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This is an l2 theory, but there are relevant analogous l∞ problems, for example finding
Grassmannian frames.
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n=1 for d-dimensional Hilbert space H, e.g., H = Kd, where K = C or
K = R.

• Any spanning set of vectors in Kd is a frame for Kd.

• F ⊆ Kd is A-tight if

∀x ∈ Kd, A‖x‖2 =
N∑

n=1

|〈x, en〉|2

(A=1 defines Parseval frames).

• F is unit norm if each ‖en‖ = 1.

• Bessel map – L : H −→ `2(ZN),

x 7−→ {〈x, en〉}.

• Frame operator – S = L∗L : H −→ H, in fact,

S(x) =
N∑

n=1

〈x, en〉en.
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Tight frames and applications

Theorem {en}N
n=1 ⊆ Kd is an A-tight frame for Kd ⇐⇒

S = L∗L = AI : Kd −→ Kd.

For all x ∈ H,

x =
1

A
Sx =

1

A

N∑
i=1

〈x, ei〉ei.

• Robust transmission of data over erasure channels such as the Internet. [Casazza,
Goyal, Kelner, Kovačević]

• Multiple antenna code design for wireless communications. [Hochwald, Marzetta,
T. Richardson, Sweldens, Urbanke]

• Multiple description coding. [Goyal, Heath, Kovačević, Strohmer, Vetterli]

• Quantum detection.

– Chandler Davis - mathematics

– Eldar, Forney, Oppenheim - signal processing

– Brandt, Kennedy, Helstrom - quantum mechanics quantum detection
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• If {en}N
n=1 is a finite unit norm tight frame (A-FUN-TF) for Kd, then A = N/d.

• Let {en} be an A-unit norm TF for any separable Hilbert space H. A ≥ 1, and
A = 1 ⇔ {en} is an ONB for H (Vitali). Thus, 1-FUN-TF ⇒ ONB.

• The geometry of finite tight frames:

– The vertices of platonic solids are FUN-TFs.

– Points that constitute FUN-TFs do not have to be equidistributed, e.g., ONBs,
Grassmanian frames.

– FUN-TFs can be characterized as minimizers of a “frame potential function”
(with Fickus) analogous to

Coulomb’s Law.
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is a central force with potential

P : Sd−1 × Sd−1 \D −→ R,

if
F (a, b) = f(‖a− b‖)(a− b), P (a, b) = p(‖a− b‖).

Note that
∇aP = −F ⇐⇒ p′(x) = −xf(x).

• Coulomb force

CF (a, b) = (a− b)/‖a− b‖3, f(x) = 1/x3

• Frame force
FF (a, b) = 〈a, b〉(a− b), f(x) = 1− x2/2

• Total potential energy for the frame force of {xn}N
n=1 ⊂ Sd−1

TFP ({xn}) = ΣN
m=1Σ

N
n=1 |〈xm, xn〉|2
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• By Theorem and frame operator S = AI characterization of A-tight we were led to
definition of frame force.

• {xn}N
n=1 ⊂ Rd with frame operator S implies

TFP ({xn}) = Tr(S2).

Theorem Given d,N , and frame force FF . {xn}N
n=1 ⊂ (Sd−1)N ⇒

N max

(
1,
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)
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(by Lagrange multipliers).

• This Theorem is a basic input to following characterization.
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{xn}N
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Characterization of FUN-TFs

For the Hilbert space H = Rd and N , consider

{xn}N
1 ∈ Sd−1 × ...× Sd−1

and
TFP ({xn}) = ΣN

m=1Σ
N
n=1 |〈xm, xn〉|2 .

Theorem Let N ≤ d. The minimum value of TFP , for the frame force and N vari-
ables, is N ; and the minimizers are precisely the orthonormal sets of N elements for Rd.

Theorem Let N ≥ d. The minimum value of TFP , for the frame force and N variables,
is N2/d; and the minimizers are precisely the FUN-TFs of N elements for Rd.

Problem Find these FUN-TFs analytically, effectively, and computationally.
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Positive-operator-valued measures

Let B be a σ-algebra of sets of X. A positive operator-valued measure (POM) is a
function Π : B → L(H) such that

1. ∀U ∈ B, Π(U) is a positive self-adjoint operator,
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4. Π(X) = I (identity operator).
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Positive-operator-valued measures

Let B be a σ-algebra of sets of X. A positive operator-valued measure (POM) is a
function Π : B → L(H) such that

1. ∀U ∈ B, Π(U) is a positive self-adjoint operator,

2. Π(∅) = 0 (zero operator),

3. ∀ disjoint {Ui}∞i=1 ⊂ B and x, y ∈ H,〈
Π

(
∞⋃
i=1

Ui

)
x, y

〉
=

∞∑
i=1

〈Π(Ui)x, y〉,

4. Π(X) = I (identity operator).

