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This is an 12 theory, but there are relevant analogous [* problems, for example finding
Grassmannian frames.
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PART 1: Finite frame theory

Frames
Frames F = {e,}2_, for d-dimensional Hilbert space H, e.g., H = K¢, where K = C or
K=R.

e Any spanning set of vectors in K% is a frame for K¢.

o I C K?%is A-tight if
N
Vo e K4 Alle|® =) ()
n=1

(A=1 defines Parseval frames).
e [ is unit norm if each |le,| = 1.
e Bessel map — L : H — (*(Zy),

r— {{x,e,)}.

e Frame operator — S = L*L : H — H, in fact,
N

S(x) = Z(L en)en.

n=1
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Tight frames and applications

Theorem {e,})_; C K¢ is an A-tight frame for K¢ <
S=L"L=Al:K'— K"

For all x € H,

—S*I =

||Mz

e Robust transmission of data over erasure channels such as the Internet. [Casazza,
Goyal, Kelner, Kovacevi¢]

e Multiple antenna code design for wireless communications. [Hochwald, Marzetta,
T. Richardson, Sweldens, Urbanke]

e Multiple description coding. [Goyal, Heath, Kovacevi¢, Strohmer, Vetterli
e Quantum detection.

— Chandler Davis - mathematics
— Eldar, Forney, Oppenheim - signal processing

— Brandt, Kennedy, Helstrom - quantum mechanics quantum detection
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Finite unit norm tight frames (FUN-TFs)

e If {e,}]_, is a finite unit norm tight frame (A-FUN-TF) for K%, then A = N/d.

be an A-unit norm TF for any separable Hilbert space H. A > 1, and

o Let {e,}
A=1<%{e,} is an ONB for H (Vitali). Thus, 1-FUN-TF = ONB.

e The geometry of finite tight frames:

— The vertices of platonic solids are FUN-TFs.

— Points that constitute FUN-TFs do not have to be equidistributed, e.g., ONBs,
Grassmanian frames.

— FUN-TFs can be characterized as minimizers of a “frame potential function”
(with Fickus) analogous to

Coulomb’s Law.
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Frame force and potential energy
A force
F:8%tx 81\ D — R
is a central force with potential
P: S x §4I\ D — R,
if
F(a,b) = f(lla=bll)(a—b),  P(a,b) = p(|la—0bl).

Note that
VP =—F < p'(z) = —zf(2).

e Coulomb force

CF(a,b) = (a=b)/lla=bl]’,  f(z)=1/a?

e Frame force
FF(a,b) = {(a,b)(a —b), f(z)=1—2%/2

e Total potential energy for the frame force of {z,}_, C S¢!
TFP({z,}) = Erszlijzvzl (@, )|
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Local minimizers and frame bounds

Theorem Given d, N, and central force F. {x,})_; C (S 1" a local minimizer for
the total potential energy function =

VYm=1,...,N, de,, € R such that ¢,,z,, = Z F(zp,x,) € R?
n#m

(by Lagrange multipliers).

e By Theorem and frame operator S = A characterization of A-tight we were led to
definition of frame force.

o {z,} | C R? with frame operator S implies

TEP({x,}) = Tr(S?).

Theorem Given d, N, and frame force F'F. {a:n}ﬁyzl C (Sdfl)N =
N )
Nmax | 1, = <TFP({z,}) <N
¢

(by Lagrange multipliers).

e This Theorem is a basic input to following characterization.
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For the Hilbert space H = R? and N, consider
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Characterization of FUN-TFs
For the Hilbert space H = R? and N, consider
{z,}V e 871 x ... x 8¢

and )
TFP({r,}) = = Zg;l ’<5Umvl'n>’2 .

m=1

Theorem Let N < d. The minimum value of T'F' P, for the frame force and N vari-
ables, is N; and the minimizers are precisely the orthonormal sets of N elements for R

Theorem Let N > d. The minimum value of T'F' P, for the frame force and N variables,
is N2/d; and the minimizers are precisely the FUN-TFs of N elements for R%.

Problem Find these FUN-TF's analytically, effectively, and computationally.



