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Abstract. Constant amplitude zero autocorrelation (CAZAC) sequences play an impor-
tant role in waveform design for radar and communication theory. They also have deep and
intricate connections in several topics in mathematics, including Fourier analysis, Hadamard
matrices, and cyclic N -roots. Our goals are to describe these mathematical connections, to
provide a unified exposition of the theory of CAZAC sequences integrating several diverse
ideas, to introduce new techniques for constructing CAZAC sequences alongside established
methods, and to give an exposition of the fascinating unpublished theorem of Uffe Haagerup
(1949–2015), that proves that the number of CAZAC generating cyclic N -roots is finite. The
role of the uncertainty principle in the proof is essential.

1. Introduction

1.1. Background and goal. In this subsection, we define a Constant Amplitude Zero Auto-
Correlation (CAZAC) sequence, describe some scenarios where CAZAC sequences play a role,
and state the goal of this paper.

Definition 1.1 (CAZAC sequence). Given a function, x : Z/NZ −→ C.
a. The auto-correlation, Ax : Z/NZ −→ C, of x is defined by

∀m ∈ Z/NZ, Ax[m] =
1

N

N−1∑
k=0

x[m+ k]x[k].

b. The function (sequence), x : Z/NZ → C, is a Constant Amplitude Zero Auto-
Correlation (CAZAC) sequence if

∀m ∈ Z/NZ, |x[m]| = 1, (CA)

and

∀m ∈ Z/NZ \ {0}, 1

N

N−1∑
k=0

x[m+ k]x[k] = 0. (ZAC).
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Equation (CA) is the condition that x has constant amplitude 1. Equation (ZAC) is the
condition that u has zero auto-correlation for m ∈ (Z/NZ) \ {0}, i.e., off the dc-component.

The construction of CAZAC sequences, or modifications where ZAC is replaced by low
auto-correlation, is a central problem in the general area of waveform design; and it is
particularly relevant in several applications in the areas of radar and communications.

In radar, CAZAC sequences can play a role in effective target recognition and other
fundamental applications, see, e.g., [38], [39], [26], [63], [65], [21], [55], [49], [45], [1], [30], [58]
[35], [46], [43], [42], [28], [51]. There has been a striking recent application of low correlation
sequences to radar in terms of compressed sensing [36].

In communications, CAZAC sequences can be used to address synchronization issues in
cellular access technologies, especially code division multiple access (CDMA), e.g., [64], [66].

The radar and communications methods have combined in recent advanced multifunction
RF systems (AMRFS).

In radar there are two main reasons that the sequences x should have the constant
amplitude property (CA). First, a transmitter can operate at peak power if x has constant
peak amplitude - the system does not have to deal with the surprise of greater than expected
amplitudes. Second, amplitude variations during transmission due to additive noise can
be theoretically eliminated. The zero auto-correlation property (ZAC) ensures minimum
interference between signals sharing the same channel.

The applications referenced above are part of a broad range of applications of the narrow
band and wide band ambiguity function. The (ZAC) or low auto-correlation property can
be viewed as the boundary value of an ambiguity function, which in the narrow band case
is essentially the short time Fourier transform (STFT), see [69], [68], [9], [12], [6], [29]. We
shall not deal with the ambiguity function in this paper.

There are also purely mathematical roots for the construction of CAZAC sequences, e.g.,
[9]. One example, that inspired the role of probability theory in the subject, is due to Wiener,
see [7]. Our interest in CAZAC sequences was inspired by the deep ideas and techniques
of Björck and Saffari, e.g., [15], [18], and [54], and by the good fortune of the first named
author to benefit personally by discussions with both Björck and Saffari,

Our goal is simply stated: for various values of N , count and construct the CAZAC
sequences of length N . This entails providing a unified exposition relating cyclic N -roots,
complex circulant Hadamard matrices, and CAZAC sequences. We require a profound theo-
rem due to Haagerup [32], see Subsection 1.3. His work builds on a brilliant counterexample
by Björck, see Subsections 1.2 and 4.1, as well as explicit calculations by many others, e.g.,
[19], [13], In pursuit of our goal, we give several new explicit calculations with the point of
view of constructing new CAZAC sequences.

1.2. Gaussian and non-Gaussian CAZAC sequences. The beautiful story of this sub-
section was told expertly by Saffari in [54], pages 220-222, To begin, we define the discrete
Fourier transform (DFT).

Definition 1.2. a. Given a finite sequence, x = (x[0], x[1], . . . , x[N−1]) ∈ CN . The discrete
Fourier transform (DFT), FN(x) = x̂ ∈ CN , of x is defined by

FN(x)[n] = x̂[n] =
1

N1/2

N−1∑
m=0

x[m]e−2πimn/N , n = 0, 1, . . . , N − 1.
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Elementary calculations yield the inversion formula,

(1) x[m] =
1

N1/2

N−1∑
n=0

x̂[n]e2πimn/N , m = 0, 1, . . . , N − 1,

and Parseval’s formula,

(2)
N−1∑
m=0

|x[m]|2 =
N−1∑
n=0

|x̂[n]|2.

b. Notationally, for a given N , let em = e−2πim/N and WN = e2πi/N = e1. Also, for a
given x ∈ CN , we denote translation by τ so that τm[k] = x[k−m]. Clearly, WN is an N -root
of unity, and recall that it is primitive N -root of unity if it is not also an M -root of unity
for some M < N . Thus, WM

N is a primitive N -root of unity if and only if gcd(M,N) = 1.
c. For a given N , the DFT matrix, DN , is defined as the N ×N matrix,

DN =

[
1

N1/2
W−mn
N

]N−1
m,n=0

,

and, for convenience, assume that WN is a primitive N -root of unity. Using Equation (2)
we see that DN is a unitary matrix, i.e., D∗NDN = I, the N ×N -identity matrix, where D∗N
is the complex conjugate of the transpose of DN . The trace of DN is a sum of Gaussians,
as defined in Example 1.3. The remarkable properties of these Gauss sums are stated and
proved, with perspective, in [4] Chapter 3.9.

d. We have that
∀x ∈ CN , FN(x) = x̂ = DN(x) ∈ CN ,

see [4], [62] for much more on the DFT.

We shall say that a sequence, x = (x[0], x[1], . . . , x[N − 1]) ∈ CN , is unimodular if each
|x[j]| = 1, and it is bi-unimodular if each |x[m]| = |x̂[n]| = 1. In, [15], Björck began his
analysis of bi-equimodular sequence, i.e., |x[m]| = A for all m ∈ Z/NZ and |x̂[n]| = B for all
n ∈ Z/NZ, also see [18]. It is an interesting fact, and elementary to verify, that a sequence,
x = (x[0], x[1], . . . , x[N − 1]) ∈ CN , is bi-unimodular if and only if it is a CAZAC sequence,
see Proposition 2.1.

Example 1.3 (Gaussian sequence). Given an integer N ≥ 2, and define the Gaussian
sequence, gN,a,b[m], m = 0, . . . , N − 1, by the formula

gN,a,b[m] = W am2+bm
N , m = 0, . . . , N − 1,

where a, b ∈ Z and gcd(a,N) = 1, that is, a and N are relatively prime, see Definition 1.2,
part b. We write gN = gN,1,0.

Björck and Saffari noted, by an elementary calculation, that if N ≥ 3 is odd, then
{gN [m]}N−1m=0 = {e2πim2/N}N−1m=0 is a CAZAC sequence, and also noted that Gauss was aware
of this fact, probably in terms of the bi-unimodular equivalence! In this regard, see Example
2.5.

At Stockholm University in 1983, Per Enflo asked the following question for a given odd
prime p. Is it true that the modified Gaussian sequences, {gp[m]W jm

p }
p−1
m=0, j ∈ Z, are the

only bi-unimodular sequences of length p? Gaussian sequences are the special case when
j = 0. The answer was known to be “yes” for p = 3 and p = 5. A positive answer generally
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would have helped Enflo with estimates he was making on exponential sums. Ultimately he
made these estimates independent of his question, but it led to deep mathematical questions
in other directions.

The p = 3 case is elementary to resolve. It is much more involved for the p = 5 case,
which was first checked and settled by L. Lovász in 1983 (private communication to Björck),
and proved by Haagerup in 1996 [31], also see Remark 1.7 and Section 3.

Björck tried to answer Enflo’s question positively by computer search for p = 7. However,
the counterexample,

(3) (1, 1, 1, eiθ, 1, eiθ, eiθ), θ = arccos

(
−3

4

)
,

”popped out” as Björck put it!, see [54] and Section 4.
The rest is history, or, rather, the start of an important, and still unresolved and incom-

plete quest.

1.3. Haagerup’s theorem. We shall now state Haagerup’s theorem mentioned in Subsec-
tion 1.1. In order to do this, we shall require several notions, that are equivalent to the
CAZAC sequence property. To this end, we begin by defining a cyclic N root, see [14].

Definition 1.4. A cyclic N-root is a solution z = (z0, z1, · · · zN−1) ∈ CN to the following set
of equations 

z0 + z1 + · · ·+ zN−1 = 0

z0z1 + z1z2 + · · ·+ zN−1z0 = 0

· · ·
z0z1 · · · zN−2 + · · ·+ zN−1z0 · · · zN−3 = 0

z0z1 · · · zN−1 = 1.

The second definition we shall need to state Haagerup’s theorem, and to provide basic
perspective, is that of a complex circulant Hadamard matrix.

Definition 1.5. a. A complex N ×N circulant matrix CN is a square N ×N matrix, where
each row vector is rotated one element to the right relative to the preceding row vector.
Thus, a circulant matrix, CN , is defined by one vector, c ∈ CN , which appears as the first
row of CN . The remaining rows of CN are each cyclic permutations of the vector c with
offset equal to the row index, see [40]

A complex N ×N permutation matrix PN is defined by the property that it has exactly
one entry of 1 in each row and each column and 0s elsewhere.

A complex N ×N unitary matrix UN is defined by the property that UN U
∗
N = Id, where

U∗N is the conjugate transpose or adjoint of UN and Id is the N ×N identity matrix. Thus,
the rows and columns of UN form orthonormal bases for CN .

b. An important application of circulant matrices is that they are diagonalized by the
DFT. Thus, a system of N linear equations, CNX = Y ∈ CN , can be solved quickly using
the fast Fourier transform (FFT), e.g., see [22].

c. A complex N ×N Hadamard matrix HN is a square N ×N matrix with unimodular
entries cm,n ∈ C and mutually orthogonal rows, i.e., HN H

∗
N = N Id.

d. Let H1, H2 be two Hadamard matrices. As matrices they are equivalent if they can
be transformed one into the other by elementary row and column operations. In the case of
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Hadamard matrices, this is the same as saying that H1 and H2 are equivalent if there exist
diagonal unitary matrices D1, D2 and permutation matrices P1, P2 such that

(4) H2 = D1P1H1P2D2.

Motivation for the definition of equivalence is spelled out for dephased Hadamard matrices
in Subsection 2.5.

e. Bruzda et al. [13], [19] maintain a website that characterizes N × N Hadamard
matrices for various, small values of N . Also, see [60].

There is a characterization of CAZAC sequences in terms of complex circulant Hadamard
matrices [18]. In particular, the first row of any complex circulant Hadamard matrix is a
CAZAC sequence. Moreover, if x : ZN → C is a given function and if Hx is a circulant matrix
with first row x = (x[0], x[1], . . . , x[N−1]), then x is a CAZAC sequence if and only if Hx is a
Hadamard matrix, see Proposition 2.2. Finally, there is a one-to-one correspondence between
cyclic N-roots and CAZAC sequences of length N. This correspondence will be stated clearly
in Proposition 2.4, and we shall prove Propositions 2.1, 2.2, and 2.4 in Subsection 2.1.

