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A Riemann distribution R on the real line R has the form

R= %94,

vel

where I'CIR\{0} is countable, J, is the Dirac measure at yel’, and Y 1/y*<c0.
r

Riemann (1859) first studied the primitive W, of the Fourier transform of R at the
end of his fundamental memoir on the Riemann zeta function, {(s). For Riemann,
I was the set, I'({)={y : {(} + iy) =0}, and the study of Wy, was carried on by von
Mangoldt [16, pp. 292ff.], cf,, Landau [12]. The notation, W,,, is used because

sinyy
VV(1)(J’) =2 Z

yel'(Q)
y>0

is the first primitive of Weil’s distribution, W, defined as

(W,Fy= % | F(ye™dy,
yel'(§) — o

e.g., Sect. 4; W was introduced by Weil [24] to formulate general explicit formulas,
cf.,, Besenfelder [4] and Besenfelder and Palm [5]. The Fourier analysis of R is a
natural project for I' = I'({), and some interesting contributions have been made by
Hardy and Littlewood [8], Cramer [7], Ingham [10], Rademacher [12], Rubel
and Straus [13], and Montgomery [17], as well as by A. Wintner in a series of
papers in the American Journal of Mathematics on Gibbs phenomenon and the
distribution function of the remainder term of the prime number theorem (PNT).
Another family of number theoretic Schwartz distributions is studied by
Benedetto [3, Examples 5.2-5.4].

The basic problem considered herein is to estimate

sinyy
1
2 7 (1)

vel
0<y<g(y)

0025-5831/80/0252/0141/$04.80



142 J. J. Benedetto

for large y where g is given and li£n g(y) = co. The results are limited by the fact

that only interesting functions g are considered. The series Y. (sinyy)/y is a
yell

Besicovich almost periodic function whose frequencies are proportional to the
inverse of corresponding amplitudes. The musical interpretation of such series has
been indicated by Rubel in his lecture, “Harpsichords, pianos, and the Riemann
hypothesis”. In this paper the asymptotic behavior of the series (1), for y— o, is
studied by means of a decomposition of (1) into a Fourier serieson T=R/2nZand a
Fourier transform on R; and the Fourier series can be viewed as a linear
approximation to (1) on short intervals. This decomposition, including estimates
on the Fourier series and Fourier transform constructed by the decomposition, is
the point of view of the paper.

The problem of asymptotic estimates for (1) is motivated by an important open
question in analytic number theory: is it true that

p(x)=x+o(x'*log*x), x—o0, )

where the Riemann hypothesis (RH) is assumed and where y(x) is the Tchebychev
function, e.g., Sect. 42 In 1901, von Koch verified that p(x)=x+0(x?log?x),
x— 00, when one assumes RH. P. X. Gallagher and J. Mueller have proved (2)
assuming both RH and Montgomery’s conjecture [17].

In Sect. 1 the above-mentioned decomposition is described and various norm
estimates are proved for (1). Section 2 provides a Fourier analysis of the Fourier
series in the decomposition. It should be noted that these Fourier series can be
studied quite effectively, e.g., Sect. 5; and so precise local information can be
obtained from the decomposition if the period size for the Fourier series is made
smaller. This topic is not developed in the paper. Section 3 gives the corresponding
Fourier analysis for the Fourier transform of the decomposition. This section
establishes the need for a stationary phase analysis of various distribution
functions in order to estimate (1) in a more satisfactory way, e.g., Proposition 3.7
and Example 3.1.

The remainder of the paper deals with problem (2). Section 4 is devoted to the
number theoretic background necessary to discuss (2). This material includes
Littlewood’s and Weil’s explicit formulas, as well as the distributional setup for
Sect. 6. RH is assumed in Sects. 5 and 6. In Sect. 5 the asymptotic behavior is
determined for the Fourier series arising in the decomposition of (1) applied to the
case (2). This behavior is much better than the desired “o” of (2), but, of course, it is
only applicable to the linear approximation provided by the Fourier series. In
Sect. 6, Weil’s explicit formula is viewed as a distributional equation on R; and
bounds are obtained on the second primitive f of a certain distribution in the
equation. The results of Sect. 6 appear technical but they establish the limitation of
explicit formulas for dealing with (2) in the following way. A number theoretic
sequence {a,} is defined in conjunction with f, and Theorem 6.1 establishes the
relation

fllogm)— Y.a, log(m/n)<logm
1
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then, Theorem 6.2 recafls that the estimate,
P(x)=x+0(x%logx), x—-o©,

is equivalent to the estimate,
> a,<logm. A3)
1

The left hand side of (3), which can be thought of in terms of the sum W, ), is the
distributional derivative of f at logm; and so Theorems 6.1 and 6.2 show that
results such as (2) are not derived from explicit formulas, manifested in these
remarks by f, but from local conditions, manifested by f’. These local conditions
can only follow from a finer knowledge of {a,} or, equivalently, from more precise
knowledge of I'({), cf,, the previous remark about Montgomery’s conjecture.

The usual notation from distribution theory and harmonic analysis is em-
ployed, e.g., Benedetto [2].

1. Norm Estimates and the Series ) sinyy/y

Let {y;} S[1, ) increase to infinity and define
Vmz1, dm)=card{y;:m=<y,<m+1}.

