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Outline and collaborators

-

1. CAZAC waveforms

2. Frames

3. Matched filtering and related problems

4. Quantum detection

5. Analytic methods to construct CAZAC waveforms

Collaborators: Matt Fickus (frame force), Andrew Kebo
(quantum detection), Joseph Ryan and Jeff Donatelli
(software).
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CAZAC Waveforms

- .

Constant Amplitude Zero Autocorrelation (CAZAC)
Waveforms

A K-periodic waveform v : Zx = {0,1,..., K —1} - CIs
CAZAC If |lu(m)|=1,m=0,1,..., K — 1, and the autocorrelation

K-1
> u(m+k)yu(k)isOform=1,... K-1.
k=0

Ay (m) = %

The crosscorrelation of u, v : Zxg — C IS

K—1
1
Cun(m) = e u(m + k)v(k) form=0,1,... K — 1.
k=0
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Properties of CAZAC waveforms

- .

® u CAZAC = u Is broadband (full bandwidth).
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Properties of CAZAC waveforms
- o

® u CAZAC = u i1s broadband (full bandwidth).

# There are different constructions of different CAZAC
waveforms resulting in different behavior vis a vis
Doppler, additive noises, and approximation by
bandlimited waveforms.

. -

N 0 rb e rt Wi e ne r C e nt e r Waveform design and quantum detection matched filtering — p.4/4!



Properties of CAZAC waveforms

- .

® u CAZAC = u i1s broadband (full bandwidth).

# There are different constructions of different CAZAC
waveforms resulting in different behavior vis a vis
Doppler, additive noises, and approximation by
bandlimited waveforms.

® u CA < DFT ofuis ZAC off dc. (DFT of u can have
Zeros)
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Properties of CAZAC waveforms

=

°

u CAZAC = u IS broadband (full bandwidth).

# There are different constructions of different CAZAC
waveforms resulting in different behavior vis a vis
Doppler, additive noises, and approximation by
bandlimited waveforms.

® u CA < DFT ofuis ZAC off dc. (DFT of u can have
Zeros)

o u CAZAC <= DFT of uis CAZAC.
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Properties of CAZAC waveforms
- o

u CAZAC = u IS broadband (full bandwidth).

# There are different constructions of different CAZAC
waveforms resulting in different behavior vis a vis
Doppler, additive noises, and approximation by
bandlimited waveforms.

® u CA < DFT ofuis ZAC off dc. (DFT of u can have
Zeros)

u CAZAC <= DFT of uis CAZAC.

# User friendly software:
http://www.math.umd.edu/~jjb/cazac

°

°
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Rationale for CAZAC waveforms

- .

# CA allows transmission at peak power. (The system
does not have to deal with the suprise of greater than
expected amplitude.)
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Rationale for CAZAC waveforms

- .

# CA allows transmission at peak power. (The system
does not have to deal with the suprise of greater than
expected amplitude.)

# Distortion amplitude variations can be detected using
CA. (With CA amplitude variations during transmission
due to additive noise can be theoretically eliminated at
the receiver without distorting message.)
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Rationale for CAZAC waveforms

- .

# CA allows transmission at peak power. (The system
does not have to deal with the suprise of greater than
expected amplitude.)

# Distortion amplitude variations can be detected using
CA. (With CA amplitude variations during transmission
due to additive noise can be theoretically eliminated at
the receiver without distorting message.)

# A sharp unigue peak in A, is important because of
distortion and interference in received waveforms, e.g.,
In radar and communications—more later.
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Examples of CAZAC Waveforms
-

K =175:u(x) =

(1 1 1 1 1 1 627m'i 627?’&’12—576277&%7627m'%7627m%7627ri% 6277@%7
827”% 627Tz 1 62%2—7627Ti%7627ri%’€27m— 1 627mi7 27Tzﬁ 27m'§7
€2m16 €2m§’ 627m§7 = ezméj 627m'§7 1, €2m—7 627Ti%, ezmgj

6 1, 6 175 62%2157627T7jg 627m 62%2%762m£ eZm—’ 27”15
62777, 1, p27is 627m'§, 62%237 51 627?2'2, 62m§7 e2mi2. €2m§7
o2y 62ml6 627r7j%7 2mi 2% e2mids 1 e2 g)ezmg ezmﬁjezmg—ﬁj
1, e2m z}i | 627?2?—27 62m15—37 ezm% 62%2’%’ 62777,}—27 ezml—;j ezm‘g,(gm‘%)