In [32] (2008), Haagerup proved the following deep and fundamental theorem, Theorem
1.6, cf. his earlier related work [31].

Theorem 1.6. For every prime number p, the set of cyclic p-roots in Cp is finite. Moreover
the number of cyclic p-roots counted with multiplicity is equal to(

2p− 2

p− 1

)
=

(2p− 2)!

(p− 1)!2
.

In particular, the number of complex p×p circulant Hadamard matrices with diagonal entries
equal to 1 is less than or equal to (2p− 2)!/(p− 1)!2.

Remark 1.7. a. Before Haagerup’s theorem, Theorem 1.6, it was not known whether there
were finitely many or infinitely many cyclic p-roots for most primes p.

b. Although elementary for N = 2, 3, 4, it is generally difficult to compute the number of
cyclic N -roots. In fact, prior to Theorem 1.6, computer algebra, as opposed to theoretical
means, was the only available technology for such computation, and in this setting N was
necessarily small, see Björck and Fröberg [16] (1991), [17] (1994) for the cases, 5 ≤ N ≤ 8,
as well as [2] (1991).

For a given N , let

r(N) =

(
2N − 2

N − 1

)
,

resp., ru(N), be the number of cyclic N -roots, resp., unimodular cyclic N -roots, see Table 1
which is taken from [32]. Backelin and Fröberg [2] (1991) contains the proof that r(7) = 924.

With this information, Faugère conjectured that for a given prime p there are
(
2p−2
p−1

)
cyclic p-roots. This is the content of Theorem 1.6 when the number of cyclic p-roots is
counted with multiplicity. The multiplicity is 1 for p = 2, 3, 5, 7, but it is not known if this
is true for all primes. In the case p = 9, Faugère [25] showed there are cyclic 9-roots with
multiplicity 4.

c. In Section 5 we shall outline Haagerup’s proof that the set of cyclic p−roots in Cp is
finite. Although this part of Haagerup’s proof is ingenious, the real depth is involved in his

proof that the number of cyclic p-roots counted with multiplicity is equal to (2p−2)!
(p−1)!2 .
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Table 1. r(N) and ru(N) for N = 2, . . . , 9

N 2 3 4 5 6 7 8 9

r(N) 2 6 ∞ 70 156 924 ∞ ∞
ru(N) 2 6 ∞ 20 48 532 ∞ ∞

1.4. Outline. Besides the material in Subsections 1.1, 1.2, and 1.3, the outline of what we
do is as follows.

Section 2 gives the basic theory of CAZAC sequences. In Subsection 2.1 we prove the
various elementary characterizations of CAZAC sequences in terms of the DFT and bi-
unimodular sequences, Hadamard matrices, and cyclic N -roots. Subsection 2.2 is devoted
to analyzing equivalence classes of CAZAC sequences. Then, in Subsections 2.3 and 2.4, we
study cyclic p-roots and CAZAC sequences of non-square-free length, respectively. Finally,
Subsection 2.5 deals with technical but useful properties of dephased Hadamard matrices.
These subsections contain new techniques for computation.

Then, in Section 3, we construct all CAZAC sequences of lengths 3 and 5 in several ways,
e.g., in the case p = 3 we use cyclic 3-roots, Hadamard matrices, and equivalence classes. In
fact, for lengths 3 and 5 all CAZAC sequences are Gaussian roots of unity, and so we do not
have to generalize to other roots of unity. Although technical, these cases are straightforward
and solved by elementary means. However, we provide careful detail to illustrate various
computation methods, that may be generalized to CAZAC sequences of larger prime lengths
where not all CAZAC sequences can be explicitly listed.

In order to deal with the length 7 case, new ideas arise and this is the content of Section
4. We construct two CAZAC sequences, that are not generated by roots of unity; and, as
a result, when written in Hadamard matrix form, they are not equivalent to the Fourier
matrix. One of these sequences can be generalized to other prime lengths and is known as
the Björck sequence, see Subsection 4.1.

In Section 5, we present part of Haagerup’s theorem on counting the number of CAZAC
sequences of prime length p. We write out that part of his proof which shows that the
number of CAZAC sequences of prime length must be finite. His original work goes on to
count them as well, and we refer the reader to his paper [32], which is available on the internet
albeit unpublished. Even with the assertion of a finite number of CAZAC sequences and
Haagerup’s actual count, it is still not known how to construct all CAZAC sequences. One
of the fascinating aspects of Haagerup’s assertion of a finite number of CAZAC sequences
of prime length is the natural requirement of Tchebotorev’s theorem, re-discovered by Tao
as an uncertainty principle inequality used in compressed sensing, and also re-discovered by
Haagerup for this work on CAZAC sequences.

We close with Appendix 6 dealing mostly with real Hadamard matrices, but also with
natural forays into topics as diverse as bent functions in coding theory, Walsh functions and
wavelet packets, and the solution of the Littlewood conjecture related to crest factors in
antenna theory.

2. Characterizations and properties of CAZAC sequences

2.1. Characterizations of CAZAC sequences.

Proposition 2.1. Given a finite sequence, x = (x[0], x[1], . . . , x[N − 1]) ∈ CN \ {0}.
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a. x is a CA sequence if and only if x̂ is a ZAC sequence, and x is a ZAC sequence if
and only if x̂ is a CA sequence, although the constant amplitude is not necessarily 1.

b. x = (x[0], x[1], . . . , x[N − 1]) ∈ CN is a bi-unimodular sequence if and only if it is a
CAZAC sequence.

c. x is a CAZAC sequence if and only if x̂ is a CAZAC sequence.

Proof. Parts b and ıc are immediate consequences of part a.
To prove part a we proceed as follows. Suppose x ∈ CN is CA and let n 6= 0. Then,

using the Parseval formula for the third equality, we have

NAx̂[n] =
N−1∑
k=0

x̂[n+ k]x̂[k] = 〈τ−nx̂, x̂〉 = 〈enx, x〉

=
N−1∑
k=0

|x[k]|2e2πikn/N =
N−1∑
k=0

e2πikn/N = 0,

and so x̂ is ZAC.
Next, suppose that x ∈ CN \ {0} is ZAC and let m 6= 0. Then,

(5) 0 = NAx[m] =
N−1∑
k=0

x[m+ k]x[k] = 〈τ−mx, x〉 =
N−1∑
k=0

|x̂[k]|2 e2πimk/N ,

where the last step follows from the Parseval formula. Let ŷ = |x̂|2, so that by the inversion
theorem, we have

∀m ∈ Z/NZ, y[m] =
1

N1/2

N−1∑
k=0

ŷ[k] e2πimk/N .

Thus, because of (5), we know that y[m] = 0 for m ∈ Z/NZ \ {0}, and so

∀n ∈ Z/NZ, ŷ[n] =
1

N1/2
y[0]

by the definition of the DFT. Hence, by the definition of ŷ, x̂ is constant on Z/NZ, although
not necessarily taking the value 1.

The converse directions in each case are proved by replacing x with x̂. �

Proposition 2.2. Given a sequence x : Z/NZ −→ C, and let CN be a complex circulant
matrix with first row x = (x[0], · · · , x[N − 1]). Then, x = {x[0], . . . , x[N − 1]} is a CAZAC
sequence, where each x[j] = xj, if and only if CN is a Hadamard matrix.

Proof. First, we show that if x = (x0, · · · , xN−1) is the first row of a complex N × N
circulant Hadamard matrix H, then x is a CAZAC sequence, {x[0], . . . , x[N − 1]}, where
each x[m] = xm. Because H is a Hadamard matrix, each entry has norm 1, so x satisfies the
CA condition defining CAZAC sequences. Next, because H is circulant, H has the form

x0 x1 · · · xN−1
x1 x2 · · · x0

. . .
xN−1 x0 · · · xN−2

 .
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Now, as noted in Definition 1.5, the orthogonality property of Hadamard matrices implies
that HH∗ = NId. In particular, this means that the inner product of x with column i of
H is zero, where 2 ≤ i ≤ n. Note that column i is of the form xi, xi+1, · · · , xi+(N−1) where
subscripts are taken modulo N . So the ith column is a rotation of x, and, taken together,
columns 2, . . . , N comprise all the nonidentity rotations of x. So, the inner product of x with
any nonidentity rotation of x is 0, and thus x satisfies the zero auto-correlation property of
CAZAC sequences. Hence, x = {x[0], . . . , x[N − 1]} is a CAZAC sequence.

Conversely, we show that if x = {x[0], . . . , x[N − 1]} is a CAZAC sequence, then x =
(x[0], · · · , x[N −1]) is the first row of a complex circulant Hadamard matrix H = CN , of the
form 

x0 x1 · · · xN−1
x1 x2 · · · x0

. . .
xN−1 x0 · · · xn−2

 .
Now, because x is a CAZAC sequence, the absolute value of each xi is 1. Thus, H satisfies

the unimodular condition of complex Hadamard matrices.
Next, choose any row (xi, xi+1, · · · , xi+(N−1)) of H, where we consider subscripts mod

N . Then, when we take the inner product of (xi, xi+1, · · · , xi+(N−1)) with itself, we obtain
xixi+xi+1xi+1+ · · ·+xN−1xN−1 = 1+1+ · · ·+1 = N , since the absolute value of each xi is 1.
If we take any other row, (xj, xj+1, . . . , xj+(N−1)), of H, where i 6= j, then the inner product
〈(xi, xi+1, . . . , xi+(N−1)), (xj, xj+1, . . . , xj+(N−1))〉 is zero because x has zero auto-correlation.
This implies that

HH∗ =


x0 x1 · · · xN−1
x1 x2 · · · x0

. . .
xN−1 x0 · · · xN−2



x0 x1 · · · xN−1
x1 x2 · · · x0

. . .
xN−1 x0 · · · xN−2

 = NId,

where Id is the identity matrix. Thus, H satisfies the orthogonality property of complex
Hadamard matrices, and hence H = CN is a complex circulant Hadamard matrix. �

First, the proofs of Propositions 2.1 and 2.2 should be compared with those in [8]. Fur-
ther, due to the characterization of CAZAC sequences in Proposition 2.2, there is a basic re-
lation between vector-valued CAZAC sequences and finite unit norm tight frames (FUNTFs)
X for Cd. In order to state this relation, we shall say that x : Z/NZ −→ Cd is a CAZAC
sequence in Cd if each ‖x[k]‖ = 1 and

∀ k = 1, . . . , N − 1,
1

N

N−1∑
m=0

〈x[m+ k]x[m]〉 = 0.

Here, x[m] = (x1[m], . . . , xd[m]), where xj[m] ∈ C, m ∈ Z/NZ, and j = 1, . . . , d; and the
inner product is

〈x[k]x[m]〉 =
d∑
j=1

xj[k]xj[m].

Also, recall that X = {xn}N−1n=0 ⊆ Cd is a FUNTF if spanX = Cd and each ‖xn‖ = 1. This
definition does not reflect the complexity of frames even in the finite FUNTF case, e.g., see
[20], but it is sufficient to state Proposition 2.3, see [9] for its proof.
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Proposition 2.3. Let x = {x[n]}N−1n=0 be a CAZAC sequence in C. Define

∀ k = 0, . . . , N − 1, v[k] =
1√
d

(x[k], x[k + 1], . . . , x[k + d− 1]) .

Then, v = {v[k]}N−1k=0 is a CAZAC sequence in Cd and v = {v[k]}N−1k=0 is a FUNTF for Cd

with frame constant N/d.

The following fundamental result was proved by Björck in 1985 [14].