• A POM Π on B has the property that given any fixed x ∈ H, px(·) = 〈x, Π(·)x〉 is
a measure on B. (Probability if ‖x‖ = 1).

• A dynamical quantity Q gives rise to a measurable space (X,B) and POM. When
measuring Q, px(U) is the probability that the outcome of the measurement is in
U ∈ B.
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Example

• Suppose we want to measure the position of an electron.

• The space of all possible positions is given by X = R3.

• The Hilbert space is given by H = L2(R3).

• The corresponding POM is defined for all U ∈ B by

Π(U) = 1U .

• Suppose the state of the electron is given by x ∈ H with unit norm. Then the
probability that the electron is found to be in the region U ∈ B is given by

p(U) = 〈x, Π(U)x〉 =

∫
U

|x(t)|2 dt.
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Parseval frames correspond to POMs

• Let F = {en}N
n=1 be a Parseval frame for a d-dimensional Hilbert space H and let

X = ZN .

• For all x ∈ H and U ⊆ X define

Π(U)x =
∑
i∈U

〈x, ei〉ei.

• Clear that Π satisfies conditions (1)-(3) for a POM. Since F is Parseval, we have
condition (4) (Π(X)x =

∑
i∈X〈x, ei〉ei = x). Thus Π defines a POM.

• Conversely, let (X,B) be a measurable space with corresponding POM Π for a d-
dimensional Hilbert space H. If X is countable then there exists a subset K ⊆ Z,
a Parseval frame {ei}i∈K , and a disjoint partition {Bj}j∈X of K such that for all
j ∈ X and y ∈ H,

Π(j)y =
∑
i∈Bj

〈y, ei〉ei.
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Quantum detection for finite frames

• H a finite dimensional Hilbert space (corresponding to a physical system).

• Suppose that the state of the system is limited to be in one of a finite number of
possible unit normed states {xi}N

i=1 ⊂ H with corresponding probabilities {ρi}N
i=1

that sum to 1.

• Our goal is to determine what state the system is in by performing a ”good”
measurement. That is, we want to construct a POM with outcomes X = ZN

such that if the state of the system is xi for some 1 ≤ i ≤ N , then

pxi
(j) = 〈xi, Π(j)xi〉 ≈

{
1 if i = j
0 if i 6= j

• Since 〈xi, Π(i)xi〉 is the probability of a successful detection of the state xi, then
the probability of a detection error is given by

Pe = 1−
N∑

i=1

ρi〈xi, Π(i)xi〉.
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Quantum detection problem

• If we construct our POM using Parseval frames, the error becomes

Pe = 1−
N∑

i=1

ρi〈xi, Π(i)xi〉

= 1−
N∑

i=1

ρi〈xi, 〈xi, ei〉ei〉

= 1−
N∑

i=1

ρi |〈xi, ei〉|2

• Quantum detection problem: Given a unit normed set {xi}N
i=1 ⊂ H and positive

weights {ρi}N
i=1 that sum to 1. Construct a Parseval frame {ei}N

i=1 that minimizes

Pe = 1−
N∑

i=1

ρi |〈xi, ei〉|2

over all N -element Parseval frames. ({ei}N
i=1 exists by a compactness argument.)
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where PH is the orthogonal projection H ′ → H.
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i=1 ⊂ H,

N ≥ d, be a Parseval frame for H. Then there exists an N -dimensional Hilbert space
H ′ and an orthonormal basis {e′i}N

i=1 ⊂ H ′ such that H is a subspace of H ′ and

∀i = 1, . . . , N, PHe′i = ei,

where PH is the orthogonal projection H ′ → H.

• Given {xi}N
i=1 ⊂ H and a Parseval frame {ei}N

i=1 ⊂ H. If {e′i}N
i=1 is its corresonding

orthonormal basis for H ′, then, for all i = 1, . . . , N , 〈xi, ei〉 = 〈xi, e
′
i〉.

• Minimizing Pe over all N -element Parseval frames for H is equivalent to minimizing
Pe over all N -element orthonormal bases for H ′.

• Thus we simplify the problem by minimizing Pe over all N -element orthonormal
sets in H ′.
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• Treat the error term as a potential.

P = Pe =
N∑

i=1

ρi(1− |〈xi, e
′
i〉|2) =

N∑
i=1

Pi.

where we have used the fact that
∑N

i=1 ρi = 1 and each

Pi = ρi(1− |〈xi, e
′
i〉|2).