-
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Autocorrelation of CAZAC K =75
L o

Codmetation of Cument Sequence {Length: 75)-
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Finite ambiguity function
R o

Given K-periodic waveform, u : Zx — Clete,,(n) =e¢ «
® The ambiguity function of u, A : Zx X Zx — K Is defined as

27Timk:

1K 1
Au(]ak): uuek Zum_l_] Ko
m:O
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Finite ambiguity function
R o

Given K-periodic waveform, u : Zx — Clete,,(n) =e¢ «
® The ambiguity function of u, A : Zx X Zx — K Is defined as

1 Kol 2mimk
Auld, k) = Cuue,(J) = e u(m + jlu(m)e %
m=0
#® Analogue ambiguity function for u < U, =1, on R:

Ay(t,y) = /A U(w — %)U(w + %)e%it(w%)dw
R

— [ uls + uls)emds
| -
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Finite ambiguity function and Doppler

- .

Standard Doppler tolerance problems:

# How well does A, (-, k) behave as k varies from 0?
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Finite ambiguity function and Doppler

- .

Standard Doppler tolerance problems:

# How well does A, (-, k) behave as k varies from 0?

# |s the behavior robust in the sense of being close to
Ay (+) If k1s close to 07
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Finite ambiguity function and Doppler

- .

Standard Doppler tolerance problems:

# How well does A, (-, k) behave as k varies from 0?

# |s the behavior robust in the sense of being close to
Ay (+) If k1s close to 07

# Standard Doppler frequency shift problem: Construct a
statistic to determine unknown Doppler frequency shift.
Do this for multiple frequencies.
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Finite ambiguity function and Doppler

- .

Standard Doppler tolerance problems:

# How well does A, (-, k) behave as k varies from 0?

# |s the behavior robust in the sense of being close to
Ay (+) If k1s close to 07

# Standard Doppler frequency shift problem: Construct a
statistic to determine unknown Doppler frequency shift.
Do this for multiple frequencies.

# Provide rigorous justification for CAZAC simulations
associated with the Doppler tolerance guestion and
frequency shift problem.
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Remarks

- -

® The Doppler statistic |C,, 4, (j)| IS €xcellent and provable
for detecting deodorized Doppler frequency shift.
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Remarks

- -

® The Doppler statistic |C,, 4, (j)| IS €xcellent and provable
for detecting deodorized Doppler frequency shift.

# |If one graphs only
Re A(j, k) = Re Cy e, (5)

then the statistic sometimes falls.
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Remarks
| o

® The Doppler statistic |C,, 4, (j)| IS €xcellent and provable
for detecting deodorized Doppler frequency shift.

# |If one graphs only
Re A(j, k) = Re Cy e, (5)

then the statistic sometimes falls.

# There are unresolved “arithmetic” complexities which
are affected by waveform structure and length.
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Remarks

- -

® The Doppler statistic |C,, 4, (j)| IS €xcellent and provable
for detecting deodorized Doppler frequency shift.

# |If one graphs only
Re A(j, k) = Re Cy e, (5)

then the statistic sometimes falls.

# There are unresolved “arithmetic” complexities which
are affected by waveform structure and length.

# Noise analysis is ongoing.
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Doppler Statistic

Cormrelation of Cument Sequence (Dioppler Shift: 1) Comelation of Curmrent Sequence (Doppler Shift: 2)
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-Comel

ation of Coment Sequence (Doppler Shift: 5)
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Frames

- .

Redundant signal representation

® Given H=Ryor H=C% N >d. {z,}_, C H is a finite
unit norm tight frame (FUN-TF) If each ||z,| = 1 and, for each
r e H,

. -
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Frames

- .

Redundant signal representation

® Given H=Ryor H=C% N >d. {z,}_, C H is a finite
unit norm tight frame (FUN-TF) If each ||z,| = 1 and, for each
r e H,

o {x,} . C H is an A-ight frame if {x,,})"_, spans H and

N
All=]|> =) |(x,2,)|* for each = € H.

n=1
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Recent applications of FUN-TFs

- .

