly, if yeE—F,, ¢, ;(y)=0 for each j and so ¢,(y)=0.
Thus lim ¢, = x,, pointwise; and from our definitions

sup {|¢,(¥)|: yeE, n} < co.

Therefore, we can use the Riesz representation theorem and see that
for each k=3, u, (V) is well-defined by

h’fn <:"Lk7 $n> = uk(V)
Now,

lim 1, (V)= lim lim <, 8,5 =1lim lim < T, §,> = lim < T, 6,,

where the right hand side exists since lim {7, §,> =1lim {u, ¢,
Thus, li{n (V) exists.  ged.

We can’t replace U, by U, in the proof since there is no guarantee that
V would be covered by the above procedure.

Example 6.4. Let us look at the relation between Uy and Helson sets.
For convenience of explication suppose that E is U, (the point of this
example being the same for U,). Assume E is a perfect Helson set. If E
is not U, then there is an admissible J (as in the definition of U,) such that
for all I , I,,<J, d(L,, I,)>min(g, , & ). Without loss of generality we
suppose that J has endpoints in I, I, each with length greater than or

15 Inventiones math., Vol. 16
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equal to the length of any I between them. We build J n E by throwing
out I}, the largest I between I , and I ; then at the second step we throw
out I}, I3 the largest I's between I, and I}, and I} and I , respectively; etc.
In this way because of estimates like (6.1), it is reasonable to try to find
situations where there are perfect P, Q for which

P+QcJnEZE (6.3)

(since at each stage of building J N E there is a certain symmetry and we
have much of J left over).

We can prove that E Helson and (6.3) give a contradiction so that in
this setting we’d have “Helson implies U,”. To get the contradiction we
construct the continuous Cantor-Lebesgue positive measures pp, gy
supported by P, Q, respectively, and have

Bp* po(E)>0

since P+ Q = E. This contradicts the recent Salinger-Varopoulos theorem
[2, Chapter 7]: if E is Helson and u, v are positive continuous measures
in R/2n Z then p*v(E)=0. This latter result, by the way, is based on the
Kahane-Salem theorem which estimates the number points of “general”
arithmetic progressions that lie in a Helson set.

Remark. In light of the Bary theorem mentioned in Remark 1 of this
section and the importance of the non-existence of inclusions like (6.3)
for Helson sets, we would now like to define a more general notion
than Uy. The point is to find such a notion so that Helson sets are included
and the analogue of Prop. 6.1 is true; and to investigate the cases where
(6.3) holds for perfect non-Uj, sets.

7. A Property of A(IY)

Consider the following property on A(I") and E: 3K such that
VneZ, 3 ¢,cG and AN, a finite disjoint union of closed intervals cover-
ing E, for which

Il 4 <K,

VyeN,, ér"r=¢%

Note that for Helson sets there is K >0 such that ||, || 4 <K where
¢.(y)=€"" on E. Also observe that our requirements for N, are weaker
than stipulating that N, be a neighborhood of E.

The following result (and proof) is amusing for one-point sets, E.

(P)

Proposition 7.1. Property P never holds.
Proof. Let Yy (y)=Y a, ¢* e A(I") and define

W)=Y a,(f.d,)

=N
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where the ¢, are chosen by property P. Thus there is a k such that for
all N, ¥ye .

Setting Yy (y)= Y a,e"?

Int=N
I~ Bl S 1 =l [ — 1 B
Clearly, [ =y, 0as N - co.
Also, since ' ¥, = on an N, we have

' ‘pN_“Jl' 'PN”j=0,
because N, is-an S-set.

Consequently, ljzeu o, and hence Uu 4, =A;(E), contradicting
Prop.34. ged.

Remark. 1. E Helson implies m(E)=0 [2, Chapter 7].
2. If m(E)=0 then

VD>0, YVM>0, Vn, and V1<p<w

k
there is a neighborhood N, p Of E of the form ( ) I ;» I; open disjoint inter-
1
vals, and a function ¢, sup {|¢ (7)|: 7€N, ,} <D such that
¢()=ny+2mk; on I

( [ loP)i<M.

"P

and

8. Extension and Helson Set Conditions for Spectral Synthesis

Let 7 (uE) be the quotient space of restrictions of the elements of .o/
to uE; and recall from the proof of Prop.4.1 that u' ¥ e C(E) when
YeC(uE)

Proposition 8.1. E is Helson if and only if of (uE)= C(uE).

Proof. Take W e C(uE). Since E is Helson there is

d()=Y a,e" e Al
such that gﬂzu' ¥ on E.

For each n, consider a finite decomposition {F....E, }c% of E
and y,eG such that [, | <31 and

Y,())=ny+2nk;
onF j=1,...,m_.

n

Let K. >0 be the Helson constant: || lam=<Kgll o -

15%
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Thus, there is k>31 K and {¢,} =G such that | ¢,/ ,<k and ¢,=V,
on E; the fact that we can take ¢, real follows since (¢, +¢,)/2=y,onE

and (¢, +,)/ 21l 4= [,
Consequently, ®(f)=Y. a,(f, ¢,)e 4 and &= on uE. ged.