• For H ′ = RN , we have the relation,

‖e′i − xi‖2 = 2− 2〈xi, e
′
i〉

where we have used the fact that ‖e′i‖ = ‖xi‖ = 1. We can rewrite the potential Pi

as

Pi = ρi

(
1−

[
1− 1

2
‖xi − e′i‖2

]2
)

.
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A central force corresponds to quantum detection error

Given Pi, define the function pi : R → R by

pi(x) = ρi

(
1−

[
1− 1

2
x2

]2
)

.

Thus Pi is a potential corresponding to a central force in the following way:

−xfi(x) = p′i(x) = 2ρi

(
1− 1

2
x2

)
x

⇒ fi(x) = −2ρi

(
1− 1

2
x2

)
.

Hence, the force Fi = −∇Pi is

Fi(xi, e
′
i) = fi(‖xi − e′i‖)(xi − e′i) = −2ρi〈xi, e

′
i〉(xi − e′i),

a multiple of the frame force! The total force is given by

F =
N∑

i=1

Fi.
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• The given elements {xi}N
i=1 ⊂ H ′ can be viewed as fixed points on the sphere

SN−1 ⊂ H ′.

• The elements {e′i}N
i=1 ⊂ H ′ form an orthonormal set which move according to the

interaction between each xi and e′i by the frame force

Fi(xi, e
′
i) = −2ρi〈xi, e

′
i〉(e′i − xi).

• The equilibrium position of the points {e′i}N
i=1 is the position where all the forces

produce no net motion. In this situation, the potential P is minimized.

• For the remainder, let {e′i}N
i=1 be an ONB for RN that minimizes P . Recall that

{e′i}N
i=1 exists by compactness. The quantum detection problem is to construct or

compute {e′i}N
i=1.
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A parameterization of O(N)

• Consider the orthogonal group

O(N) = {Θ ∈ GL(N, R) : ΘτΘ = I}.

• Since O(N) is an N(N − 1)/2-dimensional smooth manifold, we can locally pa-
rameterize O(N) by N(N − 1)/2 variables, i.e., Θ = Θ(q1, . . . , qN(N−1)/2) for each
Θ ∈ O(N).

Hence, for all θ ∈ O(N) there is a surjective diffeomorphism bθ

O(N)

∪
bθ : Uθ −→ U ⊂ RN(N−1)/2

for relatively compact neighborhoods Uθ ⊆ O(N) and U ⊆ RN(N−1)/2, θ ∈ Uθ.
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i=1 be the standard ONB for H ′ = RN : wi = (0, . . . , 0, 1︸︷︷︸

ith

, 0, . . . , 0).

• Since any two orthonormal sets are related by an orthogonal transformation, we can
smoothly parameterize an orthonormal set {ei}N

i=1 with N elements by N(N −1)/2
variables, i.e.,

{ei(q1, . . . , qN(N−1)/2)}N
i=1 = {Θ(q1, . . . , qN(N−1)/2)wi}N

i=1 ⊂ H ′.

where for all Ψ ∈ O(N), Wi(Ψ) = Ψwi.

ei(~q) = ei(q1, . . . , qN(N−1)/2) = Wi ◦ b−1
θ (~q) = (b−1

θ (~q))wi ∈ RN .



Lagrangian dynamics on O(N)

• We now convert the frame force F acting on the orthonormal set {ei}N
i=1 into

a set of equations governing the motion of the parameterization points ~q(t) =
(q1(t), . . . , qN(N−1)/2(t)), see (1). We define the Lagrangian L and total energy E
defined for ~q(t) by:

L = T − Pe, E = T + Pe,

where
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(
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• Using the Euler-Lagrange equations for the potential Pe

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj

= 0,

we obtain the equations of motion

(1)
d2

dt2
qj(t) = −2

N∑
i=1

ρi〈xi, ei(~q(t))〉
〈

xi,
∂ei

∂qj

(~q(t))

〉
.
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Point of view

• Choose ~q ′ ∈ RN(N−1)/2 such that ei(~q
′) = e′i ∈ RN for all i = 1, . . . , N .

• Define q̃ : R → RN(N−1)/2 such that q̃(t) = ~q ′ (a constant function).

• Recall

(1)
d2

dt2
qj(t) = −2

N∑
i=1

ρi〈xi, ei(~q(t))〉
〈

xi,
∂ei

∂qj

(~q(t))

〉
.

Remark The definition of q̃ and equation (1) introduce t into play for solving the quantum
detection problem.

Theorem Constant function q̃ : R → RN(N−1)/2 is a minimum energy solution of (1).
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Results

It can be shown that

• Theorem Denote by ~q(t) = (q1(t), . . . , qN(N−1)/2(t)) a solution of the equations of
motion that minimizes the energy E and denote by PH the orthogonal projection
from H ′ into H. Then ~q(t) is a constant solution and the set of vectors

{PHei(~q(t))}N
i=1 ⊂ H

is a Parseval frame for H that minimizes Pe.