® Robust transmission of data over erasure channels
such as the internet [Casazza, Goyal, Kelner,
Kovacevic]
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Recent applications of FUN-TFs

- .

# Robust transmission of data over erasure channels
such as the internet [Casazza, Goyal, Kelner,
Kovacevic]

# Multiple antenna code design for wireless

communications [Hochwald, Marzetta, T. Richardson,
Sweldens, Urbanke]

. -

N Orb ert Wi ener C ent e r Waveform design and quantum detection matched filtering — p.14/4!



Recent applications of FUN-TFs

- .

# Robust transmission of data over erasure channels
such as the internet [Casazza, Goyal, Kelner,
Kovacevic]

# Multiple antenna code design for wireless
communications [Hochwald, Marzetta, T. Richardson,
Sweldens, Urbanke]

o Multiple description coding [Goyal, Heath, Kovacevic,
Strohmer, Vetterli]
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Properties and examples of FUN-TFs

- .

# Frames give redundant signal representation to
compensate for hardware errors, to ensure numerical
stability, and to minimize the effects of noise.

. -
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Properties and examples of FUN-TFs

f # Frames give redundant signal representation to T
compensate for hardware errors, to ensure numerical
stability, and to minimize the effects of noise.

#® Thus, If certain types of noises are known to exist, then
the FUN-TFs are constructed using this information.
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Properties and examples of FUN-TFs

- .

# Frames give redundant signal representation to
compensate for hardware errors, to ensure numerical
stability, and to minimize the effects of noise.

#® Thus, If certain types of noises are known to exist, then
the FUN-TFs are constructed using this information.

# Orthonormal bases, vertices of Platonic solids, kissing
numbers (sphere packing and error correcting codes)
are FUN-TFs.

. -
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DFT FUN-TFsS

- .

#® N x dsubmatrices of the N x N DFT matrix are
FUN-TFs for C?. These play a major role in finite frame

Y A-quantization.
[« % % %
% % ok %
* X I S
1 X ok o+ o+ ok ok k.
N=8,d=5 —
\/5 * % * k%
k% k% %
% ok ok %
x ok .« ok ok ok
Ty = %( 627«‘-3'%: €27r-im%’ szng? 62-71‘-3'.771%’ eQm'mg)
m=1,...,8
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DFT FUN-TFsS

-

® N x dsubmatrices of the N x N DFT matrix are

-

FUN-TFs for C?. These play a major role in finite frame

Y A-quantization.
_ .
* K
®OX
| | X ok o
N=8d=5 —=
\/g * %
X X
X OK
3N SRR
1 oM 2mims 2mim2  2mwimé
33772,:?(6 °,e ,€ e,
0
m=1,...,8.

# “Sigma-Delta” Super Audio CDs -

L are fans.

Norbert Wiener Center

L S S S

L S S

& T
eznwng)

but not all authorities

-
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Frame force

- .

The frame force: ' : $971 x §9=1\ D — R? is defined as
F(a,b) = (a,b)(a — b), S9! is the unit sphere in R,

® Fis a (central) conservative force field.

. -
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Frame force

- .

The frame force: ' : $971 x §9=1\ D — R? is defined as
F(a,b) = (a,b)(a — b), S9! is the unit sphere in R,

® Fis a (central) conservative force field.

® Total potential energy for the frame force of {z,,}V_, C S9-1:

N N
P = ZZ\xm,xn

m=1n=1
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Frame force

- .

The frame force: ' : $971 x §9=1\ D — R? is defined as
F(a,b) = (a,b)(a — b), S9! is the unit sphere in R,

® F'is a (central) conservative force field.
® Total potential energy for the frame force of {x, }Y_, C §9~1 :

N N
P = ZZ\xm,xn

m=1n=1

® lLet N > d. The minimum value of P for the frame force I and N
variables is %; and the minimizers of P are precisely all of the
FUN-TFs of NV elements in S9—1.
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Frame force

- .

The frame force: ' : $971 x §9=1\ D — R? is defined as
F(a,b) = (a,b)(a — b), S9! is the unit sphere in R,

® F'is a (central) conservative force field.
® Total potential energy for the frame force of {x, }Y_, C §9~1 :

N N
P = ZZ\xm,xn

m=1n=1

® lLet N > d. The minimum value of P for the frame force I and N
variables is %; and the minimizers of P are precisely all of the
FUN-TFs of NV elements in S9—1.