Proposition 2.4. There is a one-to-one correspondence between unimodular cyclic N-roots
and CAZAC sequences of length N and with first term x[0] = 1. In fact, given such a CAZAC
sequence, x, we can obtain the corresponding cyclic N-root with the formula

(z0, z1, · · · , zN−1) =

(
x[1]

x[0]
,
x[2]

x[1]
, · · · , x[N − 1]

x[N − 2]
,

x[0]

x[N − 1]

)
.

Proof. First, we show that if x = (x0, · · · , xN−1) is a CAZAC sequence with x0 = 1, then
(z0, . . . , zN−1) = (x1/x0, x2/x1, · · · , x0/xN−1) = (x1, x2/x1, · · · , x0/xN−1) is a unimodular

cyclic N -root. First note that that |zi| = x1/x0 · x1/x0 = x1/x0 · x0/x1 = 1 for all i, so
(z0, . . . , zN−1) is unimodular.

Next, multiplying z0 · · · zN−1 gives
x1
x0
· x2
x1
· · · x0

xN−1
=
x1 · · · ·xN−1 · x0
x0 · x1 · · ·xN−1

= 1,

because all numerators and denominators cancel out.
Because each xi is a unimodular complex number, we can write xi = eiθ for some θ.

Then, xi = e−iθ = 1/xi. Now, adding z0 + · · ·+ zN−1 gives
x1
x0

+
x2
x1
· · ·+ x0

xN−1
= x1x0 + x2x1 + · · ·+ x0xN−1 = 〈(x1, x2, · · · , x0), (x0, x1, . . . , xN−1)〉 = 0

since (x0, . . . , xN) is a CAZAC sequence and thus satisfies the zero auto-correlation property.
Next, taking z0z1 + z1z2 + · · ·+ zN−1x0 gives

x1
x0
· x2
x1

+ · · ·+ xN−1
xN−2

x0
xN−1

+
x0
xN−1

x1
x0

= x2x0 + x3x1 + · · ·+ x0xN−2 + x1xN−1

= 〈(x2, x3, · · · , x1), (x0, x1, . . . , xN−1)〉,
which is 0 by the zero auto-correlation of (x0, . . . , xN).

In general, if we take z0z1 · · · zi + z1 · · · zi+1 + · · ·+ zN · z0 · · · zi−1, where 0 ≤ i ≤ N − 1,
we get

x1
x0
· x2
x1
· · · xi

xi−1
+ · · ·+ xN−1

xN−2

x0
xN−1

· · · xi−2
xi−3

+
x0
xN−1

x1
x0
· · · xi−1

xi−2
= xix0 + xi+1x1 + · · ·+ xi−2xN−2 + xi−1xN−1

= 〈(xi, xi+1, · · · , xi−1), (x0, x1, . . . , xN−1)〉,
which is 0 by the zero auto-correlation of (x0, . . . , xN).

Thus, we see that (z0, . . . , zN−1) is a cyclic unimodular N -root, as desired.
Now, we show that if (z0, . . . , zN−1) is a cyclic N -root where x0 = 1, then if we recursively

define x0 = 1, xk = xk−1zk−1, then we get a CAZAC sequence. (Note that this forces
zk−1 = xk/xk−1, as before.)
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Certainly |x0| = 1. Assume inductively that |xk−1| = 1. Then |xk| = |xk−1||zk−1| =
|zk−1| = 1 because (z0, . . . , zN−1) is unimodular.

Also, we can compute

〈(x0, . . . , xN−1), (xi, . . . , xi+(N−1))〉 = x0xi + · · ·+ xN−1xi+(N−1) =
x0
xi

+ · · ·+ xN−1
xi+(N−1)

,

and we have already seen that this is z0z1 · · · zi + z1 · · · zi+1 + · · ·+ zN · z0 · · · zi−1, which we
know to be 0 because (z0, . . . , zN−1) is a cyclic N -root. �

Example 2.5. We state the following modest extensions of the Gaussian CAZAC sequence
example of Example 1.3.

a. Given an integer N ≥ 2.

M =

{
N, N odd,
2N, N even,

and let WM be a primitive M -root of unity. Then, {Wm2

M }N−1m=0 is a CAZAC sequence of

length N . We refer to {Wm2

M }N−1m=0 as the Wiener sequence, see [9] and Subsection 3.4.
b. Given an odd integer N ≥ 3. Then, {gN,a,b[m]}N−1m=0 is a CAZAC sequence.
c. Generally, for any CAZAC sequence of length N, we can construct a sequence of length

N2 in a systematic way. The construction is due to Milewski, see [9].

2.2. Equivalence classes of CAZAC sequences. There are several meaningful ways of
defining equivalence classes on CAZAC sequences. We shall employ the following elementary
definition. Two CAZAC sequences, x and y, on Z/NZ, are equivalent if x = cy for some
|c| = 1, e.g., see Haagerup [32]. Do there exist only finitely many non-equivalent CAZAC
sequences in Z/NZ? The answer to this question is “yes” for N prime and “no” for N =
MK2, see, e.g., [9], [54]. For the case of non-prime square-free N , special cases are known,
and there are published arguments asserting general results.

Another definition of equivalence, that was developed in [9], is the following. Two CAZAC
sequences, x and y, on Z/NZ, are defined to be 5-operation equivalent if they can be obtained
from one another by means of compositions of the five operations: rotation, translation,
decimation, linear frequency modulation, and conjugation. These 5-equivalence operations
for CAZAC sequences are defined as follows for all k ∈ Z/NZ:

(1) (Rotation) y[k] = cx[k], for some |c| = 1.
(2) (Translation) y[k] = x[k −m], for somem ∈ Z/NZ.
(3) (Decimation) y[k] = x[mk], for somem ∈ Z/NZ for which gcd(m,N) = 1.
(4) (Linear Frequency Modulation) y[k] = W k

Nx[k].

(5) (Conjugation) y[k] = x[k].

Example 2.6 (Equivalence relations between CAZAC sequences and cyclic roots). Suppose
two CAZAC sequences, x and y, defined on Z/NZ have associated cyclic N-roots {zk} and
{wk}. It is straightforward to verify the following relations (stated for all k ∈ Z/NZ) between
the 5-equivalence operations for CAZAC sequences, and how they become relations between
cyclic N-roots.

(1) y[k] = cx[k] =⇒ wk = zk.
(2) y[k] = x[k −m] =⇒ wk = zk−m.

(3) y[k] = x[mk] =⇒ wk =
∏mk+m

j=mk+1 zj.
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(4) y[k] = W k
Nx[k] =⇒ wk = WNzk.

(5) y[k] = x[k] =⇒ wk = zk.

In particular, the 5-equivalence operations for CAZAC sequences give rise to operations
under which cyclic N-roots are closed.

Thus, CAZAC sequences that are equivalent are also 5-operation equivalent. However,
generally, CAZAC sequences that are 5-operation equivalent are not equivalent. This is sig-
nificant because the numbers in Table 1 refer to the number of equivalent CAZAC sequences.

In practice, two CAZAC sequences, x and y, are not equivalent if x[0] = y[0] = 1, but
x[k] 6= y[k] for some k > 0. It is clearly more difficult to check if two CAZAC sequences are
5-operation equivalent than if they are equivalent.

Additionally, there are questions about how these two notions of equivalence among
CAZAC sequences relate to equivalence classes of the corresponding Hadamard matrices. It
is not true that CAZAC sequences from two equivalent Hadamard matrices will be equivalent
in the sense of the 5-equivalence operations.

2.3. Cyclic p-roots. In order to address the problem of finding all cyclic p-roots compu-
tationally, where p is prime, we developed a Python script which checks every permutation
of the p-roots of unity by brute force, and tried to see if and when they are cyclic p-roots.
Based on this script, we were led to formulate the following result. The result itself, along
with a combinatorial argument, leads to all 20 cyclic 5-roots with modulus 1, see Subsection
3.5.

Proposition 2.7. Let p be an odd prime, and recall that Wp = e2πi/p. If s ∈ {1, · · · , p− 1}
and r ∈ {1, · · · , p}, then (W r

p ,W
r+s
p ,W r+2s

p , · · · ,W r+(p−1)s
p ) is a cyclic p-root.

Proof. Given any cyclic p-root we can obtain another cyclic p-root by multiplying by W r
p .

In particular, we can assume without loss of generality that r = 0. Fix s ∈ {0, · · · , p − 1}.
The t-th equation (0 ≤ t < p) in the cyclic p-root system can be written as

p−1∑
k=0

t−1∏
`=0

xk+` = 0

so we would like to verify that

(6)

p−1∑
k=0

t−1∏
`=0

W s(k+`)
p = 0.

To this end, we compute directly and obtain
p−1∑
k=0

t−1∏
`=0

W s(k+`)
p =

p−1∑
k=0

W skt
p

t−1∏
`=0

W s`
p =

p−1∑
k=1

W skt
p W

s
∑t−1
`=0 `

p =

p−1∑
k=1

W skt
p W st(t−1)/2

p

= W st(t−1)/2
p

p−1∑
k=1

W skt
p = 0,

since W st
p is a primitive p-root of unity. For the last (p-th) equation we want to show

(7)

p−1∏
k=0

W sk
p = 1.
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To verify this, we once again compute directly, and obtain

p−1∏
k=0

W sk
p = W

s
∑p−1
k=0 k

p = W sp(p−1)/2
p = es(p−1)πi = 1,

since p is odd. Combining Equations (6) and (7) gives us that (1,W s
p , · · · ,W

(p−1)s
p ) is a

cyclic p-root. �

Corollary 2.8. The number of cyclic p-roots that are comprised of p-roots of unity is bounded
below by p(p− 1).

Proof. Each cylcic p-root in Proposition 2.7 is comprised of roots of unity. There are two
parameters: s and r. Note that s can take up to p − 1 different values, and r can take up
to p different values. Thus, the number of possible cyclic p-roots that can be formed by
Proposition 2.7 is p(p− 1). This gives us the desired lower bound. �

In particular, as a consequence of Corollary 2.8, all 20 cyclic 5-roots with modulus 1 are
generated by Proposition 2.7. It is natural to speculate that all cyclic p-roots are given by
Proposition 2.7, and that the lower bound p(p − 1) of Corollary 2.8 is the exact number of
cyclic p-roots that are comprised of p-roots of unity.

2.4. CAZAC sequences of non-square-free length. Much of the following material is
found in [18], but has been recorded here for completeness.

Theorem 2.9. Let c ∈ CN be any constant amplitude sequence of length N ≥ 2, and let σ
be any permutation of the set {0, 1, · · · , N − 1}. Define a new sequence, x ∈ CN2

, by the
formula,

∀a, b ∈ {0, 1, · · · , N − 1}, x[aN + b] = c[b]e2πiaσ(b)/N .

Then, x is a CAZAC sequence of length N2.

Proof. Without loss of generality, assume |c[i]| = 1 for all i = 0, 1, . . . , N − 1. The sequence,
x, is CA by its definition. We shall prove that x is also ZAC by verifying that x̂ is CA. Let
WN2 = e2πi/N

2
. Then,

|x̂[j]| =

∣∣∣∣∣
N2−1∑
k=0

x[k]W−kj
N2

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
a=0

N−1∑
b=0

x[aN + b]W
−(aN+b)j

N2

∣∣∣∣∣
=

∣∣∣∣∣
N−1∑
a=0

N−1∑
b=0

c[b]W
Naσ(b)

N2 W−aNj
N2 W−bj

N2

∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
b=0

c[b]W−bj
N2

N−1∑
a=0

W
Naσ(b)

N2 W−aNj
N2

∣∣∣∣∣
(8) =

∣∣∣∣∣
N−1∑
b=0

c[b]W−bj
N2

N−1∑
a=0

W
N(σ(b)−j)a
N2

∣∣∣∣∣ .
Note that the inner sum of (8) is 0 unless σ(b) ≡ jmod N , in which case the inner sum is
N . Thus, we can rewrite (8), taking j modulo N if necessary, as

|x̂[j]| =

∣∣∣∣∣
N−1∑
b=0

c[b]W−bj
N2

N−1∑
a=0

W
N(σ(b)−j)a
N2

∣∣∣∣∣ = |Nc[σ−1(j)W−σ−1(j)j

N2 | = N.