Proposition 8.2. Let E be Helson.

a) If (er) is satisfied then TeM (E).

b) E is S if and only if (e;) is satisfied for all Tﬁ_Af_(E)

Proof. a) Because of Prop. 5.1b, lim (v, ) exists §
we preserve the notation of § 5).

Since v,e M(uE), if Yes/ (uE) and ¥, eﬂ
o P> = (v, B

Thus, 11m<vk, P> exists for all PYeA(UE); and s0, from Prop 81
{v,} converges in the weak % topology to a measure ve M(uE).

Consequently v=t on 7 and so te M(uE) since o/ = C(I') (because

T <<, T is compact, G separates points on I, and by the Stone-Weier-
strass theorem).

We are done by Example 5.1 or Prop. 5.2.

b) We need only show that M(E)= A'(E) implies (e;). This is obvious
since if Te M(E) then t =u; Te M(uE). qed.

In the same way,

Proposition 8.3. Let E be a Helson set. E is an S set ifand only if t=u; T
is well-defined on </ (uE) for each Te A'(E).

In fact, for E Helson and TeA'(E) we need only show: For each
FeZ, thereAis W = ¢y with || ,< K (since E is Helson such y exist) such
that ¢ ()=t (¢y); then Te M(E).

Example 8.1. Since Helson sets E have m(E)=0 a natural technique
to prove that t=u;T is well-defined on «/(uE) (i.e, Prop. 8.3) is to
utilize the representation

T=Y k;8;,—d,) on C(I),
Y elile, <o, somer

for T(0)=0[2, Chapter 2]. In fact, if we chose G to be the real
differentiable elements of A(I') and defined .« by the
¢l , <k for p€Gy then t=u; T is well-defined. On thé:
do not get (8.1) with these spaces and so cannot conclude that TeM (E)
as in Prop. 8.3.

Example 8.2. Along the same lines of Prop. 8.3 and Example 8.1 we
see that if E is Helson and G = GEgA(F } exists such that

YFe# 3J¢eG for which ¢=1 on a neighborhood of F
and ¢ =0 on a neighborhood of E—F

*‘i .
m‘*

,;z/ (Where "

s any xtensmn then

-
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and

iM>0 for which {¢'ll =M |$ll,
then E is an S-set. Verifying such conditions is of course related to
Remark 1, §6.

We say uE in o/ — S if for all t~ Te A'(E) and for all ¥Ye.o/ vanishing
onin E, {t, ¥)=0. The above results show that if E is Helson then E is S
if and only if uE if o —S. It would be interesting to weaken the Helson
set hypothesis here. Neither Malliavin’s non-S criteria or Korner’s
example provide any help. On the other hand we can easily check that —

Proposition 8.4. Assume that for each t~TeA(E), {¢,} <G with
sup ¢, ll 4 <0, and {s,} SR increasing to infinity, there is pe M(uE) such
that for all n, |fi(¢,)—t(d)|<s,. Then uE is of —S.

The hypothesis of Prop. 8.4 characterizes S sets when we deal only
with pseudo-measures (as a simple Hahn-Banach argument shows).

Using the technique of Prop. 8.1 we find

Proposition 8.5. Given real ¢eC °([') and E Helson. There is real
V,e C*(I") such that
Wl 4 =31 Ke+1

and for each y€S,={A,, Y15 ---> An> Vu}>
e“”"(y):ei"’(”.

This leads us to define the following set of numbers {¢(n, F): Fe%,
n=1,2,...} which we call the Helson indicator for a given Helson set E.
From Prop. 8.5 and for a given n and ¢ = ¢, choose q,€k(S,) and g,€j(S,)
such that |¢+q,l ;<31 K;+1 and |lg,— g, 4 <1; let e=¢(n, F) have the
property that

gs* P —8all 4 <1

where p, is the Friedrich mollifier of support [ —¢, £].

For convenience in Prop. 8.6 we consider the bounded pseudo-meas-
ures A,(E) (e.g.[3]); this amounts to considering those TeA'(E) with
{k;} (of Example 8.1) bounded. The result is easily reformulated for
A'(E).

Proposition 8.6. Given E Helson and TeA,(E). If there is K such that
Jor all Fe& we can choose n for which

Y, &;<Kem,F),

Jj=n+1

then Te M(E).

Proof. Set ¢ =¢,, FeZ, and f,=¢'®—e'¥ from Prop. 8.5. From the
structure of ¢ there is Ny such that ¢'=0on (4, y,) if j= Ng.
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Taking n> N, we have

KT 1= Zk N (y) eV P dy|;

n+l  Aj

and since ¥, = ¢+ g, %D, we compute

KT IISC Y k; “PJ_ D&

n+1 ( F)n+1

Given the hypothesis and the norm bound on |[,|| , we have |[{T, ¢'#7)|
uniformly bounded. Hence Te M(E). ged.

Because of Prop. 8.6 we consider E with the property: there is az>0
such that for each N we can find n> N for which

mlnd(tj, tk)ngZSJ, (P)

n+1

where j, k<nand t;is 4; or y;. The Cantor set is not (P), which is encour-
aging, whereas some calculations show that there is no reason to expect
a pseudo-measure on an Helson-(P) set to be a measure.
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