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Frames

Frames F = {en}_, for d-dimensional Hilbert
space H, e.g., H =K%, where K = C or K = R.

e Any spanning set of vectors in K¢ is a frame
for K.

e F CK?is A-tight if
N
Vz € Kd, A||ac||2 = Z |<5U>€n>|2
n=1

(A=1 defines Parseval frames).
e I is unit norm if each |le,|| = 1.

e Bessel map — L : H — (2(Zy),

r— {< x,en >}

e Frame operator— S =L*L : H — H.
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Tight frames and applications

Theorem {e,}Y_; C K¢ is an A-tight frame
for K¢ «—

S =L*L = AI - K% — K<,

e Robust transmission of data over erasure
channels such as the Internet. [Casazza,
Goyal, Kelner, Kovacevic]

e Multiple antenna code design for wireless
communications. [Hochwald, Marzetta, T.
Richardson, Sweldens, Urbanke]

e Multiple description coding. [Goyal, Heath,
Kovacevic, Strohmer, Vetterli]

e Quantum detection. [Chandler Davis, El-
dar, Forney, Oppenheim]
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Finite unit norm tight frames (FUN-TFs)

o If {en}fyzl is a finite unit norm tight frame
(A-FUN-TF) for K¢, then A = N/d.

e Let {e,} be an A-unit norm TF for any
separable Hilbert space H. A > 1, and A =
1 < {en} is an ONB for H (Vitali).

e [ he geometry of finite tight frames:

— The vertices of platonic solids are FUN-
TFs.

— Points that constitute FUN-TFs do not
have to be equidistributed, e.g., Grass-
manian frames.

— FUN-TFs can be characterized as min-
imizers of a ‘“frame potential function”
(with Fickus) analogous to

Coulomb’s Law.
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Frame force and potential energy

F:8%1xgi=1\ p_— R?

p:silxsi=1\ D —R,
where

P(a,b) = p(|la — b)), p'(z) = —af(x)

e Coulomb force

CF(a,b) = (a=b)/|la—b|]°,  f(z)=1/a>

e Frame force

FF(a,b) =<a,b> (a—b), flz) =1—22/2

e Total potential energy for the frame force

TFP({zn}) = Zp—1 5 =1| < Tm, an > |°



Characterization of FUN-TFs

For the Hilbert space H = R4 and N, consider

{zn}y) € 8971 x ... x 5971
and

TEFP({zn}) =N _ 15N 1| < 2m,zn > |2

Theorem Let N <d. The minimum value of
TFP, for the frame force and N variables, is N;
and the minimizers are precisely the orthonor-
mal sets of N elements for R,
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Characterization of FUN-TFs

For the Hilbert space H = R4 and N, consider

{zn}y) € 8971 x ... x 5971
and

TEFP({zn}) =N _ 15N 1| < 2m,zn > |2

Theorem Let N <d. The minimum value of
TFP, for the frame force and N variables, is N;
and the minimizers are precisely the orthonor-
mal sets of N elements for R,

Theorem Let N > d. The minimum value
of T'FP, for the frame force and N variables,
is N2/d; and the minimizers are precisely the
FUN-TFs of N elements for R¢.

Problem Find these FUN-TFs analytically, ef-
fectively, and computationally.
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Imaging equation

e The MR signal (or FID or echo) measured
for imaging is

S(t) = S(k(t)) = S(kx(t), ky(t), k(1))
= ///p(m,y,z) exp[—2mi < (z,y, 2),

(kz(t), ky (), k= () >le "/ 2dx dy dz
where
k() = ~ /O ' Guu)du,

G (t) is an x-directional time varying gra-
dient and p is the spin density function.



Imaging equation

e The MR signal (or FID or echo) measured
for imaging is

S(t) = S(k(t)) = S(kx(t), ky(t), k(1))
= ///p(m,y,z) exp[—2mi < (z,y, 2),

(kz(t), ky (), k= () >le "/ 2dx dy dz
where
k() = ~ /O ' Guu)du,

G (t) is an x-directional time varying gra-
dient and p is the spin density function.

e [ he imaging equation is a consequence of
Bloch’s equation for transverse magnetiza-
tion.

e [ he imaging equation is a physical Fourier
transformer.



Spiral echo planar imaging (SEPI)

e Design gradients G as input to the MR pro-
cess resulting in the imaging equation.

e Set
Gz(t) = ncosét —nEtsin €t

Gy(t) = nsin&t + nét cosét.