�
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Corollary 2.10. Given an integer N ≥ 2. There are infinitely many non-equivalent CAZAC
sequences of length N2 whose first term is 1.

We now wish to extend Theorem 2.9 to arbitrary sequences whose length is not square
free.

Theorem 2.11. Let Q ≥ 2 be an integer, let N2 be the largest square dividing Q, let σ be any
permutation of {0, 1, · · · , N − 1}, and consider the primitive M-root WM , where M = Q/N .
If c ∈ CN is a constant amplitude sequence of length N , then define a new sequence, x ∈ CQ,
by the formula,

∀a ∈ {0, · · · ,M − 1} and∀b ∈ {0, · · · , N − 1}, x[aN + b] = c[b]W
aσ(b)+Na(a−1)/2
M .

If at least one of N and M − 1 is even, then x is a CAZAC sequence of length Q.

Proof. Without loss of generality, assume |c[i]| = 1 for every i ∈ {0, · · · , N − 1}. First, we
note that x can be extended to an Q-periodic function on all of Z. Indeed, if we let k ∈ CQ

be written as k = aN + b, then

x[Q+ k]

x[k]
=
x[(M + a)N + b]

x[aN + b]
=
c[b]W

(M+a)σ(b)+N(M+a)(M+a−1)/2
M

c[b]W
aσ(b)+Na(a−1)/2
M

=
W

Mσ(b)
M W

aσ(b)
M W

N(M2+2Ma−M)
M W

Na(a−1)/2
M

W
aσ(b)
M W

Na(a−1)/2
M

= W
Mσ(b)
M W

NM(2a+(M−1))/2
M = 1,

since both terms are an M -th root of unity raised to a power which is an integer multiple of
M .

Using this, we can directly compute the auto-correlation of x at u = rN + s, where
r ∈ {0, · · · ,M−1} and s ∈ {0, · · · , N−1} and at least one of r and s is nonzero, i.e., u 6= 0.
Let k = aN + b and θ = b b+s

N
c. Then,

Ax[u] =

Q−1∑
k=0

x[k + u]x[k] =
M−1∑
a=0

N−1∑
b=0

x[(a+ r + θ)N + (b+ s)]x[aN + b]

=
M−1∑
a=0

N−1∑
b=0

c[b+ s]W
(a+r+θ)σ(b+s)+N(a+r+θ)(a+r+θ−1)/2
M c[b]W

−aσ(b)−Na(a−1)/2
M

(9) = Cr

N−1∑
b=0

c[b+ s]c[b]W
Nθ(2r+θ−1)

2
+(r+θ)σ(b+s)

M

M−1∑
a=0

W
a(σ(b+s)−σ(b)+N(r+θ))
M ,

where Cr = W
N(r2−r)/2
M . If s = 0, then θ = 0 for every b ∈ {0, · · · , N − 1}, and we can write

(9) as

(10) Cr

N−1∑
b=0

|c[b]|2W rσ(b)
M

M−1∑
a=0

W aNr
M = Cr

M−1∑
a=0

N−1∑
b=0

W
r(σ(b)+aN)
M .
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Since σ is a permutation of {0, · · · , N −1}, we can make a substitution q = σ(b) and reorder
as necessary to rewrite (10) as

Cr

M−1∑
a=0

N−1∑
q=0

W
r(aN+q)
M = Cr

Q−1∑
k=0

W rk
M = 0,

since r 6= 0 mod N . If s 6= 0, then in the inner sum of (9) we observe that 0 < |σ(b + s) −
σ(b)| < N , and thus N does not divide (σ(b+ s)− σ(b) +N(r + θ)) for any fixed b. It then
follows that M does not divide (σ(b + s) − σ(b) + N(r + θ)) for any fixed b and the inner
sum is 0 for every b. Thus, if s 6= 0 then (9) is 0 as well. �

Corollary 2.12. Given an integer Q ≥ 2, that is not square-free. There are infinitely many
non-equivalent CAZAC sequences of length Q whose first term is 1.

Proof. Take c[0] = 1. Let N2 be the largest square dividing Q and M = Q/N . If either
N is even or M is odd, then Theorem 2.11 applies immediately and the sequence given in
Theorem 2.11 gives us infinitely many CAZAC sequences. If N is odd and M is even, then
Q has exactly one factor of 2. Thus, we can write M = 2M ′ with M ′ odd. In Theorem
2.11, replace Q by Q/2 and M with M ′, and let y be the resulting CAZAC sequence of
length Q/2. We can then construct a CAZAC sequence of length Q by taking the Kronecker
product z ⊗ y of z = (1, i) ∈ C2 by y ∈ CQ/2, so that

z ⊗ y =

(
y[0], y[1], . . . , y

[
Q

2
− 1

]
, i y[0], i y[1], . . . , i y

[
Q

2
− 1

])
.

�

2.5. Dephased Hadamard matrices. One property that follows from the definition of
equivalence classes of complex Hadamard matrices is that every complex Hadamard matrix
is equivalent to a unique dephased Hadamard matrix, i.e., a Hadamard matrix with a first
row and first column of 1s.

The website [19] maintained by Bruzda et al. states the following construction of this
dephased form.

Proposition 2.13. [19] Given an N ×N complex Hadamard matrix,

H =


h0,0 h0,1 · · · h0,N−1
h1,0 h1,1 · · · h1,N−1

...
...

. . .
...

hN−1,0 hN−1,1 · · · hN−1,N−1

 .
The equivalent dephased form is
(11)

D1HD2 =


h0,0 0 · · · 0
0 h1,0 · · · 0
...

...
. . .

...
0 0 · · · hN−1,0



h0,0 h0,1 · · · h0,N−1
h1,0 h1,1 · · · h1,N−1

...
...

. . .
...

hN−1,0 hN−1,1 · · · hN−1,N−1




1 0 · · · 0
0 h0,0h0,1 · · · 0
...

...
. . .

...
0 0 · · · h0,0h0,N−1

 .
Moreover, the equivalent dephased form is unique.
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Proof. We compute the matrix product in Equation (11). In the first step, we have

D1HD2 =


h0,0h0,0 h0,0h0,1 · · · h0,0h0,N−1
h1,0h1,0 h1,0h1,1 · · · h1,0h1,N−1

...
...

. . .
...

hN−1,0hN−1,0 hN−1,0hN−1,1 · · · hN−1,0hN−1,N−1




1 0 · · · 0
0 h0,0h0,1 · · · 0
...

...
. . .

...
0 0 · · · h0,0h0,N−1

 ,
from which we obtain

D1HD2 =


h0,0h0,0 h0,0h0,0h0,1h0,1 · · · h0,0h0,0h0,N−1h0,N−1
h1,0h1,0 ∗ · · · ∗

...
...

. . .
...

hN−1,0hN−1,0 ∗ · · · ∗

 .
We now verify that D1HD2 is a Hadamard matrix. First, because each hij has norm 1,

and by norm multiplicativity, we see that each entry of D1HD2 has norm 1. Next, note that
(D1HD2)(D1HD2)

∗ = D1HD2D
∗
2H
∗D∗1. Because D1 and D2 are unitary matrices, we have

D2D
∗
2 = I and D1D

∗
1 = I; and because H is a Hadamard matrix, HH∗ = N Id. Thus, we

obtain D1HD2D
∗
2H
∗D∗1 = ND1ID

∗
1 = N Id.

This matrix is dephased because the ith entry of the first column is of the form hi,0hi,0 = 1
for 0 ≤ i ≤ N − 1 and the ith entry of the first row, for 1 ≤ i ≤ N − 1, is of the form
h0,0h0,0h0,ih0,i = 1.

Next, assume that there are a0, . . . , aN−1, b0, . . . , bN−1 such that |ai| = |bi| = 1 for
0 ≤ i ≤ N − 1 and

(12)


a0 0 · · · 0
0 a1 · · · 0
...

...
. . .

...
0 0 · · · aN−1




1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...
1 ∗ · · · ∗



b0 0 · · · 0
0 b1 · · · 0
...

...
. . .

...
0 0 · · · bN−1

 =


1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...
1 ∗ · · · ∗

 .
Calculating the left side of (12), we have

a0 a0 · · · a0
a1 ∗ · · · ∗
...

...
. . .

...
aN−1 ∗ · · · ∗



b0 0 · · · 0
0 b1 · · · 0
...

...
. . .

...
0 0 · · · bN−1

 =


1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...
1 ∗ · · · ∗

 ,
and so we obtain 

a0b0 a0b1 · · · a0bN−1
a1b0 ∗ · · · ∗

...
...

. . .
...

aN−1b0 ∗ · · · ∗

 =


1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...
1 ∗ · · · ∗

 .
From this, we find a0 = · · · = aN−1 = b−10 and b0 = · · · = bN−1 = a−10 . Say a0 = x and

b0 = x−1. Then, Equation (12) becomes
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x 0 · · · 0
0 x · · · 0
...

...
. . .

...
0 0 · · · x




1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...
1 ∗ · · · ∗



x−1 0 · · · 0
0 x−1 · · · 0
...

...
. . .

...
0 0 · · · x−1

 =


1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...
1 ∗ · · · ∗

 ,
or

xx−1


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...
1 ∗ · · · ∗




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 =


1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...
1 ∗ · · · ∗

 ,
and, thus, we have 

1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...
1 ∗ · · · ∗

 =


1 1 · · · 1
1 ∗ · · · ∗
...

...
. . .

...
1 ∗ · · · ∗

 .
Therefore, the equivalent dephased form is unique. �

3. Roots of unity CAZAC sequences of prime length

3.1. Introduction. All CAZAC sequences of lengths 3 and 5 are roots of unity, and they
are known. We shall give the calculations, not only for exposition, but because they provide
us with the ability to explore various methods for explicitly computing CAZAC sequences
in different ways. For the case of p = 3, we shall give 3 different techniques. The first
uses the correspondence between cyclic N -roots and CAZAC sequences, the second uses the
correspondence between CAZAC sequences and Hadamard matrices, and the last capitalizes
on the various notions of equivalence of CAZAC sequences. Then we proceed similarly for
the case p = 5. There are 6 unimodular cyclic 3-roots and 20 unimodular cyclic 5-roots, see
Table 1. We shall see that some of our calculations apply for arbitrary prime lengths; and
shall close the section by putting the material in the context of the 5-operation equivalence
relations defined in Subsection 2.2.

3.2. Constructing CAZAC sequences of length 3 using cyclic 3-roots. We first
would like to look at the specific case of cyclic 3-roots, which correspond to CAZAC sequences
of length 3. In this case we are looking for solutions (x, y, z) ∈ C3 to the system of equations,

(13)


x+ y + z = 0

xy + yz + zx = 0

xyz = 1.

This system is easily solvable in the following way. First, multiply the second equation in
(13) by z. This yields

xyz + yz2 + xz2 = 0.

By factoring z in the last two terms on the left hand side and using the third equation in
(13) we have

1 + z2(x+ y) = 0.
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Rearranging the first equation in (13) gives us that x + y = −z. Substituting this into the
above, we obtain

1− z3 = 0,

or, in other words, z must be a 3rd root of unity. Note that the same computations can also
be applied to x and y, and thus x and y must also be 3rd roots of unity.