® Compute these frames.
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Multifunction vector-valued frame waveforms

-

Problem: Construct, code, and implement (user-friendly)
N-periodic waveforms (N > d)

u:Zy — SPCRI(orCY,
n — Uy = (un(l),un(2),...,un(d)),n=0,1,... N —1

which are FUN-TFs (for redundant signal representation)
and CAZAC (zero or low correlation off dc), i.e.,

g N-1 , -1
T= Z()(:C,unmn and A, (m) = i Zo<um+j,uj> = 0,
n= =

m=1,...N —1.

. -
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Techniques for multifunction CAZAC waveforms

- .

The following are recent applications of FUN-TFs.

# Quantum detection [Bolkskel, Eldar, Forney,
Oppenheim, B]

. -
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Techniques for multifunction CAZAC waveforms

- .

The following are recent applications of FUN-TFs.

# Quantum detection [Bolkskel, Eldar, Forney,
Oppenheim, B]

# Y A-quantization (better linear reconstruction than MSE
of PCM) [Daubechies, Devore, Gunturk, Powell, N.
Thao, Yilmaz, B]
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Techniques for multifunction CAZAC waveforms

- .

The following are recent applications of FUN-TFs.

# Quantum detection [Bolkskel, Eldar, Forney,
Oppenheim, B]

# Y A-quantization (better linear reconstruction than MSE
of PCM) [Daubechies, Devore, Gunturk, Powell, N.
Thao, Yilmaz, B]

# Grassmannian “min-max” waveforms [Calderbank,
Conway, Sloane, et al., Kolesar, B]
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The following are recent applications of FUN-TFs.

Techniques for multifunction CAZAC waveforms

=

Quantum detection [Bolkskel, Eldar, Forney,
Oppenheim, B]

Y A-quantization (better linear reconstruction than MSE
of PCM) [Daubechies, Devore, Gunturk, Powell, N.
Thao, Yilmaz, B]

Grassmannian “min-max” waveforms [Calderbank,
Conway, Sloane, et al., Kolesar, B]

Grassmannian analysis gives another measure of the
crosscorrelation. A FUN frame {u,})_, C H is
Grassmannian If maxy,4; [(ug, u;)| = inf maxy; | (2, 1),
where the infimum is over all FUN frames.

-
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Matched Filtering

Processing
P E— Data
Transmit 0 BeRRG
and
' system
receive .
antenng | =— S1ZNAl PIOCESSOT | g
A/D, MF etc

- B
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Natural problems associated with multifunction frame wavdorms (1)

- .

# Implement FUN-TF XA A/D converters to take
advantage of proven improved error estimates for linear
reconstruction over PCM and comparable to MSE-PCM.
(MSE-PCM Is based on Bennett’s white noise
assumption which is not always valid. With consistent
reconstruction, and its added numerical complexity,
MSE-PCM is comparable to FUN-TF MSE-XA.)

. -
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Natural problems associated with multifunction frame wavdorms (2)

- .

# Distinguish multiple frequencies and times (ranges) Iin
the ambiguity function,

A(“t”, ca,yn) _ / U(W)(Z &]U(w 4+ ”}/j)GQWitjw)dw,

R

by means of multifunction frame waveforms.

. -
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Natural problems associated with multifunction frame wavdorms (3)

- .

# Compute optimal 1-tight frame CAZAC waveforms,
{en,}N_;, using quantum detection error:

N
PGZT.{niI}l(l—Z,On‘ Uy €n) | an—lpn>0
en i=1

where {u,}»_, C S lis given. This is a multifunction
matched filtering.

. -
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Classical elementary matched filtering

-

® Electromagnetic waveform « : R (radar) — T (target)
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Classical elementary matched filtering

-

® Electromagnetic waveform « : R (radar) — T (target)

® |deal reflected signal v(t) = au(t — to), a > 0 fixed, where ¢, is to be
computed.

. -

N Orb ert Wi ener C ent er Waveform design and quantum detection matched filtering — p.24/4



Classical elementary matched filtering
- o

® Electromagnetic waveform u : R (radar) — T (target)

® [deal reflected signal v(t) = au(t — to), a > 0 fixed, where ¢, is to be
computed.