Assume throughout that for any h >0 there are positive constants A(k), B(h), and
T, such that

VTz2T,, A(hlogT<card{y;:T=<y;<T+h}=<B(h)logT. (L.1)
In particular,
logm <d(m)<logm. (1.2)

Let M,=[e"*]—1 and define the functions

1
fm= —Xim »
msyiems1 ¥y TP
M, ©
=) S f= X fe
m=1 m=1

and
1 WA= }O S (x)cosxidx,

noting that f”y is even on IR. The following facts are obvious: 0 < f(m) < d(m)/m,

lim fix)=0, f,f,e LAR)NL*(R), and yILn;) If—flo=0. It is also true that
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lim |f —£,1,=0 since

2 @© 1
= Z Z o Xom, v Xim, v
2 m=M |lm<yj,yp<m+1 ’y]’))n

<

noting that there are d(m)* terms within || |;.

Define a function ¢(y) = C >0 and then define C(y)= yc(y). c(y) and C(y) must be
defined for all large y. Next, for a given m, let y, =m be the first element of {vj}
greater than or equal to m. (If y;=y;,, we choose either one.) When there is no
confusion one writes

> I

n+l=n, and y,=
Thus, 3, =M< Vys 1 Ve 2S - SVpiaem<m+1. Finally, define the “triangular
sum”

d(m)— 1

Cn= Z ((yn+d(m)—j_m)+(yn+d(m)—(j+1)_m)+"'+(yn+1_m))'
j=0

The Fourier series in Proposition 1.1 represents the straight line approxima-
tion to f on each [m,m+1).

Proposition 1.1. For each ygl and 2eR\{0},

1 siny ;A 1 % ( m)
2 = ——sinmd+e(4, ),
Ay 0<y;<e¥? Y f( ) lly sl
where |e(4, y)| < K/(y|2]).
Proof.

1 o]
5 | f,(x)cosxAdx

1 My 17
== Y — | cosxAdx
VY m=1 m=yj<m+1 yj m

> > 1 (siny;A—sinm4)

1 mgyj<m+17j

1

Ay

1 siny A 1 My ( 1)
=_— —_— sinml —

Ay % Ay m; 2

1

0<y;<My+1 Vj m<yj<m+1 7Vj

B siny;A 1 % d(m)sinmd
Ay 0<yj<e¥? Vi Ay m=1 m
1 My d 1 1 siny.A
+— 3 s1nm/1<—(m—)— —)—— =
ly m=1 m<yj<m+1 ’Vj }'y My+1§yj<ey/2 Vj

The bound on (4, y) follows from (1.2). ged.
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Proposition 1.2. a) For each m=1,

2
—cC, = 2< " ¢ 1.
(m+1)zcm—-”fm“2_m2 Cm ( 3)
b)
M, 1/2 My 1/2
(2 ewton+07) " s81.2V3( 5 cum?) (14
m=1 m=1
and, in fact,
My Mlog?m\\/2 My Jog2m)\1/?
Proof. a) By definition,
1 1 1 \?
ful3= G =+ ket )
. nt1 Pnt2 Vn+ dgm)
+( )(—1 s - IO ! )2+
yn _yn P I
w2 e Yn+2  Vn+s Vr+dom)
1 1 \?
+(Vn+d(m)—1“3’n+d(m)—2) +
Ya+dm—1  Pn+dm
1
+(7n+a(m)_7’n+d(m)—1)2—~ (1.6)
n+d(m)

1
Note that ( )f:( + ...+ ”
. n+j n+d(m)
Thus the terms of ( )J? include those of ( )7, ;. The cardinality of the difference is

142(dm)—j) and

2
) has (d(m)—j+1)? terms with numerator 1.

1 2 1 1
(= Vo= + ( + .+ ) .
Yat+i  Va+j\Pntj+1 P+ dom)
Therefore, rearranging terms in (1.6) yields
1 1 : 2
ISl = —m( SR )
n+d(m) Yu+1 Vn+dm)
dm =1/ 1 2 2
+ ) ( + + .+ ) (1.7)
i=1 \Vn+j  Vutj+1 Y+ dom)
dm)y— 1

In (1.7) the sum 1/7,, 4+ Y () has d(m)* terms with numerator 1. In fact,
1

dim)—1

1+ z 2dm)—)+DH=1+dm)—1
+ 2d(m)(d(m) — 1) — 2((d(m) — 1)d(m)/2)
— d(m)(d(m)— 1)+ d(m).
Also, —m( )? in (1.7) has d(m)? terms of the form —m/(y,y,)-
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Thus, regrouping (1.7) into d(m)? differences, it follows that the part of (1.7)
with the factor 1/7,, 4, has the form

L ey m L, L)
Ya+1

2
Va+dm) Va+dom) Yo+ agmy Vm+dam)—1

D ( 1 m ) 2
Vn+ dom) P+ dm) P+ dem)

-((d(m)—n—('_” O ))
Pu+1 Vn+dm)—1
_ 1 (1_ m )+ 2

Ya+dem) Yu+dem) Vo + dony

-((ui) T (1— e ))
Vn+ammy—1 Ph+1

Proceeding in the same way with the other factors yields

3= ——(1- "]

'yn+d(m) yn+d(m)

2 m m
+ 1— + .+ |1-
Vn+agm) Yan+dm)—1 Va+1

+1<1+m>

VYn+domy—1 Vn+am)-1

2 m m
+ 1-— + o+ 1=
Yu+amy—1 Va+dom -2 Pn+1

1 2 1
el (1— i )+ (1— e )+ (1— e ) (1.8)
Pu+2 Ynt2 Yn+2 Y1 Vn+1 Vn+1

(1.3) follows from (1.8).
b) (1.4) is immediate from part a) and the fact that

I£,12= Z TAE

For the second inequality of (1.5) it is sufficient to verify that c,, <d(m)* and this
follows since
dm)— 1
0=c, £ Y (dim)—j)=dm)*—d(m)d(m)—1)/2.
j=0

For the first inequality of (1.5), (1.1) is used in the following way.