PART 2: A quantum detection problem

Positive-operator-valued measures

Let B be a o-algebra of sets of X. A positive operator-valued measure (POM) is a
function II : B — L(H) such that
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PART 2: A quantum detection problem

Positive-operator-valued measures

Let B be a o-algebra of sets of X. A positive operator-valued measure (POM) is a
function II : B — L(H) such that

1. YU € B, TI(U) is a positive self-adjoint operator,
2. TI(0) = 0 (zero operator),
3. V disjoint {U;}*, C Band z,y € H,

[ () ) - S0

4. TI(X) = I (identity operator).

e A POM II on B has the property that given any fixed z € H, p,(-) = (z,II(-)z) is
a measure on B. (Probability if ||z| = 1).

e A dynamical quantity @ gives rise to a measurable space (X, B) and POM. When
measuring @, p,(U) is the probability that the outcome of the measurement is in

UebkB.



Example

e Suppose we want to measure the position of an electron.



Example

e Suppose we want to measure the position of an electron.

e The space of all possible positions is given by X = R3.



Example

e Suppose we want to measure the position of an electron.

e The space of all possible positions is given by X = R3.

e The Hilbert space is given by H = L*(R?).



Example

e Suppose we want to measure the position of an electron.

e The space of all possible positions is given by X = R3.

e The Hilbert space is given by H = L*(R?).

e The corresponding POM is defined for all U € B by
(U) = 1.



Example

e Suppose we want to measure the position of an electron.

e The space of all possible positions is given by X = R3.

The Hilbert space is given by H = L*(R?).

The corresponding POM is defined for all U € B by
(U) = 1.

Suppose the state of the electron is given by x € H with unit norm. Then the
probability that the electron is found to be in the region U € B is given by

p(U) = (2, I(U)x) = [ [a(t)] dt.

JU
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Parseval frames correspond to POMs

e Let F = {e,})_, be a Parseval frame for a d-dimensional Hilbert space H and let
X =Zy.

e For all x € H and U C X define
I(U)x = Z(:L', €i)e;.

icU

e Clear that II satisfies conditions (1)-(3) for a POM. Since F' is Parseval, we have
condition (4) (I(X)z = .. ¢(z,e;)e; = x). Thus II defines a POM.

e Conversely, let (X, B) be a measurable space with corresponding POM 1I for a d-
dimensional Hilbert space H. If X is countable then there exists a subset K C Z,
a Parseval frame {e;}icx, and a disjoint partition {B;};cx of K such that for all

jeXandy e H,

iEBj
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Quantum detection for finite frames

e H a finite dimensional Hilbert space (corresponding to a physical system).

e Suppose that the state of the system is limited to be in one of a finite number of
possible unit normed states {z;}}¥, C H with corresponding probabilities {p;}¥,
that sum to 1.

e Our goal is to determine what state the system is in by performing a ”good”
measurement. That is, we want to construct a POM with outcomes X = Zy
such that if the state of the system is z; for some 1 < i < N, then

, N N 1 ifi=y
pxi(./) - <=I”L':H(./)J/z'> ~ { 0 ifq 7& 7

e Since (x;,I1(7)x;) is the probability of a successful detection of the state x;, then
the probability of a detection error is given by

N
P,=1- Zp‘<‘LL I1(2)x;).
i=1



Quantum detection problem
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Quantum detection problem

e If we construct our POM using Parseval frames, the error becomes
N
Pe = 1- sz<$“ H(Z)Q?Z)
i=1
N
= 1- sz‘@i, (i, €)eq)
i=1

N
= 1= pil(wi e’
i—1

e Quantum detection problem: Given a unit normed set {x;}Y, C H and positive
weights {p; }1*; that sum to 1. Construct a Parseval frame {e;}¥, that minimizes

]\T
Po=1-Y pil(wie)
=1

over all N-element Parseval frames. ({e;}, exists by a compactness argument.)
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Naimark theorem

Naimark Theorem Let H be a d-dimensional Hilbert space and let {e;}Y, C H,
N > d, be a Parseval frame for H. Then there exists an N-dimensional Hilbert space
H’ and an orthonormal basis {e/}?, C H' such that H is a subspace of H' and

= €4,

where Py is the orthogonal projection H' — H.

e Given {z;}Y, C H and a Parseval frame {e;}}¥; C H. If {€/} ¥, is its corresonding
orthonormal basis for H', then, for all i =1,..., N, (z;, ;) = (x;,¢€}).

e Minimizing P, over all N-element Parseval frames for H is equivalent to minimizing
P. over all N-element orthonormal bases for H’.