This leads to the conjecture that the 6 permutations of the 3rd roots of unity (1, e2πi/3, e4πi/3)
indeed generate all 6 CAZAC sequences of length 3. To this end, first let us write all 6 per-
mutations of the 3rd roots of unity and the corresponding candidate CAZAC sequences.
Then, we verify that the sequences really are CAZAC sequences by observing that they are
known CAZAC sequences or 5-operation equivalent.

The 6 permutations of the 3rd roots of unity are

(1) (1, e2πi/3, e4πi/3)
(2) (1, e4πi/3, e2πi/3)
(3) (e2πi/3, 1, e4πi/3)
(4) (e2πi/3, e4πi/3, 1)
(5) (e4πi/3, 1, e2πi/3)
(6) (e4πi/3, e2πi/3, 1).

Let (z0, z1, z2) be a permutation of the 3rd roots of unity. To convert (z0, z1, z2) to the
corresponding CAZAC sequence, we begin by letting x[0] = 1. Then, we define x[1] and x[2]
as

x[1] = z0

x[2] = z0z1.

Using this, we can construct Table 2.

Table 2. Cyclic 3-roots and CAZAC sequences of length 3

Cyclic 3-root CAZAC sequence

(1, e2πi/3, e4πi/3) (1, 1, e2πi/3)
(1, e4πi/3, e2πi/3) (1, 1, e4πi/3)
(e2πi/3, 1, e4πi/3) (1, e2πi/3, e2πi/3)
(e2πi/3, e4πi/3, 1) (1, e2πi/3, 1)
(e4πi/3, 1, e2πi/3) (1, e4πi/3, e4πi/3)
(e4πi/3, e2πi/3, 1) (1, e4πi/3, 1)

In particular, each of the 6 sequences generated by the 6 permutations of the roots of
unity generates either a known CAZAC sequence or an aforementioned transformation of a
known CAZAC sequences. Thus, Table 2 lists all 6 CAZAC sequences of length 3.

3.3. Constructing CAZAC sequences of length 3 using Hadamard matrices. In
[13], [19], it is stated that all 3× 3 Hadamard matrices are equivalent to the Fourier matrix.
In fact, we shall obtain this result from computations in this subsection. The website [19]
further characterizes the set of 3× 3 Hadamard matrices into two types:

eia 0 0
0 eib 0
0 0 eic

 ·
1 1 1

1 W3 W 2
3

1 W 2
3 W3

 ·
1 0 0

0 eix 0
0 0 eiy

 ⋃
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eia 0 0

0 eib 0
0 0 eic

 ·
1 1 1

1 W 2
3 W3

1 W3 W 2
3

 ·
1 0 0

0 eix 0
0 0 eiy

 ,

where a, b, c, x, y ∈ [0, 2π). We shall use these two forms to find all 3×3 circulant Hadamard
matrices.

First, we consider the first form and compute the matrix product:

(14)

eia 0 0
0 eib 0
0 0 eic

 ·
1 1 1

1 W3 W 2
3

1 W 2
3 W3

 ·
1 0 0

0 eix 0
0 0 eiy

 =

eia ei(a+x) ei(a+y)

eib ei(b+x+
2
3
π) ei(b+y−

2
3
π)

eic ei(c+x−
2
3
π) ei(c+y+

2
3
π)

 .
In order for this matrix to be circulant, the following system of equations must hold mod 2π:

(15)


a = b+ x+ 2π

3
= c+ y + 2π

3

c = a+ x = b+ y + 4π
3

a+ y = b = c+ x+ 4π
3
.

From the first equation in (15) we have

(16) a = b+ x+
2

3
π.

Using (16) in the second equation of (15), we calculate that

(17) c = a+ x =

(
b+ x+

2

3
π

)
+ x = b+ 2x+

2

3
π.

From (16), (17), and the third equation of (15) we obtain,

(18) y = c+ x+
4

3
π − a =

(
b+ 2x+

2

3
π

)
+ x+

4

3
π −

(
b+ x+

2

3
π

)
= 2x+

4

3
π.

Finally, returning to the first equation of (15) and using (17) and (18), we have

(19) b = c+ y − x =

(
b+ 2x+

2

3
π

)
+

(
2x+

4

3
π

)
− x = b+ 3x+ 2π.

In particular, (19) implies that 3x ≡ 0 mod 2π, i.e., x is 2
3
π, 0, or −2

3
π. Letting x = 2

3
π, we

obtain as one solution: x = 2
3
π, a = 4

3
π+ b, c = b, and y = 2

3
π, where b is left indeterminate.

As such, we return to (14) and use this solution to computeei( 43π+b) 0 0
0 eib 0
0 0 eib

 ·
1 1 1

1 W3 W 2
3

1 W 2
3 W3

 ·
1 0 0

0 e
2
3
πi 0

0 0 e
2
3
πi

 = eib

e− 2
3
πi 1 1

1 e−
2
3
πi 1

1 1 e−
2
3
πi

 .
The first row of the resulting circulant Hadamard matrix is eib(e

−2
3
πi, 1, 1). We let b = 2

3
π

and choose (1, e
2
3
πi, e

2
3
πi) as the representative for this class of CAZAC sequences and find

our first CAZAC sequence.
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As a second solution, we choose x = 0, which gives a = 2
3
π + b, c = 2

3
π + b, and y = 4

3
π,

where b is again indeterminate. We return to (14) and compute,ei( 23π+b) 0 0
0 eib 0

0 0 ei(
2
3
π+b)

 ·
1 1 1

1 W3 W 2
3

1 W 2
3 W3

 ·
1 0 0

0 1 0

0 0 e
4
3
πi

 = eib

e 2
3
πi e

2
3
πi 1

1 e
2
3
πi e

2
3
πi

e
2
3
πi 1 e

2
3
πi

 .
The first row of this circulant Hadamard matrix is eib(e

2
3
πi, e

2
3
πi, 1). Letting b = −2

3
π, we

have (1, 1, e
4
3
πi) as our second CAZAC sequence.

The final solution is x = −2
3
π, a = b, c = b − 2

3
π, and y = 0, where b is indeterminate.

Returning to (14), we takeeib 0 0
0 eib 0

0 0 ei(b−
2
3
π)

 ·
1 1 1

1 W3 W 2
3

1 W 2
3 W3

 ·
1 0 0

0 e−
2
3
πi 0

0 0 1

 = eib

 1 e−
2
3
πi 1

1 1 e−
2
3
πi

e−
2
3
πi 1 1

 .
The first row of this circulant Hadamard matrix is eib(1, e−

2
3
πi, 1), and so letting b = 0, we

have (1, e
4
3
πi, 1) as our third CAZAC sequence.

Now, we consider the second form of 3 × 3 Hadamard matrices in the union written at
the beginning of this subsection, and take the product,

(20)

eia 0 0
0 eib 0
0 0 eic

 ·
1 1 1

1 W 2
3 W3

1 W3 W 2
3

 ·
1 0 0

0 eix 0
0 0 eiy

 =

eia ei(a+x) ei(a+y)

eib ei(b+x−
2
3
π) ei(b+y+

2
3
π)

eic ei(c+x+
2
3
π) ei(c+y−

2
3
π)

 .
In order for the right hand side matrix to be circulant, the following equations must hold
mod 2π:

(21)


a = b+ x+ 4π

3
= c+ y + 4π

3

c = a+ x = b+ y + 2π
3

a+ y = b = c+ x+ 2π
3
.

Using the first equation in (21) we have

(22) a = b+ x+
4

3
π.

Next, using the second equation in (21) and as well as (22), we calculate that

(23) c = a+ x =

(
b+ x+

4

3
π

)
+ x = b+ 2x+

4

3
π.

We now use the third equation in (21) along with (22) and (23), and obtain

(24) y = c+ x+
2

3
π − a =

(
b+ 2x+

4

3
π

)
+ x+

2

3
π −

(
b+ x+

4

3
π

)
= 2x+

2

3
π

Finally, we return to the first equation of (21) and use (23) and (24) to compute

(25) b = c+ y − x =

(
b+ 2x+

4

3
π

)
+

(
2x+

2

3
π

)
− x = b+ 3x+ 2π.

Similar to the previous calculations, (25) gives 3x ≡ 0 mod 2π, or x = 2
3
π, x = 0, i.e., x is

0, 2
3
π or −2

3
π.
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Our first solution is x = 2
3
π, a = b, c = b+ 2

3
π, and y = 0, where b is arbitrary. As such,

we return to (20) and computeeib 0 0
0 eib 0

0 0 ei(b+
2
3
π)

 ·
1 1 1

1 W3 W 2
3

1 W 2
3 W3

 ·
1 0 0

0 e
2
3
π 0

0 0 1

 = eib

 1 e
2
3
πi 1

1 1 e
2
3
πi

e
2
3
πi 1 1

 .
The first row of the resulting circulant Hadamard matrix is eib(1, e

2
3
πi, 1), and so letting b = 0

we obtain (1, e
2
3
πi, 1) as the fourth CAZAC sequence.

Our second solution is x = 0, y = 2
3
π, a = b + 4

3
π, and c = b + 4

3
π where b is arbitrary.

In this case, we takeei(b+ 4
3
π) 0 0

0 eib 0

0 0 ei(b+
4
3
π)

 ·
1 1 1

1 W3 W 2
3

1 W 2
3 W3

 ·
1 0 0

0 1 0

0 0 e
2
3
π

 = eib

e− 2
3
πi e−

2
3
πi 1

1 e−
2
3
πi e−

2
3
πi

e−
2
3
πi 1 e−

2
3
πi

 .
The first row of this circulant Hadamard matrix is eib(e−

2
3
πi, e−

2
3
πi, 1), and so letting b = 2

3
π

we obtain (1, 1, e
2
3
πi) as the fifth CAZAC sequence.

A third solution is x = −2
3
π, y = −2

3
π, a = b+ 2

3
π, and c = b. We takeei(b+ 2

3
π) 0 0

0 eib 0
0 0 eib

 ·
1 1 1

1 W3 W 2
3

1 W 2
3 W3

 ·
1 0 0

0 e−
2
3
π 0

0 0 e−
2
3
π

 = eib

e 2
3
πi 1 1

1 e
2
3
πi 1

1 1 e
2
3
πi

 .
The first row of this Hadamard matrix is eib(e

2
3
πi, 1, 1), and so letting b = −2

3
π we obtain

(1, e
4
3
πi, e

4
3
πi) as the sixth and final CAZAC sequence.

To summarize, the six CAZAC sequences that we have obtained are:

(1, e2πi/3, e2πi/3)

(1, 1, e4πi/3)

(1, e4πi/3, 1)

(1, e2πi/3, 1)

(1, 1, e2πi/3)

(1, e4πi/3, e4πi/3);

and they are associated with the following circulant Hadamard matrices: 1 e2πi/3 e2πi/3

e2πi/3 1 e2πi/3

e2πi/3 e2πi/3 1

 ,
 1 1 e4πi/3

e4πi/3 1 1
1 e4πi/3 1

 ,
 1 e4πi/3 1

1 1 e4πi/3

e4πi/3 1 1


 1 e2πi/3 1

1 1 e2πi/3

e2πi/3 1 1

 ,
 1 1 e2πi/3

e2πi/3 1 1
1 e2πi/3 1

 ,
 1 e4πi/3 e4πi/3

e4πi/3 1 e4πi/3

e4πi/3 e4πi/3 1

 .
Note that these CAZAC sequences match the CAZAC sequences found in Subsection 3.2.
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3.4. 5-operation equivalence relations. Let p be prime. In this subsection we show that
the 5-operation equivalence relation is an equivalence relation which is generated by a group
G acting on Up

p ⊆ Cp, where Up
p is the group of ordered p-tuples of p roots of unity. We apply

this to the specific cases of p = 3 and p = 5 in Section 3.5 to illustrate yet another way to
generate all CAZAC sequences of length 3 and also to generate all sequences of length 5 in
the process. We define the five operations again in the following way:

(1) c0x[n] = x[n] and c1x[n] = x[n];
(2) τbx[n] = x[n− b], b ∈ Z/pZ;
(3) πcx[n] = x[cn], c ∈ Z/pZ, c 6= 0;
(4) edx[n] = e2πidn/px[n], d ∈ Z/pZ;
(5) ωfx[n] = e2πif/px[n], f ∈ Z/pZ.