Take h=1/4 and A=A(1/4) and define I,=[m+3,m+3) and
J,=[m+2, m+1).

If m is large then (1.1) establishes more than A4 logm elements y in each of the
intervals I,, and J,,.
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dim)—1
Write ¢,= ) (); and choose any j for which 7,,4m-;€J, Then
j=0

();>(A4/2)logm s]ince there are more than Alogm elements y in I,
Thus, ) ( );>(4%/2)log?m if the sum is taken over all j for which v, 4 4 - ;€ J
The first inequality of (1.5) is established. ged.
Example 1.1. It will be desirable later to compare estimates of Ify(y)l by c(y) yvith
estimates of the remaining terms of Proposition 1.1 by C(y). If, instead of |f(x)|
=c(y), one considers the inequality | f,(x)Il,|cosxy[,<c(y), for some pe(l, o],
then ¢(y) has exponential growth.

Proposition 1.3. a) >, siny;y/y;<y? cf., Propositions 4.1 and 4.2.
0<y; <e¥/2
My
b) ) Msinmy<yz.
m=1 M
o) f<y.
Proof . a) follows from (1.2) by summing Y 1/y; in terms of ) d(m)/m; b) follows

from (1.2) and the integral test; and c) follows from Proposition 1.1 and parts a)
and b). qed.

Proposition 1.4. y* <|f, | =f0)<y>
Proof. The equality is clear, and a direct calculation yields

||fm||1=d(m)—m<1 e )

n+1 Vu+am)
and

1 dm-1 dm)—1

m+1 = (Vn+(j+1)'—M)§||fm||1:E j=Zo Gurgry—™)-

f=

Thus, the second inequality to be proved follows from the integral test since | f,, ||

<d(m)/m and £}, =Y Ifolly-

1
The first inequality follows from the same argument as given in part b} of
Proposition 1.2. qed.

2. The Fourier Series ) (d(m)/m)sinmx

Define the Fourier series

ga, (X}~ Aﬁ(d(m)/m) sinmx, g x)~ i(d(m)/m) sinmx,
and

g(x)~ ozj:(logm/m) sinmx .

Proposition 2.1. g, g,e(n LP(T)\L(T).



148 J. J. Benedetto

Proof. g,9,€ mLP(]l") since Y [logm/m|?< oo for each g>1 and by the Hausdorff-
Young theorem. By general properties of Fourier sine series f with decreasing
coefficients {a,}, fe L(T) if and only if ) a,/n< .

Thus, f ~ ) (1/log?n)sinnxe L*(T) and so g, g,¢ L*(T) since the duality, {f,g>
=Y (1/log*m)(logm/m), diverges. The fact, g,g,¢L(T), also follows since the
L>*-norms of the Fejér partial sums are unbounded. ged.

Remark. g and g, cannot be expected to have bounded mean oscillation since the
A(T)-norms over lacunary blocks are unbounded:

ek+1

Y. logm/m=C((k+ 1)>—k?).
ek
Example 2.1. Writing g, , as a convolution one obtains

||gd,y”L°°(‘]1') <

an estimate of limited value since, by a direct arc length computation, the right

hand side is bounded below by Y. d(m)/m.
1

Remark. Using the Hausdorff-Young theorem and a standard LP-estimate of the
Dirichlet kernel it follows that

Vpe(1,2],

1/p My 1 n\1/p
||g,,y||me<(p 1) e"p{z(l_?a)}<m§1(orim)) ’

where the constants are independent of y and p. Estimates of the right hand side of
(2.1) with p as a function of y do not produce bounds of ||g, , |l .« better than y2.

(2.1)

Proposition 2.2. Let y=x,+2nn, where x,€[0,2n) and n, is an integer. Then
9a,,(»)=0if x,=0 and

1 My
9a,, (N <y + Sa2) 41‘: ld(m+1)—d(m))/m, 2.2)

otherwise.
Proof. The result follows by partial summation using the fact that |g,(x)|

<2/((m+1)sinx/2), where

%

sinjx n—X
2 =",

g 27
sinmx . t
enlX)=—3-—~ +3 sinmt cot 5 dt,
X

and xe(0,2n). qed.
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Proposition 2.3. a) If {ci(m)} is eventually increasing then

|Igd,y”L°°(1r):<y .

b) If {d(m)/m} has bounded variation then the Fourier series g, converges
uniformly on each interval [¢,2n—¢], £>0.
¢) If there is M >0 such that

1\? dm) dm+1)
VmzM and VY6>0, (H_E) gmax(d(m_l_l), ) )

then
L 1
gd(x)~57tlog;, x-0+.

d) The Fourier series g, converges everywhere except possibly on a set E [0, 2r)
whose capacity of order a, cap,E, is O for each ae(0,1).

The proof of Proposition 2.3 follows from well-known results in Fourier series.
Part a) uses partial summation; parts b) and c) can be found in Zygmund [25,
Chap. 1 and p. 188, resp.]; and part d) is in Kahane and Salem [11]. Because of
(1.2), the conclusion of part d) can be refined to the statement, cap,,,, ,, E=0.