e Thus we simplify the problem by minimizing P, over all N-element orthonormal
sets in H'.
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Quantum detection error as a potential
e Treat the error term as a potential.
P=P, = ZM—¢MU:ZH
i=1
where we have used the fact that Zf\il pi = 1 and each

Py = pi(1= [z, €)]").

e For H' = R, we have the relation,
le; — il = 2 — 2(x;, )

where we have used the fact that ||e]|| = ||«;]] = 1. We can rewrite the potential P;

as
1 2
P = p; <1— {1 — §||$72 —6:;”2] ) :



A central force corresponds to quantum detection error

Given P;, define the function p; : R — R by

pi(@) = py <1 - [1 - H) |



A central force corresponds to quantum detection error

Given P;, define the function p; : R — R by

pi(@) = py <1 - [1 - H) |

Thus P, is a potential corresponding to a central force in the following way:
/ 1 2
—afi(z) = pi(x) =2p; | 1 - ST )
= filx)=—-2p; (1 — —:132) :



A central force corresponds to quantum detection error

Given P;, define the function p; : R — R by

1 2
pz(l’) = pPi <1 - [1 — xQ} ) .
2
Thus P, is a potential corresponding to a central force in the following way:
/ 1 2
—afi(z) = pi(x) =2p; | 1 - ST )
= filx)=—-2p; (1 — —:132) :
Hence, the force F; = —V P, is

Fi(wi, e5) = fi(llwi — €fl])(wi — €) = =2pi{wi, e5) (wi — €f),

a multiple of the frame force! The total force is given by

N
F = ZF
=1
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A reformulation of the quantum detection problem

e We reformulate the quantum detection problem in terms of frame force and the
Naimark Theorem.

e The given elements {x;}Y, C H’ can be viewed as fixed points on the sphere
SNl c H.

e The elements {e/}Y, C H’ form an orthonormal set which move according to the
interaction between each x; and e} by the frame force

Fi(xi, €;) = —2pi(z;, €f) (€ — 3).

e The equilibrium position of the points {e;}, is the position where all the forces
produce no net motion. In this situation, the potential P is minimized.

e For the remainder, let {e/}Y, be an ONB for R" that minimizes P. Recall that
{e/}N | exists by compactness. The quantum detection problem is to construct or
compute {3V,
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PART 3: Equations of motion

A parameterization of O(N)
e Consider the orthogonal group

O(N)= {0 € GL(N,R) : "0 = I}.

e Since O(N) is an N(N — 1)/2-dimensional smooth manifold, we can locally pa-
rameterize O(N) by N(N — 1)/2 variables, i.e., © = O(qi, ..., qnv-1)/2) for each
© € O(N).

Hence, for all § € O(N) there is a surjective diffeomorphism by
O(N)
U
bp: Uy —UCRNND

for relatively compact neighborhoods Uy € O(N) and U C RNWN=1/2 ¢ ¢ 14,.
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A parameterization of ONBs

e Let {w;}Y, be the standard ONB for H' = RY: w; = (0,...,0,_1 ,0,...,0).

ith

e Since any two orthonormal sets are related by an orthogonal transformation, we can
smoothly parameterize an orthonormal set {e;}¥; with N elements by N(N —1)/2
variables, i.e.,

{ei(qr, . avv-1y2) ey = {O(aq1, - .., anv-1)2)witie, C H'.

RN(Ngl)/Q O(N)

where for all U € O(N), W;(V) = Yw;.

(@) = ei(qis -, anv—1)72) = Wi 0 b, (§) = (b, ' ())w; € RY.



Lagrangian dynamics on O(N)

e We now convert the frame force F acting on the orthonormal set {e;}Y, into
a set of equations governing the motion of the parameterization points ¢(t) =
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;X (u0)

Jj=1



Lagrangian dynamics on O(N)

e We now convert the frame force F acting on the orthonormal set {e;}Y, into
a set of equations governing the motion of the parameterization points ¢(t) =
(qi(t), .- anv—1)/2(t)), see (1). We define the Lagrangian L and total energy E
defined for ¢(t) by:

L=T—P, E=T+P,

where
N(N—-1)/2
j=1
e Using the Euler-Lagrange equations for the potential P,

4oy oL
dt \9q;) 0q;

we obtain the equations of motion

(1) dij = —22@ Tire <a: g; (cf(t))>'
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Point of view
e Choose ¢/ € RVW=1/2 guch that e;(¢') = ¢, ¢ RN foralli=1,..., N.
e Define §: R — RVNW=1/2 gych that §(t) = ¢’ (a constant function).
e Recall

" 0s) = =23 o @) (s, G000 )

Remark The definition of ¢ and equation (1) introduce ¢ into play for solving the quantum
detection problem.