• Theorem A minimum energy solution is obtained in the SO(N) component of
O(N).

• So we need only consider parameterizing SO(N).

• Theorem A minimum energy solution, a minimizer of Pe, satisfies the expression

N∑
i=1

ρi〈xi, ei〉
〈

xi,
∂ei

∂qj

〉
= 0.



Numerical problems

• The use of Lagrangia provides a point of view for computing the TF minimizers of
Pe. (Some independent, direct calculations are possible (Kebo), but not feasible for
large values of d and N .)

• The minimum energy solution theorem opens the possibility of using numerical
methods to find the optimal orthonormal set. For example, a type of Newton’s
method could be used to find the zeros of the function
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• The use of Lagrangia provides a point of view for computing the TF minimizers of
Pe. (Some independent, direct calculations are possible (Kebo), but not feasible for
large values of d and N .)

• The minimum energy solution theorem opens the possibility of using numerical
methods to find the optimal orthonormal set. For example, a type of Newton’s
method could be used to find the zeros of the function

N∑
i=1

ρi〈xi, ei〉
〈

xi,
∂ei

∂qj

〉
.

• With the parameterization of SO(N), the error Pe is a smooth function of the
variables (q1, . . . , qN(N−1)/2), that is,

Pe(q1, . . . , qN(N−1)/2) = 1−
N∑

i=1

ρi |〈xi, ei(q1, . . . , qN(N−1)/2)〉|2 .

A conjugate gradient method can be used to find the minimum values of Pe.



Another error criterion

• Problem Given a unit normed set {xi}N
i=1 ⊂ H, where H is d-dimensional, and

positive weights {ρi}N
i=1 ⊂ R that sum to 1. Construct the Parseval frame {ei}N
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that minimizes

E =
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over all N -element Parseval frames for H.



Another error criterion

• Problem Given a unit normed set {xi}N
i=1 ⊂ H, where H is d-dimensional, and

positive weights {ρi}N
i=1 ⊂ R that sum to 1. Construct the Parseval frame {ei}N

i=1

that minimizes

E =
N∑

i=1

ρi‖xi − ei‖2

over all N -element Parseval frames for H.

• A unique solution is constructed when the weights are all equal and {xi}N
i=1 spans

H. (Casazza & Kutyniok; Bölcskei, Eldar, Forney):



Another error criterion

• Problem Given a unit normed set {xi}N
i=1 ⊂ H, where H is d-dimensional, and

positive weights {ρi}N
i=1 ⊂ R that sum to 1. Construct the Parseval frame {ei}N

i=1

that minimizes

E =
N∑

i=1

ρi‖xi − ei‖2

over all N -element Parseval frames for H.

• A unique solution is constructed when the weights are all equal and {xi}N
i=1 spans

H. (Casazza & Kutyniok; Bölcskei, Eldar, Forney):

Theorem Let {xi}N
i=1 be a frame for H with frame operator S. {S−1/2xi}N

i=1 is the
unique Parseval frame such that

N∑
i=1

‖xi − S−1/2xi‖2 = inf

{
N∑

i=1

‖xi − ei‖2 : {ei}N
i=1 Parseval frame for H

}

and, with S having eigenvalues {λj}d
j=1,

N∑
i=1

‖xi − S−1/2xi‖2 =
d∑

j=1

(λj − 2
√

λj + 1).



Geometrically uniform frames

Q = {Ui ∈ L(H) : 1 ≤ i ≤ N}-finite Abelian group of unitary linear operators.

A set of vectors {xi ∈ H : 1 ≤ i ≤ N} is geometrically uniform if there exists x ∈ H
such that

{xi : 1 ≤ i ≤ N} = {Uix : 1 ≤ i ≤ N}.
x is a generating vector.
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Q = {Ui ∈ L(H) : 1 ≤ i ≤ N}-finite Abelian group of unitary linear operators.

A set of vectors {xi ∈ H : 1 ≤ i ≤ N} is geometrically uniform if there exists x ∈ H
such that

{xi : 1 ≤ i ≤ N} = {Uix : 1 ≤ i ≤ N}.
x is a generating vector.

Minimizers of the least-squares error are also minimizers of the quantum detection error
when the given set is a geometrically uniform frame. ( Bölcskei, Edlar, Forney):

Theorem Let H be a Hilbert space, let {xi}N
i=1 ⊂ H be a frame for H, and let S be its

frame operator. If {xi}N
i=1 is geometrically uniform then,

1. {S−1/2xi}N
i=1 minimizes the detection error Pe when the weights are all equal,

2. {S−1/2xi}N
i=1 is a geometrically uniform set under the same abelian group Q.