3. The Computation of lim(1/y) fy(y)
Assume throughout that the sequence {y,} has the property that

lim Y siny;A G31)

y=o 0<y;<M, Vj
converges uniformly on compact subsets of [0, c0)\{r,}, where r,— co, that the sum
function ) (siny;A)/y ; has a finite jump at each r,, and that the series converges at
each r,.

z(y) will denote a function for which ylgg z(y)=0.

The following is clear by Proposition 1.1 and (3.1); more is true from the
discussion of capacity in Sect. 2.

Proposition 3.1. ylgg z(y) fy=0, a.e.

Clearly,
OIS 1A, =710). (3.2)

When (3.2) is combined with the L!-estimate in Sect. 1 one obtains —
Proposition 3.2. y < [[(1/9)f,]l , <.

It is also obvious that —
Proposition 3.3. f,e AR)NA'(R)NLAR)NC*(R), f,¢ M(R), and

lim |1z()/,1,=0= lim |20)/,).¢ -



150 J. J. Benedetto

Let E, be a compact interval with center 0, let V,=[0,b,], and define

1

—_— . (3.3)
[VIE, |+ (V) 2" XEn=

P

where |V| is the Lebesgue measure of V. ¢, =0 is a “trapezoid” centered at 0, jgon =1
since

1

§0u= i v O, v, (0 and |E,—V]=|E|+IV],
IVIIE,|+1V,D)

@, vanishes off of E,+V,—V,, and ¢,=1/(|E|+|V,}) on E,. It is easy to compute

(34

1
loall 4=
A= (VIE, | +1V, )

and

1
< . 3.5
”gDnHZ_(’Enl‘i‘IV;,I)l/Z ( )

For example, the latter inequality follows since

]

2 iy 2
=|E,|+2 (———x ——‘x+1)dx
B2\,

nl
=|E,|+3V,].

1
,‘IZ'TXV,.* XE. -V,

Clearly, limgp,=4 in the weak * topology on M(R) when |E,|+|V,|—0. Thus
the following result shows that

1, .
lim —f(y»)=0 in the mean. (3.6)

y—w y

Proposition 3.4. Given y,—oo. Then {E,} and {V,} can be chosen so that
|E,|+|V,|—=0 and

Proof. From (3.5) and the L2-bounds of Sect. 1, it follows that

. Kz(y,)
120§ 13, ()0 m(y — y)dy| £ B+ V)7

The result is completed by choosing |E, | +|V,,|>z(y,) for each given y,. qed.
The following is relevant since it is not known if the Fourier series g, converges
everywhere.

Proposition 3.5. Given A>1 and y,— 0. If {z(ym)fm} is equicontinuous at A then
Jim 20,),,()=0.
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Proof. Let a,, ,=z(,,)| fm(y)qon(y—i)dy where |E,|+|V,| =0 (it is possible to use a
simpler approximate identity for this proof).

Then
lim a, ,=z(y,)f, () (3.7)

since z(y,)f, is continuous and ¢,—¢ in the weak * topology.
Also

lima, =0

m—oo MR

since |a, | 2,1, 219ul, and {]I7,,,]12} is bounded
The convergence in (3.7) is uniform in # because of the equicontinuity.
Thus, by the Moore-Smith theorem, e.g, Benedetto [2, Appendix I],
limlimg,, ,=limlima,, ,=0, and the proof is complete. _ged.

Remark. In the same way, one sees that if {z(ym)fym} is a uniformly equicontinuous
family on {y,} then

limz(y,,)f,,, () =0.

The following is Egorov’s theorem, where (3.8) allows the case of an infinite
measure space. ‘ >

Proposition 3.6. Given y,,—co and assume that
Ve>0, Ul {11207, (A ze}| < oo. (3.8)

Then for each 0>0 there is a measurable set A, for which |A|<d, such that
lim sup {|z(y,)f,, (A)l : A¢ A} =0.

The following can be viewed as a means of quantifying the above equicon-
tinuity criteria.

Proposition 3.7. Given y,— 0. If there is a positive sequence {g,,} tending to zero

for which limy, g2 = oo and either
| lj 1f, O =, (At y)ldi<el? (3.9)
Al Zem

or
12, ) — F, (A 9D 4o <EL2, (3.10)

where y,, is the characteristic function of the interval [ —e,,¢,], then

-

lim 7, (,)=0.

T Y T



152 J. J. Benedetto

Proof. Set ¢,,=|E, | +|V,|. The result follows from Proposition 3.4 and its proof,
and by making the corresponding L' — L® and A— A’ estimates of

—f ) — I Fon D PlA =y, )2

——I PNy, V)~ F,, Ay, A, qed.

Remark. 1. (3.9) and (3.10) are optimal norm estimates. To compare them note that
the integral in (3.9) without absolute values is

2¢,{ £, (x)cosxy,, ( 1— Slzs"’x) dx
x

m

and this is the same as the Fourier transform of the function in (3.10) evaluated at
the origin.
2. Tt is easy to see that f, as an L2-Fourier transform, is continuous a.e.

Example 3.1. The problem of estimating the error term of the prime number
theorem given RH leads to the intermediate problem of finding functions
g(y)<logy/loglogy for which the asymptotic behavior of

etxy

ySex 7

can be estimated sharply as x— oo, where the distribution function y satisfies

Y0 120 )
o ogZ— 5 +9(y)=
For example, one takes the case g(y) identically 0. Using Poisson summation

one obtains

y=1.