With this, we can define the set G as

G = {(a, b, c, d, f) : a ∈ {0, 1}, b, c, d, f ∈ Z/pZ, c 6= 0},

which has size |G| = 2p3(p− 1). To each element (a, b, c, d, f) ∈ G we associate the operator
ωfedπcτbca. To motivate the group operation we take (a, b, c, d, f), (h, j, k, `,m) ∈ G. One
can show that the composition of the associated operators is

(ωme`πkτjch) ◦ (ωfedπcτbca) = ωm+(−1)h(f−jc)e`+(−1)hkdπckτcj+bca+h.

As such we define the operation · : G×G→ G by

(a, b, c, d, f) · (h, j, k, `,m) = (a+ h, cj + b, ck, `+ (−1)hkd,m+ (−1)h(f − jc)).

Theorem 3.1. The operation · defines a group operation for G. In particular, (G, ·) is a
group.

Proof. We need to show that the operation is associative, has an identity element, and that
each element has an inverse. It is easily verified that the identity element is (0, 0, 1, 0, 0).
Given an element (a, b, c, d, f) ∈ G, it is elementary to verify that

(a, b, c, d, f)−1 = (−a,−bc−1, c−1, (−1)−a+1c−1d, (−1)−a+1(f + bc−1d)).

Finally, for associativity we first compute

(v, w, x, y, z) · ((a, b, c, d, f) · (h, j, k, `,m))

= (v, w, x, y, z) · (a+ h, cj + b, ck, `+ (−1)hkd,m+ (−1)h(f − jc))
= (a+ h+ v, cjx+ bx+ w, ckx, `+ (−1)hkd+ (−1)a+hcky,

m+ (−1)h(f − jc) + (−1)a+h(z − cjx− bx)).

Then, we compute

((v, w, x, y, z) · (a, b, c, d, f)) · (h, j, k, `,m)

= (a+ v, bx+ w, cx, d+ (−1)acy, f + (−1)a(z − bx)) · (h, j, k, `,m)

= (a+ h+ v, cxj + bx+ w, ckx, `+ (−1)hkd+ (−1)a+hkcy,

m+ (−1)h(f − jc) + (−1)a+h(z − cjx− bx)).

Consequently, · is an associative operation. �
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Since (G, ·) is a group, it defines a proper group action on Up
p . There are p(p− 1) many

CAZAC sequences which start with 1 in Up
p . If we construct all CAZAC sequences in Up

p ,

including those whose first term is not 1, we see that there are p2(p− 1) CAZAC sequences
in Up

p .

Theorem 3.2. Let p be an odd prime and let x ∈ Up
p be the Wiener sequence x[n] = e2πisn

2/p,
where s ∈ Z/pZ, see Example 2.5. Denote the stabilizer of x under the group (G, ·) as Gx.
If p ≡ 1 mod 4, then |Gx| = 4p. If p ≡ 3 mod 4, then |Gx| = 2p. In particular, the orbit
of x has size p2(p− 1)/2 if p ≡ 1 mod 4 and has size p2(p− 1) if p ≡ 3 mod 4.

Proof. First, let (a, b, c, d, f) ∈ G, and note that

(ωfedπcτbca)(x)[n] = W f+dn
p cax[cn− b] = W f+dn+(−1)as(cn−b)2

p .

Setting n = 0 gives the condition that for (a, b, c, d, f) ∈ G,

(26) f + (−1)asb2 ≡ 0 mod p,

from which we conclude that

(27) f ≡ −(−1)asb2 mod p.

Setting n = 1 and substituting for f as in (27) gives us another condition, viz.,

(28) (−1)as(c− b)2 + d− (−1)asb2 ≡ s mod p.

From (28) we can solve for d to obtain

(29) d ≡ s+ (−1)as(2bc− c2) mod p.

Now, note that for any other n > 1, we can use (27) and (29) to obtain the equation

(30) (−1)as(nc− b)2 + n+ (−1)as(2bc− c2)n− (−1)asb2 ≡ sn2 mod p.

After expanding and cancelling terms, we reduce (30) to

(31) c2 ≡ (−1)a mod p.

If a = 0, then (31) has two solutions, which we shall denote by c+0 and c−0 . If a = 1, then by
the law of quadratic reciprocity, (31) has two solutions, c+1 and c−1 if p ≡ 1 mod 4, but no
solutions if p ≡ 3 mod 4. Thus, if p ≡ 3 mod 4, we obtain the following as stabilizers of x:

(1) (0, b, c+0 , 1 + 2bc+0 − (c+0 )2,−b2)
(2) (0, b, c−0 , 1 + 2bc−0 − (c−0 )2,−b2)

which holds for any b ∈ Z/pZ. If p ≡ 1 mod 4, then the following two sets of stabilizers
also hold:

(1) (0, b, c+1 , 1 + 2bc+1 − (c+1 )2,−b2)
(2) (0, b, c−1 , 1 + 2bc−1 − (c−1 )2,−b2)

for any b ∈ Z/pZ. Thus, if p ≡ 1 mod p there are 4p stabilizers for x, and if p ≡ 1 mod p
there are 2p stabilizers for x. �

Corollary 3.3. If p ≡ 3 mod 4, there is only one equivalence class of CAZAC sequences
in Up

p .

Theorem 3.4. Let p ≡ 1 mod 4, and x, y ∈ CN . Let x = e2πin
2/p and y = e2πisn

2/p, where s
is not a quadratic residue modulo p. Then, x and y belong to different 5-operation equivalence
classes.
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Proof. Let s = 1 in the proof of Theorem 3.2, and for (a, b, c, d, f) ∈ G, we have

(ωfedπcτbca)(ϕ)[n] = W f+dn
p caϕ[cn− b] = W f+dn+(−1)a(cn−b)2

p .

Emulating the proof of Theorem 3.2, we let n = 0 and obtain the condition,

f ≡ −(−1)ab2 mod p.

Now letting n = 1 we have the condition,

d ≡ s+ (−1)a(2bc− c2) mod p.

For arbitrary n > 1, we obtain

(32) (−1)a(nc− b)2 + sn+ (−1)a(2bc− c2)n− (−1)ab2 ≡ sn2 mod p.

After expanding and cancelling terms, we calculate that

c2 ≡ (−1)as mod p.

Since p ≡ 1 mod 4 and s is not a residue modulo p, (32) cannot be solved for either value
of a. Thus, x and y must belong to different equivalence classes. �

Corollary 3.5. If p ≡ 1 mod 4, then there are exactly two equivalence classes of CAZAC
sequences in Up

p both of which have size p2(p− 1)/2.

3.5. 5-operation equivalence for lengths 3 and 5. We now apply the results from
Subsection 3.4 to show there is only one 5-operation equivalence class for length 3 CAZAC
sequences. Indeed, suppose that x = (1, 1, e2πi/3). Then, the other five CAZAC sequences
can be obtained from 5-operation equivalency as follows:

(1) c1x = (1, 1, e4πi/3)
(2) e1c1x = (1, e2πi/3, e2πi/3)
(3) e1x = (1, e2πi/3, 1)
(4) e2x = (1, e4πi/3, e4πi/3)
(5) e2c1x = (1, e4πi/3, 1)

Corollary 3.5 tells us that there are two 5-operation equivalence classes in the case p = 5.
To write them explicitly, we start with the Wiener sequence,

x = (1, e2πi/5, e8πi/5, e8πi/5, e2πi/5).

We show that we can obtain 10 CAZAC sequences by applying 5-operation equivalencies to
x:

(1) x = (1, e2πi/5, e8πi/5, e8πi/5, e2πi/5)
(2) c1x = (1, e8πi/5, e2πi/5, e2πi/5, e8πi/5)
(3) ω1τ1c1x = (1, e2πi/5, 1, e4πi/5, e4πi/5)
(4) ω4τ1x = (1, e8πi/5, 1, e6πi/5, e6πi/5)
(5) ω4τ2c1x = (1, e6πi/5, e8πi/5, e6πi/5, 1)
(6) ω1τ2x = (1, e4πi/5, e2πi/5, e4πi/5, 1)
(7) ω4τ3c1x = (1, 1, e6πi/5, e8πi/5, e6πi/5)
(8) ω1τ3x = (1, 1, e4πi/5, e2πi/5, e4πi/5)
(9) ω1τ4c1x = (1, e4πi/5, e4πi/5, 1, e2πi/5)

(10) ω4τ4x = (1, e6πi/5, e6πi/5, 1, e8πi/5).
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To find the other orbit, we use the fact that 3 is not a quadratic residue modulo 5 and
apply Theorem 3.4. We then let x be the Wiener sequence,

x = (1, e6πi/5, e4πi/5, e4πi/5, e6πi/5),

and we compute

(1) x = (1, e6πi/5, e4πi/5, e4πi/5, e6πi/5)
(2) c1x = (1, e4πi/5, e6πi/5, e6πi/5, e4πi/5)
(3) ω3τ1c1x = (1, e6πi/5, 1, e2πi/5, e2πi/5)
(4) ω2τ1x = (1, e4πi/5, 1, e8πi/5, e8πi/5)
(5) ω2τ2c1x = (1, e8πi/5, e4πi/5, e8πi/5, 1)
(6) ω3τ2x = (1, e2πi/5, e6πi/5, e2πi/5, 1)
(7) ω2τ3c1x = (1, 1, e8πi/5, e4πi/5, e8πi/5)
(8) ω3τ3x = (1, 1, e2πi/5, e6πi/5, e2πi/5)
(9) ω3τ4x = (1, e2πi/5, e2πi/5, 1, e6πi/5)

(10) ω2τ4x = (1, e8πi/5, e8πi/5, 1, e4πi/5).

In conclusion, we have explicitly shown that the p = 3 case has exactly one orbit, and
have shown which 5-operation transformations generate them starting with

x = (1, 1, e2πi/3).

In the p = 5 case we have explicitly shown that there are two orbits under 5-operation
equivalence. We generated both orbits using two different Wiener sequences, and have
written the 5-operation transformations that generate them.

4. Non-roots of unity CAZAC sequences of prime length

4.1. Björck sequences of prime length. In Subsection 1.2, we stated Björck’s 1984 coun-
terexample, Equation (3), showing that not all CAZAC sequences of length 7 are Gaussian
sequences or even roots of unity.

Let p be a prime number, and let (k
p
) denote the Legendre symbol modulo p, defined as(

k

p

)
=

 0, if k ≡ 0 (mod p),
1, if k ≡ n2 (mod p) for some n ∈ Z,
−1, if k 6≡ n2 (mod p) for all n ∈ Z.

Thus, we can define the function Λ : Z/pZ −→ {+1, 0,−1} as

Λ[k] =

(
k

p

)
.