Then kz(t) = yntcosét and  ky(t) = yntsint.
ky and ky yield the Archimedean spiral

Ac = {(ch cos 270, chsin2m6) : 6 > 0} C R?,
0 = 0(t) = (1/27)&t, ¢ = (1/0)yn = 27yn /€.



Spiral echo planar imaging (SEPI)

e Design gradients G as input to the MR pro-
cess resulting in the imaging equation.

e Set
Gz(t) = ncosét —nEtsin €t

Gy(t) = nsin&t + nét cosét.

Then kz(t) = yntcosét and  ky(t) = yntsint.
ky and ky yield the Archimedean spiral

Ac = {(ch cos 270, chsin2m6) : 6 > 0} C R?,
0 = 0(t) = (1/2m)ét, ¢ = (1/0)yn = 2myn/€.

e S takes values on A..

e Spiral scanning gives high speed data ac-
quisition at the “Nyquist rate’ .

e Rectilinear scanning is expensive at the cor-
ners.



Fourier frames for L2(E)
Let £ C R? be closed. The Paley-Wiener space
PWE IS
PWg = {go e L°(RY) : supp " C E},
where

\Y, — 2mixT-y
@' (x) —/I@dw(v)e d.



Fourier frames for L2(E)

Let £ C R? be closed. The Paley-Wiener space
PWE IS

PWg = {g& e L2(RY) : supp ¥ C E},

where

V — 2mix-y
w’ () —/@dsO(v)e dy.

Definition Given A C R? and E C R? with fi-
nite Lebesgue measure. Let ey (z) = e 2TTA,
{e_y:XeA}is a frame for L2(E) if

Vo € PWE’,AHS@HLQ(@CZ) < Z ’SO()\)\Q < BHSOHLQ(@d)-
AEN

In this case we say that A C RY is a Fourier
frame for L2(E) C L?(R%).



Fourier frames for L2(E)

Let £ C R? be closed. The Paley-Wiener space
PWE IS

PWg = {g& e L2(RY) : supp ¥ C E},

where

V — 2mix-y
w’ () —/@dsO(v)e dy.

Definition Given A C R? and E C R? with fi-
nite Lebesgue measure. Let ey (z) = e 2TTA,
{e_y:XeA}is a frame for L2(E) if

Vo € PWE’,AHS@HLQ(@CZ) < Z ’SO()\)\Q < BHSOHLQ(@d)-
AEN

In this case we say that A C RY is a Fourier
frame for L2(E) C L?(R%).

Definition A C R? is uniformly discrete if there
is » > 0 such that

VA:WG/\a |>‘_7|2r



A theorem of Beurling

Theorem Let A C R pe uniformly discrete,
and define

p = p(A) = sup dist(¢, N),
¢eRd
where dist({,A\) is Euclidean distance between
¢ and A, and B(0,R) C R% is closed ball cen-
tered at 0 € R? with radius R. If Rp < 1/4,
then A is a Fourier frame for PWpg g g)-



A theorem of Beurling

Theorem Let A C R pe uniformly discrete,
and define

p = p(A) = sup dist(¢, N),
¢eRd
where dist({,A\) is Euclidean distance between
¢ and A, and B(0,R) C R% is closed ball cen-
tered at 0 € R? with radius R. If Rp < 1/4,
then A is a Fourier frame for PWpg g g)-

Remark The assertion of Beurling’'s theorem
implies

Vf e L?(B(0, R)), f@) =3 ay(f)emieA

AENA
in L?(B(0,R)), where

3 Jax(H)I? < .

AEN



An MRI problem and mathematical solution

Given any R > 0 and ¢ > 0. Consider the
Archimedean spiral Ac.

We can show how to construct a finite inter-

leaving set B = U]sz_llAk of spirals

A = {c@eQm(G_k/M) 0>0}, k=0,1,...,M—1,

and a uniformly discrete set Ap C B such that
AR is a Fourier frame for PWpg gy. Thus,
all of the elements of L2(B(0,R)) will have a
decomposition in terms of the Fourier frame

{6)\ A E /\R}.



An MRI problem and mathematical solution

Given any R > 0 and ¢ > 0. Consider the
Archimedean spiral Ac.

We can show how to construct a finite inter-

leaving set B = U]sz_llAk of spirals

A = {c@eQm(e_k/M) 0>0}, k=0,1,...,M—1,

and a uniformly discrete set Ap C B such that
AR is a Fourier frame for PWpg gy. Thus,
all of the elements of L2(B(0,R)) will have a
decomposition in terms of the Fourier frame

{6)\ A E /\R}.

Method Combine Beurling's theorem and trigonom-
etry.

Problem Although Ap is constructible, this
mathematical solution must be effectively fini-
tized and implemented to be of any use.