El

eixy X eixy(n)

ygex V w=1 (1)
1<eixy(1) etxy(X))

2050 T S ()eXpl(xy(y) 2rky)dy,

k=— 17

X

e-logE— ~ % |and YX)=e*<p(X +1). Clearly,
2 2xn

here X =
where o

2 =an
log (y(x)/2n) v log? ((x)/2m)°

Since (y(y)/2m) log (y(y)/2m) — (3(y)/27) = y, one has

X

1
| 1) EXP ey () = 2ky)dy

1

Y(x)= and y"(x)=

22§X
1 27
— [ 2B exp 2mifyx — yk(log y— 1)} dy.
2n Q) Y
2%
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The fact that di {yx—yk(logy—1)} =0 when y=e"* and k+0 leads one to the
y

transformations & =e%* and y= (1 +1), and so

ey 2

eixy 1 (eixy(l) eixy(X)) X 1 )
+ + elxy(y)dy
) vX) { ()

1
1 2 “logé(1+1)

+ 2 o)

,‘#02%1(&_1 1+¢<
2né

Set p(t)=p(t)= —2nk(1 +1)(log(1+7)—1) and g, (v)=¢q(r)=logé(1+1)/(1+7).
Then p'(r)=0 at =0 independently of k0. Also, since y(1)>0 is large enough
one observes that p(7) has no stationary points for k <0 and so the above integrals
are calculated explicitly in this case using integration by parts. There are technical
problems for summing over negative k which have to be dealt with by other
summability methods.

exp { — 2mik(1 +1)(log(l+1)—1)}dz.

4. Explicit Formulas

{(s) is the Riemann zeta function and ¢ = o+ iy designates a zero of {. N(T) is the
number of zeros ¢ of { for which 0<o <1 and 0 <y < T The Riemann hypothesis,
RH, states that if {(¢)=0 and ¢=1/2 then c=1/2.

The von Mangoldt function A is defined as

Aln)= logp, if n=p™ and peP,
~ o, otherwise,

where P is the set of primes and n and m are positive integers ; and the Tchebychev
function 1 is defined as

w*x)= 3 An),

n=x

where the dash denotes that if x is a positive integer then A(x) is to be taken with a
factor 1/2.
For the case of RH, Littlewood’s explicit formula [13] asserts

e
Lx)— x—<x1/210gx, x>4,

|'V| < xl/2

where
1 1
L(x) =X— w*(x) == Elog (1 - P) — log 27 5

cf., Littlewood [15].

Remark 1.(3.1) is valid for {(s) and for this case r, has the form klogp; this factisa
simple consequence of the Riemann-von Mangoldt explicit formula, which is more
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elementary than Littlewood’s version. Interesting properties of condition (3.1)
have been given by Rademacher [19] and Rubel and Straus [20].

Remark 2. One notes that for the case of {(s) and the imaginary parts y of its zeros,
(1.1) and (1.2) are true. (1.2) is clear from (1.1). The second inequality of (1.1)
follows from an argument in elementary function theory or as an easy consequence
of the Riemann-von Mangoldt formula which asserts: there is 4 and T;, such that

14+2n

VT=zT,, [N(T)— %TlogT—l— T‘ <AlogT, 4.1)
T

e.g, Ingham [9, p. 71] or Titchmarsh [23, Theorem 9.2]. The first inequality of
(1.1) is due to Titchmarsh [23, Theorem 9.14]. If h is given and large then this first
inequality is an immediate consequence of (4.1) since

1+log2_7t

VT2T,, N(T+h-NID+—

> (£ - 2A> log T

2n
if h/2n>2A.

Propositions 4.1 and 4.2 are usually proved by means of explicit formulas less
complicated than Littlewood’s; and we refer to the texts in our bibliography as
well as the monographs by Prachar, Davenport, and Huxley for details.

Proposition 4.1. Assume RH and let C(y) Z y increase to infinity for all large y. Then

sin yy
Y T ecp) (4.2)
O<y<ey2 ¥
if and only if
P*(x)—x<x?C(log x). 4.3)

1
Proof. i) Clearly, one has —%log<1 = F) —log2n<1.

ii) By Littlewood’s explicit formula and the hypothesis that C(log x) =log x for
large x, (4.3) is obtained if and only if

]
Y Z <x!*C(logx). (4.4)
hl<vz €

iii) Because of (4.4) it remains to verify that (4.2) holds if and only if
Y exp{iylogx}/(3+iy)<C(logx). 4.5)
[y[<Vx
The left hand side of (4.5) has the form
sin (ylog x
y 7 (ylogx) .6)

>

A —2i
Lt 0<y<Vx %'*'72

where A, <1 because of the Riemann-von Mangoldt formula.
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Now
7 sin (ylog x)
0<y<Vx %"‘Vz
sin (ylog x) . 1 1
= ——+ ysin(ylogx)|+——= — —
0<yZ<:1/¥ 14 o<vz<ﬁ ity v’
in(yl
1 55 sin (y ng)-i—Bx, 7)
O<y<)x Y

where B <1,
The result follows by combining (4.5)4.7) and setting y=Ilogx. qed.

Proposition 4.2 (von Koch, 1901). If RH is valid then
p*(x)—x<x?log? x. (4.8)

Proof. Proposition 1.3a states

s yy <y2 ‘ (49)

0<y<ey/2 V

and so the result follows from Proposition 4.1. ged.