Theorem Constant function § : R — RY®=D/2 is a minimum energy solution of (1).



Results

It can be shown that

e Theorem Denote by ¢(t) = (qi(t), ..., anv-1)/2(t)) a solution of the equations of
motion that minimizes the energy E and denote by Py the orthogonal projection
from H' into H. Then ¢{t) is a constant solution and the set of vectors

{Prei(qt)}il, ¢ H

is a Parseval frame for H that minimizes P..
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Results

It can be shown that

e Theorem Denote by ¢(t) = (qi(t), ..., anv-1)/2(t)) a solution of the equations of
motion that minimizes the energy E and denote by Py the orthogonal projection
from H' into H. Then ¢{t) is a constant solution and the set of vectors

{Prei(qt)}il, ¢ H
is a Parseval frame for H that minimizes P..
e Theorem A minimum energy solution is obtained in the SO(N) component of
O(N).
e So we need only consider parameterizing SO(N).

e Theorem A minimum energy solution, a minimizer of P,, satisfies the expression

N
0 71
Zﬂi<mi~, (3i> <.’177j, 6> =0.
i=1 04



Numerical problems

e The use of Lagrangia provides a point of view for computing the TF minimizers of
P.. (Some independent, direct calculations are possible (Kebo), but not feasible for

large values of d and N.)

e The minimum energy solution theorem opens the possibility of using numerical
methods to find the optimal orthonormal set. For example, a type of Newton’s
method could be used to find the zeros of the function

867‘
pi(x;, €;) <lz > :
Zl 04
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e With the parameterization of SO(N), the error P, is a smooth function of the
variables (¢1,...,qn(v-1)/2), that is,

N
P.qis - anv—1y2) =1 — vaz (s, ei(qu, - anv—1)/2)))

=1

A conjugate gradient method can be used to find the minimum values of P,.



Another error criterion

e Problem Given a unit normed set {z;}Y, C H, where H is d-dimensional, and
positive weights {p;}, C R that sum to 1. Construct the Parseval frame {e;} Y,

that minimizes
N
E=Y"pillzi — e
i=1

over all N-element Parseval frames for H.
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Another error criterion

e Problem Given a unit normed set {z;}Y, C H, where H is d-dimensional, and
positive weights {p;}, C R that sum to 1. Construct the Parseval frame {e;} Y,

that minimizes N
E=Y"pillzi — e
i=1

over all N-element Parseval frames for H.

e A unique solution is constructed when the weights are all equal and {x;}¥, spans
H. (Casazza & Kutyniok; Bolcskei, Eldar, Forney):

Theorem Let {z;}Y, be a frame for H with frame operator S. {S™%/2z;}}¥, is the
unique Parseval frame such that

N N
Z |; — S7V2%,]|? = inf {Z |2 — ei||? : {e:} X, Parseval frame for H}
i=1 i=1

d

and, with S having eigenvalues {\;}4_,,

d

N
D llwi = STVPmlP =D (0 —2¢/A + 1),
=1

Jj=1



Geometrically uniform frames
Q={U; € L(H) :1<i< N}-finite Abelian group of unitary linear operators.

A set of vectors {z; € H : 1 < i < N} is geometrically uniform if there exists © € H

such that
{z;, :1<i<N}={Uiz:1<i< N}

T is a generating vector.



Geometrically uniform frames

Q={U; € L(H) :1<i< N}-finite Abelian group of unitary linear operators.

A set of vectors {z; € H : 1 < i < N} is geometrically uniform if there exists © € H
such that
{z;, :1<i<N}={Uiz:1<i< N}

T is a generating vector.

Minimizers of the least-squares error are also minimizers of the quantum detection error
when the given set is a geometrically uniform frame. ( Boleskei, Edlar, Forney):

Theorem Let H be a Hilbert space, let {z;}¥, C H be a frame for H, and let S be its
frame operator. If {z;}¥, is geometrically uniform then,
1. {S7/22;}¥ | minimizes the detection error P, when the weights are all equal,

2. {S7122,}¥ | is a geometrically uniform set under the same abelian group Q.