A first algorithm for implementation
e Given N > 0, e.g., N = 256, let f € L2([0, 1]?).

e Assume f is piecewise constant (from pixel
information) on

[m/N,(m+1)/(N+1)) x[n/N,(n+1)/N),
where m,n € {0,1,...,N — 1}.

e Write f lexicographically as {fq,}.



A first algorithm for implementation
e Given N > 0, e.g., N = 256, let f € L2([0, 1]?).

e Assume f is piecewise constant on

[m/N,(m+1)/(N+1)) x[n/N,(n+1)/N),
where m,n € {0,1,...,N — 1}.

e Write f lexicographically as {fq,}.

e The Fourier transform of f € L2(R?) is

N2_1

. fapHay,

k=0
where e()\) = e 2™ and

—1 m>\—|—nfy
47T2/\7< )(e(— ) 1) (e(-- D).

Problem Reconstruct {fak} from given fu,,,
where a;m = Mm,ym), k=0,1,...,N2—1, m =
0,1,...,M —1, and M > N2,

Hm,n(Aa W) —
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The role of finite frames in implementation
Let H = KN? and take M > N2. Given {a :

k=0,1,...N2 -1}, let « = (\,v) € R2, and
choose ay,, m=0,1,2,..., M — 1.

L I_et I'm — (Hao(am), Hal (Oém), c ooy Ha/NQ_l(Q{m>).

e Define L : H — (2(Zy;) = KM,

fr— A< foam >34
e Equivalently, L = (Hq, (am)), M x N2.

o {x,}M_2 frame for H implies L is a Bessel
map and S = L*L, an N2 x N2 matrix,
where L* is the adjoint of L. S is the frame
operator.

e S “reduces” dimensionality since M > NZ.

e [ he finite frame decomposition of f is

f=s8"tL*(Lf).



Logic for empirical evaluation of algorithm
e Given high resolution image I, e.g., 1024x1024.

e Downsample I (room for ‘“creativity”) to
In, N X N, e.g., N=128,2506.

e [ herefore, Iy is the optimal, available im-
age at N x N level for comparison purposes.



Logic for empirical evaluation of algorithm
e Given high resolution image I, e.g., 1024x1024.

e Downsample I (room for ‘“creativity”) to
In, N X N, e.g., N=128,2506.

e [ herefore, Iy is the optimal, available im-
age at N x N level for comparison purposes.

e Calculate T = 3" Io, Hq, (10° terms per apm).
e Take I(am), m=0,1,...,M —1> N2 —1.
e Set LI =1, Mx1

e Implementation gives I = S~ 1L*T.

e Compare Iy — I, N x N.



Optimal N x N approximant

Let Q = [0, 1]? and set

Sy ={f(@,y) € L2(Q): f ~{fa : k=0,...,N* —1}}
Problem Find the optimal Sp approximant for

feL?Q).



Optimal N x N approximant

Let Q = [0, 1]? and set
Sy ={f(z,9) e L*(Q): f ~{fa 1 k=0,...,N* —1}]

Problem Find the optimal Sp approximant for

feL?Q).

Solution The minimizer of ||f —gl|2,9 € Sy IS

fa(:E) y) — Z A(f)aklak;(xa y)a

where A(f)q, is the average of f over the qy
square, k=10,1,--- , N2 — 1.



Asymptotic evaluation of algorithm

Given f € L2(Q), fix N (N = 128,256),
and assume we know f in k-space.

Recall Sy = {g € L2(Q) : g~ {gak}}.

Take K, M, and
{am:m=0,...,M—1} C [-K, K]? C R?.

Denote N2 data reconstructed by the al-
gorithm from {f(am)} by

f: fM,K,{C\{m} € Sn-
.= 2_
imf=357"""A(ay Loy
Thelimit as M, K — oo must be explained.

Implementation of the Fourier frame algo-
rithm approaches optimal Sy approximant.



Given ug and {Xp}n=1

un: un_1 +Xn‘qn
dn=Q(up-1 + Xp)

un: un_1 + Xn'qn

A

> dn

5P

First Order XA
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A quantization problem

Qualitative Problem Obtain digital represen-
tations for class X, suitable for storage, trans-
Mission, recovery.

Quantitative Problem Find dictionary {e,} C X:

1. Sampling

Ve € X, CB:ZZBnGn, xn € K (R or C)
[Continuous range K is not digital.]

2. Quantization. Construct finite alphabet A and

Q : X—>{anen: an € A C K}
such that |z, — gn| and/or ||z — Qx|| small.