Von Koch’s theorem is proved by means of an explicit formula and routine
estimates, e.g., Ingham [9]. Since Littlewood’s explicit formula is strong the
accompanying estimate, (4.9), in the above proof is particularly simple. Also,
because of the rough estimate used to prove (4.9), it is to be expected that the right
hand side of (4.9) can be lowered. If it were possible to prove

sinyy

O <y<e¥/?2

<C(y)

for some C(y)=y for which lim C(y)/y?=0, then Proposition 4.1 would yield

y— o
p¥*(x)—x=o0(x'?log?x), x—00,

which is an improvement over von Koch’s theorem, cf., Proposition 5.2.

F(R) is Schwartz’s space of infinitely differentiable rapidly decreasing func-
tions and &'(R) is the space of tempered distributions. C*(IR) is the space of
infinitely differentiable functions with compact support and D(IR) is the space of
distributions. x; denotes the continuous function on IR which is 0 on (— c0, a] and
which is defined as x; (x)=x—a if x>a.

The Mellin transform of Fe #(IR) is defined as

D(s)= | F(x)e® YP%dx, s=o+iy,

and the functional W is defined as

W(F)=} ®(e),
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where the sum is taken over the zeros of the Riemann ¢ function in the critical strip
0<Rep=1. W was also defined in the introduction. If SeD(IR) then the n-th
primitive of § is denoted by S,

Proposition 4.3. Assume RH. Then there is a second primitive W, of W for which
W€ L*(R), and, in particular, We #'(R). In fact (computing directly), W, (x)
==Y (1/dm g)2)eim >,

It can be shown that RH is valid if, and only if, We &'(R); and as such the
condition in Theorem 6.1b is necessary and sufficient for the validity of RH. To
prove that RH implies that We %'(R) one needn’t use the Riemann-von Mangoldt
formula ; the result also follows from properties of positive definite distributions.

The following is Weil’s explicit formula [24].

W=W,+ W, +(W,+W,), where for FeC*(R), W,(F)= —(lognr)F(0), W,(F)

~(re F'/r( + 51} FO)),

W,(F)= T F(x)(?+e™?)dx,

-0

0

W,(Fy=— Z 1/Z(F(10gn)+F( logn)).

Technically speaking, Littlewood’s explicit formula is a special case of Weil’s,
but, for most applications to {(s), Weil’s formula does not seem more effective.

5. ¢(s) and the Series Y (d(m)/m)sinmx
Littlewood [14] has proved that if RH is valid then

1 1+log2=n logT
N(T)=—TlogT— — T .
D w08 2n T (loglog T)’ = (5-1)
and so
. d(m)
lim ————— = :
RS (1/2n) logm =L (5:2)

cf,, Landau [6] and Titchmarsh [23, Sect. 14.13]. The proof of the Riemann-von
Mangoldt yields

1+log2xn
2n

where &(T)<1/Tand S(T)=(1/m)arg {(;+iT), and so the basic bound in (5.1) is the
estimate (given RH)

S(T)<log T/loglog T, (5.4)
cf.,, Selberg [21, Theorem 1].

N(Y’)z%TlogT T+% +S(T)+¢T), (5.3)
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Proposition 5.1. Assume RH. Then
194, Loy <¥*/log y. (5.5)

Proof. g, (x) may be written as

m+1

| dN@

My sin mx

]

1

and so, because of (5.3) and the fact that

m+1 m+1 m+1
’j; dN(1) = ,{ (lz—it—lofj”)dw ,£ as@)+0(Lm), m—co,
it follows that
] My /mtl sin mx
gd’y(x)_E%:('{ logtdt) o
My /m+1 -
+Z< | dS(t))Smmmx +0(), m—oo.
1 m

m+1
Using partial summation and the facts that the sequence { [ log tdt} increases

m
My

and the sequence {Z (sin mx)/m} is uniformly bounded, one computes
1

M, /m+1 :
Z( i logtdt)smmx
1 m
My m+2 m1
<y+ Y| | logtdi— | logedt| <y.
1 Im+1 m

Thus, it is necessary to estimate

My, /m+1 :
Z( | ds(t))smmx‘ 56
T\ m m
By partial summation, (5.6) is bounded by
M 0 5
ENTRIP ¥ sin(m+1)x _ sinmx
e ‘; S(’")< ol e 57

The first term in (5.7) is bounded independently of y and, because of (5.4), the sum
in (5.7) is bounded by

M,y 1 .
; Wfﬁg; log m‘ msin (m+ 1)x —msin mx — sin mx
My 1
<Yy ——8% (5.8)

T~ mloglogm’
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The right hand side of (5.8) is estimated by the integral

My logxdx Y udu

] <

a4 xloglogx ~ glogu’

(5.9)

It is well-known that

T du y y

ilogu ~ logy +0<10gy>’ =
Thus the second integral in (5.9) is dominated by y*/logy which gives the
result. ged. '

Remark. The bound y?/logy on the integral in (5.9) can’t be sharpened since
f(wlogwdu=u?/logu+ [(u/log®u)du.

Remark. Selberg [21, 22] has given a strong £ estimate (i.e., negation of little “0”)
for S(T) so that, essentially, the term log T/loglog T of (5.1) can’t be replaced by
anything smaller than (log T/log log T)*/?, cf., Titchmarsh [23, p. 189 and pp. 295—
296] and Montgomery [18].