The pre-image of +1 under the function Λ is the set Q of non-zero quadratic residues modulo
p; and the pre-image of −1 under the function Λ is the set QC of quadratic non-residues
modulo p. Λ is a character of the multiplicative group (Z/pZ)×. This means that Λ, when
restricted to (Z/pZ)×, is a group homomorphism into the multiplicative group C× = C\{0}.
See [34], Chapters V and VI, for a classical treatment, and [6] for a critical application
estimating values of the ambiguity function by means of estimates in terms of Weil’s proof
of the Riemann hypothesis for finite fields.

Definition 4.1. Let p be a prime number, and so Z/pZ is a field.
If p ≡ 1 (mod 4), the Björck sequence, bp : Z/pZ→ C, of length p, is defined as

∀k = 0, 1, ..., p− 1, bp[k] = eiθp(k),
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where

θp(k) =

(
k

p

)
arccos

(
1

1 +
√
p

)
.

If p ≡ 3 (mod 4), or, equivalently, for p ≡ −1 (mod 4), the Björck sequence, bp : Z/pZ→
C, of length p, is defined as

∀k = 0, 1, ..., p− 1, bp[k] =

{
eiθp(k), if k ∈ QC ⊆ (Z/pZ)×,
1, otherwise,

where

θp(k) = arccos

(
1− p
1 + p

)
.

In [14] Björck proved that Björck sequences are CAZAC sequences, and elaborated on
it in [15] by analyzing the structure of bi-equimodular functions. The structure is related
to the subgroup of the multiplicative group (Z/pZ)×, e..g., the group of quadratic residues.
It was in this context that he used Proposition 2.4 in [15], and which he had originally
proved in [14]. The following is Björck’s main theorem on the topic. Because of the role of
the Legendre symbol in the definition of Björck sequences, it is natural to expect a more
computational proof of Theorem 4.2 in terms of the Legendre symbol. This was done by
J. J. Benedetto, R. L. Benedetto, and J. T. Woodworth [5] (2012).

Theorem 4.2. Let p be prime.
a. If p ≡ 1 (mod 4), then bp : Z/pZ→ C is a 3-valued CAZAC sequence of length p.
b. If p ≡ 3 (mod 4), then bp : Z/pZ→ C is a 2-valued CAZAC sequence of length p.

Remark 4.3. a. Let p ≡ 1 (mod 4). Note that the Legendre symbol sequence of length
p has the form {0, 1, . . . ,−1, . . . , 1}, i.e., (p−1

p
) = 1, see Example 4.4. In this case of p ≡ 1

(mod 4), Definition 4.1 is equivalent to the following sequence constructed by replacing
elements of the Legendre sequence. We replace 0 by 1, every term 1 by

η = exp

(
i arccos

√
p− 1

p− 1

)
=

1
√
p+ 1

+ i

√
p+ 2

√
p

√
p+ 1

,

and every term −1 by the complex conjugate η of η. Then, 1, η, η are the 3 values of this
Björck CAZAC sequence. See Saffari [54] for a generalization.

b. Let p ≡ 3 (mod 4). Note that the Legendre symbol sequence of length p has the form
{0, 1, . . . ,−1, . . . ,−1}, i.e., (p−1

p
) = −1, see Example 4.4. In this case of p ≡ 3 (mod 4),

Definition 4.1 is equivalent to the following sequence constructed by replacing elements of
the Legendre sequence. We replace 0 by 1, every term −1 by

ξ = exp

(
i arccos

1− p
1 + p

)
=

1− p
1 + p

+ i
2
√
p

1 + p
,

and leave the original 1s as they are. Then, 1, ξ are the 2 values of this Björck CAZAC
sequence.

Example 4.4. a. As an example of the assertion in Remark 4.3 that if p ≡ 1 (mod 4), then
the Legendre symbol sequence of length p has the form {0, 1, . . . ,−1, . . . , 1}, i.e., (p−1

p
) = 1,

let p = 13. Consequently, 12 ≡ 52 (mod 13).
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b. As an example of the assertion in Remark 4.3 that if p ≡ 3 (mod 4), then the Legendre
symbol sequence of length p has the form {0, 1, . . . ,−1, . . . ,−1}, i.e., (p−1

p
) = −1, let p = 19.

In this case, it is generally difficult to prove assertions of the form,

k 6≡ n2 (mod p) for all n ∈ Z.

Fortunately, we have Legendre’s theorem, which asserts for k 6= 0 that(
k

p

)
≡ k(p−1)/2 (mod p),

and so (
p− 1

p

)
=

(
−1

p

)
=

{
1, if p ≡ 1 (mod 4),
−1, if p ≡ 3 (mod 4),

[34].
c. By straightforward calculations, we see that Björck sequences are Gaussian for p = 3, 5.
d. The theory of frames and CAZAC sequences are natural allies, especially in the

case of non-Gaussian CAZAC sequences such as the Björck sequences, e.g., see [10], [44].
In fact, finite Gabor frames for Cd with CAZAC sequences as generating functions are a
natural source of examples and direction for finding further examples, in order to deal with
open questions in topics such as compressed sensing and Zauner’s conjecture in quantum
mechanics.

4.2. Circulant Hadamard matrices not equivalent to D7. If we consider p×pHadamard
matrices, where p is prime, we want to know if the Hadamard matrices generated by CAZAC
sequences are always equivalent to Dp, the p × p DFT matrix. If p = 2, 3, 5, then we have
already noted that all Hadamard matrices are equivalent to Dp, regardless of whether or not
they are generated by a CAZAC sequence [19].

If p = 7, then Björck’s example shows that there are Hadamard matrices not equivalent
to D7 [19]. One such Hadamard matrix H1 is defined as follows. Let θ = arccos(−3/4) and
let d = exp(iθ), and set

H1 =



1 1 1 1 1 1 1
1 d−1 1 d d−1 d 1
1 d−1 d−1 d 1 1 d
1 d−2 d−2 d−1 d−1 1 d−1

1 1 d−1 1 d−1 d d
1 d−2 d−1 d−1 d−2 d−1 1
1 d−1 d−2 1 d−2 d−1 d−1


,

[19], [31]. To continue the process, let P1 = P2 = Id7 and D1, D2 be the following matrices:

D1 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 d 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 d 0
0 0 0 0 0 0 d


, D2 =



1 0 0 0 0 0 0
0 d 0 0 0 0 0
0 0 d 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 d 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.
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Then, we can define an equivalent circulant Hadamard matrix H2 by

H2 = D1H1D2 =



1 d d 1 d 1 1
1 1 d d 1 d 1
1 1 1 d d 1 d
d 1 1 1 d d 1
1 d 1 1 1 d d
d 1 d 1 1 1 d
d d 1 d 1 1 1


.

In particular, the first column of H2 is the length 7 Björck sequence and so H2 is the
Hadamard matrix associated with the length 7 Björck sequence.

Another matrix, that is equivalent to neither D7 nor H1, is

J1 =



1 1 1 1 1 1 1
1 a−2 a−1b−1 a−1c−1 a−1 a−1c a−1b
1 a−1b−1 a−2b−2 a−1b−2c−1 a−1b−1c−1 a−1b−1c a−1c
1 a−1c−1 a−1b−2c−1 a−2b−2c−2 a−1b−2c−2 a−1b−1c−1 a−1

1 a−1 a−1b−1c−1 a−1b−2c−2 a−2b−2c−2 a−1b−2c−1 a−1c−1

1 a−1c a−1b−1c a−1b−1c−1 a−1b−2c−1 a−2b−2 a−1b−1

1 a−1b a−1c a−1 a−1c−1 a−1b−1 a−2


,

where a ≈ exp(4.312839i), b ≈ exp(1.356228i), c ≈ exp(1.900668i), see [16], [19]. The
numbers, a, b, and c, are algebraic numbers whose explicit values can be found in [16]. We
can put these two matrices in circulant form by multiplying J1 on the left and right by the
matrix,

D =



1 0 0 0 0 0 0
0 a 0 0 0 0 0
0 0 ab 0 0 0 0
0 0 0 abc 0 0 0
0 0 0 0 abc 0 0
0 0 0 0 0 ab 0
0 0 0 0 0 0 a


.

Carrying out the multiplication, the circulant form of J1, denoted as J2, can be written as

J2 = DJ1D =



1 a ab abc abc ab a
a 1 a ab abc abc ab
ab a 1 a ab abc abc
abc ab a 1 a ab abc
abc abc ab a 1 a ab
ab abc abc ab a 1 a
a ab abc abc ab a 1


.

5. Haagerup’s theorem

5.1. Introduction. We shall now outline that part of Haagerup’s proof of his Theorem 1.6
[32] in which he proves that there are only finitely many cyclic p-roots. The complete proof
in which the precise number of cyclic p-roots is computed requires sophisticated complex
analysis that is beyond the scope of our theme.
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At the risk of oversimplifying, the proof that there are only finitely many cyclic p-roots
is divided in two parts: an ingenious algebraic manipulation using the DFT, coupled with
an application of the uncertainty principle for Z/pZ.

5.2. Algebraic manipulation. Recall that cyclicN -roots are solutions z = (z0, . . . , zN−1) ∈
CN of the system of equations:

(33)



z0 + z1 + · · ·+ zN−1 = 0

z0z1 + z1z2 + · · ·+ zN−1z0 = 0

· · ·
z0z1 · · · zN−2 + · · ·+ zN−1z0 · · · zN−3 = 0

z0z1 · · · zN−1 = 1,

see Definition 1.4. In particular, because of the last equation of (33), zj ∈ C× = C \ {0} for
any cyclic N -root z ∈ CN . Haagerup makes several substitutions to transform (33).

First, assume z ∈ CN is a cyclic N -root. Let x0 = 1 and xj = z0z1 · · · zj−1 for all
j = 1, . . . , N − 1. Thus, xj+1/xj = zj for j = 0, . . . , N − 2, where the last equation of (33)
guarantees that xj+1/xj is well-defined. Further, for j = N − 1, we have

x0
xN−1

=
1

z0z1 · · · zN−2
= zN−1,

because z0z1 · · · zN−1 = 1 by the last equation of (33). Substituting these equations, that
relate the xj and zi, into (33) we see that x = (x0, . . . , xN−1) is a solution to the system,

(34)



x0 = 1
x1
x0

+ x2
x1

+ . . .+ x0
xN−1

= 0
x2
x0

+ x3
x1

+ . . .+ x1
xN−1

= 0

· · ·
xN−1

x0
+ x0

x1
+ . . .+ xN−2

xN−1
= 0.

Conversely, if x = (x0, . . . , xN−1) ∈ (C×)N is a solution to the system (34), then it is easy to
check that

z = (z0, . . . , zN−1) =

(
x1
x0
,
x2
x1
, . . . ,

x0
xN−1

)
∈ (C×)N

is a solution to (33). Haagerup says that solutions x to (34) are cyclic N-roots on the x-level.
Second, assume x = (x0, . . . , xN−1) ∈ (C×)N is a cyclic N -root on the x-level. Let

yj = 1/xj, for j = 0, . . . , N − 1. Then,

(x, y) = (x0, . . . , xN−1, y0, . . . , yN−1) ∈ (C×)N × (C×)N

is a solution to the system,

(35)


x0 = y0 = 1,

xkyk = 1, 1 ≤ k ≤ N − 1,∑N−1
m=0 xk+mym = 0, 1 ≤ k ≤ N − 1.

Conversely, if (x, y) ∈ CN × CN is solution to (35), then, noting the condition xkyk = 1 of
(35), it is easy to check that x ∈ (C×)N and that x is a solution to (34). Haagerup says
solutions (x, y) ∈ CN × CN to (35) are cyclic N-roots on the (x, y)-level.
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Third, Haagerup introduces the DFT into the mix, and proves that the system of equa-
tions (35) for the cyclic N -roots on the (x, y)-level are equivalent to the following system of
equations for (x, y) ∈ CN × CN :

(36)


x0 = y0 = 1

xmym = 1, 1 ≤ m ≤ N − 1

x̂nŷ−n = 1, 1 ≤ n ≤ N − 1.