Methods

1. Fine quantization, e.g., PCM.
Take gn € A close to given z,,. Reasonable
in 16-bit (65,536 levels) digital audio.

2. Coarse quantization, e.qg., > A.
Use fewer bits to exploit redundancy of
{en} when sampling expansion is not unique.
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(1/2)5,...,(K —1/2)6}
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Quantization

A% = {(-K +1/2)5,(—K + 3/2)6,...,(—=1/2)6,
(1/2)5,...,(K —1/2)6}

6
(K-1/2)3
4 - -
3 {
5 | u
2} ]
35/2
512 31
or $ u u-axis |
_2 - -
_4 — -
f(u)=u (-K+1/2)3
I
_6 1
s -4 -2 0 2 4 6
Q(u) = argmin |u — ¢
qEA‘;(

:qu



Setting

Let z € RY, ||z]| < 1. Suppose F = {ep}_, is a
unit norm tight frame for RE. T hus, we have

g N
Tr = —

N 2 Tnen

n=1

with z,, = (x,epn). Note: A = N/d, and |xn| < 1.

Goal Find a "“good” quantizer, given

5 1 3 1
Afe = {(—K + )6, (=K + )8, (K = )d}.



Setting

Let z € RY, ||z]| < 1. Suppose F = {ep}_, is a
unit norm tight frame for RE. T hus, we have
qa N
r — N Z I'n€n

n=1

with z,, = (x,epn). Note: A = N/d, and |xn| < 1.

Goal Find a "“good” quantizer, given

5 1 3 1

Example Consider the alphabet A% ={-1,1},

and E7 = {en}! _;, with e, = (cos(Z4T), sin(24™)).

15

1+

0.5F

Oor ° °

-0.5+

—-1r

_15 1 I I 1 1
-15 -1 0.5 0 0.5 1 15

M 2(Br) = {2 %] _1anen : gn € AT}




PCM
Replace xp < qn = argmin |z, — q|.
qEA%

g N
Then 7 = — Z gnen Satisfies
N =1

d N
_ 7l < = _
|z —z]| < NII E_i qn)en|
n=1
d & N d
< —
SN Ezi lenl| 2

Not good!



PCM

Replace =z, < qn = arg ngin lxn — q.

qe A
g N
Then Z = — > gnep satisfies
Nn=1
4 N
|z —z| < N“ > (@n — qn)enl|
n=1
d 6§ & d
< <3 len|| = < 9
N 2 — 2
n=1

Not good! Bennett’s ‘“white noise assump-
tion”

Assume that (nn) = (zn — qn) iS a sequence

of independent, identically distributed random
2
variables with mean O and variance %. Then

the mean square error (MSE) satisfies

d 52 — (d5)?

MSE = E||lz — #||° < ——
12A 12N




Remarks

1. Bennett's “white noise assumption’ is not
rigorous, and not true in certain cases.

2. The MSE behaves like C'/A. In the case
of > A quantization of bandlimited func-
tions, the MSE is O(A™3) (Gray, Giintiirk
and Thao, Bin Han and Chen). PCM does
not utilize redundancy efficiently.

3. The MSE only tells us about the average
performance of a quantizer.
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Example (continued):
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Consider quantizers with A ={-1,1}.
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Define =, = (z,ep).
Fix the ordering p, a permutation of {1,2,..., N}.
Quantizer alphabet AJ
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> A quantizers for finite frames
Let F = {en})_; be a frame for RY, = € R%.
Define =, = (z,ep).
Fix the ordering p, a permutation of {1,2,..., N}.
Quantizer alphabet AJ

Quantizer function Q(u) = argmin |u — ¢
qEA%

Define the first-order >/ quantizer with or-
dering p and with the quantizer alphabet AJ
by means of the following recursion.

Un — Up—-1

dn

Tp(n) — dn

Q(un—l + CUp(n))

where uyg=0and n=1,2,..., N.



Stability

The following stability result is used to prove
error estimates.

Proposition If the frame coefficients {z,}Y_,
satisfy

then the state sequence {un}fyzo generated by
the first-order = A quantizer with alphabet AJ
satisfies

)
|un|§§7 n:]-:'")N'



Stability

The following stability result is used to prove
error estimates.

Proposition If the frame coefficients {z,}Y_,
satisfy

then the state sequence {un}fyzo generated by
the first-order = A quantizer with alphabet AJ
satisfies

)
|un|§§7 n:]-:'")N'

e [ he first-order > A scheme is equivalent to

n

n
“nzzxp(j)_ij» n=1,---,N.

e Stability results lead to tiling problems for
higher order schemes.