Propositions 1.1, 4.1, and 5.1 combine to yield —

. 1.
Proposition 5.2. y*(x)=x+ o(x'/?log? x), x— o0, if and only if lim ;fy(y)zo.
y2 o

As far as the Fourier series g, is concerned it remains to investigate whether or

not it converges everywhere in the case of {(s) and RH.

Example 5.1. Because of Proposition 5.2 and conditions such as (3.8) it is relevant
to estimate ||fym—fy"|\w. Note that if {y,} is a linearly independent set [which is
plausible for {(s)] then this estimate is related, up to a factor, 1/4, to Kronecker’s
theorem.

Example 5.2. a) Clearly,
1 . 1 1 M,
Lrm=1f cosxy( S fx+l) cosky) ix
y Yo k=1

11 M,y
——fsinxy( D f(x+k)sinky>dx.
Yo k=1

b) Thus for the case of {(s), p*(x)=x+o(x*?log? x), x—c0, is equivalent to
each of the following conditions:

1% 1 F

Sy OO 19 xSk + x)dx =0(1),  y—oo0,
Y=y ksin g sin

(5.10)

1My 1cos, lcos [Fil
- > = . kyl| . dN() | dx=0(1),
v&y ksin y(f)smxy<x£k ()> x=o0(l), y—-®

It is to be expected that the total variation norm of the measure dS(k+x) on [0, 1]
is much larger than its pscudomeasure norm. In fact, it is easy to compute

k+1

1 logk
= e k ; 5.11
I 14501~ -togk+O( 22 ), ko (5.11)
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1
so that if y,, =27m and the integral | in (5.10) is estimated in terms of (5.11) then all

4]
that can be said of (5.10) is that it is bounded.

6. The Limitations of Explicit Formulas
Lemma 6.1.

a) Wo,)(x)= —(log n)xc;r (x);

b) VV1(2)(X) =0(x), x—00.

Proof. a) is clear.
b) i) Take a,b>0 and write I"/I" as

1 = (1 1
I'/T(a+iby)= — C— g S
e, ¢ a+iby +mgl (m (m+a)+iby)

where C is Euler’s constant.
Consequently,
a C (1 a+m 1

TR @by A (E ~ b (a+myb)y +y2')
a 1 © a?+am+y2b?

TR @b 2 m(at mybP A7)

ii) The inverse Fourier transform G of the expression (6.1) is

Rel"/I'a+iby)y=—C

=—C 6.1)

a b © at+am b
G=—-C5—_._e_1x|a/b e e_lxl(a+m)/b
b% a +,,,;1 b*m a+m

e~ |x|(a+m)/b ]

. o1l b
e *;m a+m
i) Clearly, G,(x)= Wi (2)(x), x~ c0.
The second primitives of the first and last terms of G are —Cx(x) and
Y [b/((m+a)m)Je~*@+m/b respectively; and these are O(x), x— oo.
1v) To estimate the second primitives of the remaining terms of G one
calculates (¢~ 1*1") ,, as follows.

1
<(;3 g Xy % xg(x)), F(x)>

1= 2%
== | F®(x)e™Irdx + - [ xF@(x)dx
— 0
1

0 1 «© 2 ©
== | FO(x)e*dx+ " § FO(x)e™*"dx — - § FO (x)dx
— 0 0

~

O 1< 2
=— % | FO(x)exdx + - [ FO(x)e™*dx+ ;F(O)
— 4]

= | e MrF(x)dx.
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Thus, distributionally,

1 2 @ .
(r—ze llr 4. ;xé’(x)) =e~ P,

v) Because of part iv) the sum of the second primitives of the second and third
terms of G [in part ii)] has the form

b2 a b? 2b
. —xa/b = —x(a+m)/b 0.
b( +2 ) Z bm((a+m)ze +(a+m)x>’ ot

Clearly, this expression is O(x), x— 0, and so the proof is complete. qed.
If Se D(R) then S will denote the operation (Sx, F(x)y ={8,, F(—x)>. Define

VE=3 | (F (logx) _ Alm) F(logn)) dx. (6.2)

1/2 1/2
n=1n—1

Lemma 6.2. ) W, + W, =V + V.
b) V=T+ U, where

x " (F(logn) A(m)F(log n)) ix

T(F)= Y |

1/2 1/2
n=1n—1
o " F(logx F(logn
vR=3 | ) x
n=1n—1

¢) There is a second primitive U ,, of U for which U, e L*(R), and, in particular,
Ue S (R).

Proof. a) The change of variable u= —x yields
[ Fx)E?+e dx= | e"*(F(x)+F(—x)dx; (6.3)

and the change of variable u=e¢” in (6.3) yields

e}

Wy(F)= Eg leE (F(log x)+ F(—log x))dx. (6.4)

Combining (6.4) with the definition of W, one obtains

08+ WP = (| i Flogad— 3. 51 Plogn)

+ (O(j: 11/2 F(—logx)dx— i%ll(%)F(—logn))

=(V+ V)F).
b) This follows by adding and subtracting F(logn)/x*/.
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¢) i) Define U (F)= | %(F(logx)—F(logn))dx. Thus, by the change of
n—1 X
variables y=logx,

U= | FO)e2dy—2F(lognint/ —(n— 1))

log(n—1)

= <Xlogn(x) ex/Z’ F(x)> =0 <2(n1/2 . (n . 1)1/2)5logn’ F> ’

where y,,,, is the characteristic function of the interval (log(n— 1), logn].
Therefore,

U, =" f1ga(X) —2(n'12 ~ (n—1)"1%)5

logn

and
U= Z Un =e¥2_2 Z (l’ll/Z _(n . 1)1/2)510gn g
1 1

Consequently,

Ug(x)=4e¥2-2 Zﬁ (n'? —(n—1)"?)x% (%) (6.5)

ii) On (—o0,0], one has U =4

To estimate U,,(x) on (0, 00), let x=logm, m>1.