Without providing the details, we can see how the third equation of (36) is deduced from
(35) by writing out the product x̂nŷ−n.

Since we began recording these equivalences with cyclic N -roots z = (z0, . . . , zN) as
defined in Subsection 1.3, we wrote xm, x̂n in (36), but this is really x[m], x̂[n] in the notation
from Subsection 1.2.

None of the details in this subsection is difficult to prove, but Haagerup’s strategy is
dazzling! The transformations from the cyclic N -roots problem (33) to that of (36) preserve
the number of distinct solutions, and so solving (36) is equivalent to solving (33), viz., if
there are 0 ≤ M ≤ ∞ solutions to one, then there are 0 ≤ M ≤ ∞ solutions to the other.
As such, Haagerup’s proof that the set of cyclic p-roots is finite will be to solve (36).

5.3. The uncertainty principle for Z/pZ. In order to prove that the set of cyclic p-roots is
finite (Theorem 5.6), Haagerup’s strategy required Theorem 5.3 and Theorem 5.5. Theorem
5.3 is an uncertainty principle for the finite Abelian group Z/pZ, where p is prime. Its proof
uses Chebotarëv’s theorem, a fact known to Haagerup in 1996. We should point out that
Gabidulin also understood the role of Chebotarëv’s theorem if one wanted to prove Theorem
5.6.

Theorem 5.1. (Chebotarëv 1926) Let p be prime and let Dp be the unitary Fourier matrix
on Cp, defined as

DN =

[
1

N1/2
W−mn
N

]N−1
m,n=0

,

see Definition 1.2. Then, all square submatrices of Dp have non-zero determinant.

Remark 5.2. There have been many different proofs of this theorem since Chebotarëv’s orig-
inal proof in 1926. A sampling of authors of published proofs is Danilevskii (1937), Reshet-
nyak (1955), Dieudonné (1970), M. Newman (1975), Evans and I. Stark (1977), Stevenhagen
and Lenstra (1996), Goldstein, Guralnick, and Isaacs (c. 2004), and Tao (2005). There is
also the proof by Frenkel (2004), that he first wrote down as a solution to a problem in
the 1998 Schweitzer Competition! In fact, Chebotarëv’s original proof provides much more
information than Theorem 5.1 asserts, see [57], which is also a spectacular exposition of
Chebotarëv’s life and mathematical contributions, including his celebrated density theorem.

Independently, Tao [61] used Theorem 5.1 in order to prove Theorem 5.3. Further,
he noted that the two results are equivalent, a fact discovered independently by András
Biró. Theorem 5.3 itself is a refinement for the setting of Z/pZ of the uncertainty principle
inequality,

(37) |supp(u)| |supp(û)| ≥ |G|,
where G is a finite Abelian group, u : G −→ C is a function, û is the discrete Fourier
transform of u, |X| is the cardinality of X, and supp(u) = {x ∈ G : u(x) 6= 0} is the support
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of u, see [62] for a systematic treatment of the discrete Fourier transform. The inequality,
(37), is due to Donoho and Stark [24], cf., [56].

Theorem 5.3. If u 6= 0 ∈ Cp and û = Fpu is the discrete Fourier transform of u, then
|supp(u)| + |supp(û)| ≥ p + 1, where |supp(u)|, the support of u, denotes the number of
non-zero coordinates of u.

Algebraic varieties are a central object of study in algebraic geometry. Classically, and for
us, an algebraic variety is defined as the set of solutions of a system of polynomial equations
over the real or complex numbers. The following is a basic theorem.

Theorem 5.4. A compact algebraic variety in CN is a finite set, e.g., see [52], Theorem
13.3.

Theorem 5.5. If the number of solutions (x, y) ∈ CN × CN to (36) is infinite, then there
are u, v ∈ CN \ {0} such that ukvk = 0 and ûkv̂−k = 0 for each 0 ≤ k ≤ N − 1.

Proof. Let W ⊆ CN × CN denote the set of solutions to (36), and assume W is an infinite
set. Since W is an algebraic variety, then, by Theorem 5.4 and the Heine-Borel theorem, W
must be unbounded. Choose a sequence {(x(m), y(m))} ⊆ W for which

lim
m→∞

(||x(m)||22 + ||y(m)||22)1/2 =∞.

Let u(m) and v(m) be the normalizations of x(m) and y(m), respectively, i.e., u(m) =
x(m)/||xm||2. Therefore, the sequence, {(u(m), v(m))}, is contained in a compact set. Suppose
that this sequence converges to (u, v), passing to a subsequence if necessary. Because each

(x(m), y(m)) is a solution to (36), x
(m)
0 = y

(m)
0 = 1 for all m ∈ N. Thus, ||x(m)||22 = 1 + cm and

||y(m)||22 = 1 + dm, where cm, dm > 0. It follows that

||x(m)||22||y(m)||22 = (1 + cm)(1 + dm) ≥ 1 + cm + dm = ||x(m)||22 + ||y(m)||22 − 1.

Hence, by our choice of {(x(m), y(m))}, we have

lim
m→∞

||x(m)||22||y(m)||22 =∞.

Now, from (36), we know that x
(m)
k y

(m)
k = x̂(m)

kŷ(m)
−k = 1 for each m ≥ 1 and each

1 ≤ k ≤ N − 1; and so

ukvk = ûkv̂−k = lim
m→∞

(||x(m)||2||y(m)||2)−1

for 1 ≤ k ≤ N − 1. In addition, this equality is also true for k = 0, because x
(m)
0 = y

(m)
0 = 1.

Therefore, since

lim
m→∞

||x(m)||2||y(m)||2 =∞,

we have that ukvk = ûkv̂−k = 0.
�

Theorem 5.6. (Haagerup) The set of cyclic p-roots is finite.

Proof. Let N = p in (36). Assume for the sake of obtaining a contradiction that the set of
solutions to (36) is infinite. Then, by Theorem 5.5, there are u, v ∈ Cp \ {0} with ukvk = 0
and ûkv̂−k = 0, k = 0, 1, . . . , p− 1.
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This means that supp(u)∩ supp(v) = ∅ and supp(û)∩ (−supp(v̂)) = ∅. In particular, we
obtain |supp(u)|+ |supp(v)| ≤ p and |supp(û)|+ |supp(v̂)| ≤ p; and so,

|supp(u)|+ |supp(v)|+ |supp(û)|+ |supp(v̂)| ≤ 2p.

However, by Theorem 5.3, we have

|supp(u)|+ |supp(v)|+ |supp(û)|+ |supp(v̂)| ≥ 2(p+ 1),

and this gives the desired contradiction. �

6. Appendix – Real Hadamard matrices

Definition 6.1. A real Hadamard matrix is a square matrix whose entries are either +1 or
−1 and whose rows are mutually orthogonal.

Let H be a real Hadamard matrix of order n. Then, the matrix[
H H
H −H

]
is a real Hadamard matrix of order 2n. This observation can be applied repeatedly, as
Kronecker products, to obtain the following sequence of real Hadamard matrices.

H1 =
[

1
]
,

H2 =

[
H1 H1

H1 −H1

]
=

[
1 1
1 −1

]
,

H4 =

[
H2 H2

H2 −H2

]
=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , · · · .
Thus,

H2k =

[
H2k−1 H2k−1

H2k−1 −H2k−1

]

=


H2k−2 H2k−2 H2k−2 H2k−2

H2k−2 −H2k−2 H2k−2 −H2k−2

H2k−2 H2k−2 −H2k−2 −H2k−2

H2k−2 H2k−2 −H2k−2 H2k−2

 .(38)

This method of constructing real Hadamard matrices is due to Sylvester (1867) [59].
In this manner, he constructed real Hadamard matrices of order 2k for every non-negative
integer k.

Hadamard conjecture 1. The Hadamard conjecture 1 is that a real Hadamard matrix of
order 4k exists for every positive integer k [37]. Real Hadamard matrices of orders 12 and
20 were constructed by Hadamard in 1893 [33]. He also proved that if U is a unimodular
matrix of order n, then |det(U)| 6 nn/2, with equality in the case U is real if and only if U
is a real Hadamard matrix [33]. In 1933, Paley discovered a construction that produces a
real Hadamard matrix of order q+ 1 when q is a prime power that is congruent to 3 modulo
4, and that produces a real Hadamard matrix of order 2(q + 1) when q is a prime power
that is congruent to 1 modulo 4 [47]. In fact, the Hadamard conjecture 1 should probably
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be attributed to Paley. The smallest order that cannot be constructed by a combination
of Sylvester’s and Paley’s methods is 92. A real Hadamard matrix of this order was found
by computer by Baumert, Golomb, and Hall in 1962. They used a construction, due to
Williamson, that has yielded many additional orders. In 2004, Hadi Kharaghani and Behruz
Tayfeh-Rezaie constructed a real Hadamard matrix of order 428. As a result, the smallest
order for which no real Hadamard matrix is presently known is 668.

Hadamard conjecture 2. If x : Z/NZ −→ R is CAZAC sequence for N ≥ 2, then the
Hadamard conjecture 2 asserts that N = 4 and x is a translate of the 4-tuple ± [1, 1, 1,−1].
The conjecture goes back to Ryser [53]. From definitions it is straightforward to show that
N = 4M2. The major progress has been made by Turyn (1965), B. Schmidt (1999 and 2000),
Leung, Ma, and B. Schmidt (2004), see [41]. They proved that the Hadamard conjecture 2
is true if M is a power of a prime greater than 3 as well as it being true for all N ≤ 1011.

Remark 6.2 (Finite abelian groups). It is natural to pose the problems that we have
considered about CAZAC sequences on Z/NZ for the general case of finite Abelian groups,
G. In fact, Gauss’ theorem asserts that every such G can be written as

G = Z/N1Z× · · ·Z/NnZ,

where the Nj can be chosen as powers of primes. Beyond its purely mathematical interest,
see [62], [27], this extension is important in coding theory, e.g., the analysis of bent functions
and difference sets for the group Z/2Zn by Dillon (1975) and Rothaus (1976), independently,
see, e.g., [23], [48], [54].

Remark 6.3 (Walsh functions and wavelet packets). Hadamard matrices are closely con-
nected with Walsh functions [3]. The normalized Walsh functions [67] form an orthonormal
basis for L2(T). Every Walsh function is constant over each of a finite number of subintervals
of (0, 1). A set of Walsh functions written down in appropriate order as rows of a matrix
will give a real Hadamard matrix of order 2n as obtained by Sylvester’s method. When
Walsh functions are transported to the real line in the correct way, they not only provide
an orthonormal basis for L2(R), but are the primordial example of wavelet packets using
multiresolution analysis in wavelet theory, e.g., see [11].

Remark 6.4 (The Littlewood flatness problem and antenna theory). Let UN denote the

class of unimodular trigonometric polynomials U(γ) =
∑N

n=0 un e
2πinγ, i.e., |un| = 1 for

n = 0, . . . , N . The Littlewood flatness problem is to determine whether or not there are
UN ∈ UN for which

(39) limN→∞
‖UN‖∞
‖UN‖2

= 1.

It turns out that Gauss sums and their variants play a natural role in dealing with (39).
There have been herculean efforts to prove (39), sometimes in concert with subtle failures
only discovered by relatively herculean efforts. Finally, Kahane (1980) proved that such
polynomials exist, but it still remains to construct them, see [50]. The ratio in (39) is the
crest factor of UN , and UN combined with (39) play a role in antenna array signal processing
where crest factors are analyzed, see [4] for details and references.
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