Error estimate

Definition Let ' = {e,}_; be a frame for
R%, and let p be a permutation of {1,2,...,N}.
We define the variation o of F' with respect to

p by

N-1
O(Fap) — Z ||€p(n) - ep(n—|—1)||'
n=1



Error estimate

Definition Let F = {e,}Y_; be a frame for
R?, and let p be a permutation of {1,2,...,N}.
We define the variation o of F' with respect to
p by
N-1
o(F,p) = Z ||€p(n) - ep(n—l—l)”'

n=1

Theorem Let F = {e,}_; be an A-FNTF for
R2. The approximation

d N
= 2 dnep(n)
n=1

generated by the first-order > A quantizer with
ordering p and with the quantizer alphabet A%

satisfies
(o(E,p) +1)d 6
N 2

|z =z <



Order is important
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Let E7 be the FUN-TF for R? given by the 7th
roots of unity. Randomly select 10,000 points
in the unit ball of R2. Quantize each point

using the A scheme with alphabet A}lm.



Order is important

o
N
T

o
N
T

Relative Frequency
Relative Frequency
o
=

o
[EEN
T

0 0.05 0.1 0.15 0.2 0.25 0 0 0.05 0.1 0.15 0.2 0.25

Approximation Error Approximation Error

0

Let E7 be the FUN-TF for R? given by the 7th
roots of unity. Randomly select 10,000 points
in the unit ball of R2. Quantize each point
using the XA scheme with alphabet A}L/4.

The figures show histograms for ||z — z|| when
the frame coefficients are quantized in their
natural order (histogram on left)

L1,L2,XL3,L4,X5,LG, L7

and in the order (histogram on right) given by

L1,T4,T7,L3,LH, L2, LK.
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En = {el}N_,, el = (cos(2mn/N),sin(2mn/N)).
Let r = (E, Vﬁ)'
d N
T = — a:ﬁfeq{y, acﬁf:(m,eg)
Nn:1

Let z be the approximation given by the 1st
order > A quantizer using the alphabet {—1,1}
and the natural ordering p.

The figure shows a log-log plot of ||z — z x|



Improved estimates

Exn = {el}N_,, Nth roots of unity FUN-TFs
for R2.
Let = € RY, ||z|| < (K — 1/2)6.
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using 1st order ~A scheme with alphabet A9%...
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Improved estimates

Exn = {e)})_;, Nth roots of unity FUN-TFs
for R2.

Let z € RY, ||z|| < (K — 1/2)6.

N
. d
Quantlze xTr = N g CI?fr]yer,]y; 5137]7\,[ — <CE> 67]¥>
n=1

using 1st order = A scheme with alphabet A9

Theorem If N is even and large then

B dlog N
||$—$||N N5/4
If NV is odd and large then
) 2 1)d ¢
O e gy < B0
N N 2

e [ he proof uses the analytic number theory
approach developed by Sinan Gunturk.

e [ he theorem is true more generally, but ad-
ditional technical assumptions are needed.



Harmonic frames

Zimmermann and Goyal, Kelner, Kovacevic,
Thao, Vetterli.

e H =C% An harmonic frame {e,})_, for H
is defined by the rows of the Bessel map L
which is the complex N-DFT N x d matrix
with N — d columns removed.
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e Harmonic frames are FUN-TFs.

e Let En be the harmonic frame for R4 and
let py be the identity permutation. Then

VN, o(En,pn) < md(d+1).



Error estimate for harmonic frames

Theorem Let Ep be the harmonic frame for
R? with frame bound N/d. Consider z € R?,
|z|| < 1, and suppose the approximation x of x

IS generated by a first-order >A quantizer as
before. Then

d?(d+1)+d §

lz —z|| <
N 2
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Error estimate for harmonic frames

Theorem Let Epj be the harmonic frame for
R? with frame bound N/d. Consider z € R¢,
|z|| < 1, and suppose the approximation x of x
IS generated by a first-order > A quantizer as
before. Then

d?(d+1)+d s

|z =z <
N 2

e Hence, for harmonic frames (and all those
with bounded variation),

Cq

e [ his bound is clearly superior asymptoti-
cally to
(d6)?

MSE =
PCM 15N




> A and “optimal” PCM

The digital encoding

(d6)?

12N

in PCM format leaves open the possibility that
decoding (reconstruction) could lead to

MSEpcyv =

X 1 1
MSESY,, <<O(N)'
Goyal, Vetterli, Thao (1998) proved
C
MSERE, " ~ 42

T heorem T he first order >/ scheme achieves
the asymptotically optimal MSEpcp for har-
monic frames.