Then, by the definition of x and some routine calculations we obtain the
estimate,

N
I
UN+ 112N+ 1) 2 og(N+ 1)+ 3. 17
2

N

1

<Up(logm< Y ;’Ig/f + CH4NYV2_2N2logN
2

for all large m.
iif) Now let xe(logm, log(m+1)). Then

& 1
Uy )=K+2 Y (n”z—(n—l)l/z)(logm+ —log%>

n=1 n

1
=K+2(log(1+ a>>m1/2§K+2/m”Z.

Similarly, one obtains a lower bound for Uy(x). qed.

Theorem 6.1. Assume RH and set a,=2(n''? —(n—1)}/2)— A(n)/n/2. Then

w0

a) f(x) : 722)(x) : Z anxl:gn(x) = O(X), X—00,

b) ) anlog% =0(logm), m->c0.
1
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Proof . a) W,,, is an element of L°(R) because of Proposition 4.3 and RH. Thus, by
Weil’s explicit formula and Lemmas 6.1 and 6.2, the result will follow from

To)(x)= i:lanxlf,gn(x) : (6.6)

The computation,

(TF= 3 | (%t‘iﬂ_é(@f%og@)dx

S 22— (n—1)%)— An)/n"2]F(logn)

1

n

It
inge

an<5logn’ F> 4

yields T= Y a,0,,,, and (6.6) follows.
1
b) Let x=logm so that if logn <x then x;gn(x)=log%. ged.

Obviously, f(x)/xe L=(IR).
The verification of the next result follows by partial summation.

Theorem 6.2. The estimate,

a,=0(logm), m— o0, 6.7)

»—-M§

is equivalent to the estimate,
p(x)=x+0(x"?logx), x—00. (6.8)

Example 6.1. ) Assume RH. If it were possible to use the Weil explicit formula to
verify (6.8), without having additional information about {a,}, then it would be
necessary to make estimates such as W3)(x)=0(x), x— 00, cf, the proof of
Theorem 6.1 as well as the statements of Propositions 4.1 and 4.2. A similar
remark applies to the verification of (2) in the introduction, instead of (6.8).

b) There are certain harmonic analysis implications about the estimate, W (%)
= 0(x), x— cc. These are discussed now and in part c).

W, is the Fourier transform of a discrete measure. W€ (R)\
(L*(R)UL(R)) and it is a B*-almost-periodic function. Clearly,

VFeSW), (W F>=—i L (1n)FG).
Fix &¢>0 and choose K >0 so that y,<2nK/logK if j< K. Define
1 X .
DN(X) = ge, 0)() Y Afy e,
n=K

noting that, formally, W,(x) is given by — iy (1)) e
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It is easy to see that {®y} C L°(IR) converges in the weak = topology if , and only
if, for each ge L\(R), for which g=0 on (—co,&] and xg(x)e L*(R),

2(1/%)@@,,) 69)

converges.

Similarly, {®y} £ L*(R) converges in the weak x topology if , and only if, for each
ge LY(R), for which g is locally absolutely continuous on (— o0, €], xg(x)e L(R), and
g'e LY(— 0, ¢), one can conclude that the series of (6.9) converges.

Note that the series of (6.9) converges whenever ge C (g, o).

¢) There is a natural playoff between the various hypotheses on g in part b) and
the divergence of (6.9). Taking the simplest model, y,=n/logn, this playoff is
illustrated in the following two examples.

i) Let g= ). g, where §,=o, and

n=K

q»,,(y)=@exp{—r(n)w—nﬂognm, ) >0.

Thus §=0 and

e~ ixn/logn
guX)= ———exp{ —x*/(4r(n))} -

2(logn)? |/ mr(n)

Setting f(x)=xg(x) one obtains

R 2 ()2
dx <2
I OM=2VE E, gy
and hence feLY(R) if H(n)<1/n On the other hand, ||g,ll..q=1/(logn)* and so
there are difficulties in examining directly the integral, [@yf. If 1/(logn)? is
replaced by 1/(n(logn)?) in the definition of ¢, then g, fe L'(R) and lim [Py f exists.
ii) Let g= ) g, where §,=v, and v, (7)=(1/logn)?t,*g,(y), where t, is a
nzK

trapezoid of height 1 centered at n/logn and {g,} is a C>-approximate identity.
Then choose ¢, and g, so that suppy,nsuppy,, =0 [as opposed to part c)i)]. Note
that the distance between n/logn and (n+1)/log(n+1) is about 1/logn; and that

101087, 0ol S gy Valislen iz (6.10)
by a simple application of Holder’s inequality and the Plancherel theorem.
Because of (6.10) one can make a good estimate of Y.l am) and Yl Am) 10
order to guarantee that g and f are integrable. The playoff mentioned at the
beginning of part c) is manifested as follows. If a translate of suppg, is contained in
suppt, then the divergence of (6.9) is obtained ; but in this case, Y. ||l s diverges.
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