® ¢, is proportional to target distance.

. -
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Classical elementary matched filtering

- .

® Electromagnetic waveform u : R (radar) — T (target)

® [deal reflected signal v(t) = au(t — to), a > 0 fixed, where ¢, is to be
computed.

°

to Is proportional to target distance.

® Ifu(t) = au(t —to) for some to, then

Cy,u(to) = sup |Cy,u(t)].
t

C, .. is L*(R) crosscorrelation and maximum system response is given by

matched filter @i (~y)e ™ 27**07

. -
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Classical elementary matched filtering

=

.

Norbert Wiener Center

o
9

°

-

Electromagnetic waveform v : R (radar) — T (target)

|deal reflected signal v(t) = au(t — t0), a > 0 fixed, where t, is to be
computed.

to Is proportional to target distance.

If v(t) = au(t — to) for some to, then

Cy,u(to) = sup |Cy,u(t)].
t

C, .. is L*(R) crosscorrelation and maximum system response is given by

matched filter @i (~y)e ™ 27**07

In digital case, CAZACs arise since travel time depends on crosscorrelation
peak, and sharp peaks obviate distortion and interference in received

waveform.
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Outline of multifunction matched filtering problem

- .

# OM formulates concept of measuring a dynamical
quantity (e.g., position of an electron in R?) and the
probability p that the outcome is in U C R? .

. -
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Outline of multifunction matched filtering problem

- .

# OM formulates concept of measuring a dynamical
quantity (e.g., position of an electron in R?) and the
probability p that the outcome is in U C R? .

# Positive operator-valued measure (POVM) gives rise to
D.

. -
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Outline of multifunction matched filtering problem

- .

# OM formulates concept of measuring a dynamical
quantity (e.g., position of an electron in R?) and the
probability p that the outcome is in U C R? .

# Positive operator-valued measure (POVM) gives rise to
D.

® In H = C% POVMs and 1-tight frames are equivalent.

. -
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Outline of multifunction matched filtering problem

- .

# OM formulates concept of measuring a dynamical
quantity (e.g., position of an electron in R?) and the
probability p that the outcome is in U C R? .

# Positive operator-valued measure (POVM) gives rise to
D.

® In H = C% POVMs and 1-tight frames are equivalent.

® Given {u,}_, € 5971, Compute/construct a 1-tight

frame minimizer {e,}_, of quantum detection (QD)
error P..

. -
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Outline of multifunction matched filtering algorithm

# Transfer tight frames for C% to ONBs in CV (Naimark
point of view and esssential for computation).

. -
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Outline of multifunction matched filtering algorithm

# Transfer tight frames for C% to ONBs in CV (Naimark
point of view and esssential for computation).

# Show that the QD error is a potential energy function of
frame force in C*.

. -
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Outline of multifunction matched filtering algorithm

# Transfer tight frames for C% to ONBs in CV (Naimark
point of view and esssential for computation).

# Show that the QD error is a potential energy function of
frame force in C*.

#® Use the orthogonal group and the Euler-Lagrange
equation for the potential P. to compute equations of

motion and a minimal energy solution {e,}"_,.

. -
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Quantum Detection

- .

Positive-operator-valued measures

Let B be a o-algebra of sets of X. A positive operator-valued measure (POM) is a function
IT: B— L(H) such that

1. YU € B, TI(U) is a positive self-adjoint operator,
2. TI(@) = 0 (zero operator),

3. Vdisjoint {U;}°, C Band z,y € H,

<H <U UZ-) :I:,y> = Z(H(Ui)ﬂ?ay%
i=1 im1

4. TI(X) = I (identity operator).

$ A POMII on B has the property that given any fixed x € H, p..(-) = (z,II(-)z) is a
measure on B. (Probability if ||z|| = 1).

. -
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Quantum Detection

-

Positive-operator-valued measures

Let B be a o-algebra of sets of X. A positive operator-valued measure (POM) is a function
IT: B— L(H) such that

1.
2.
3.

9

.

YU € B, II(U) is a positive self-adjoint operator,
I1(Q) = 0 (zero operator),

Vdisjoint {U;}°, C Band z,y € H,

<H (U UZ-> m,y> = Z(H(Ui)%y%
i=1 im1

I1(X) = I (identity operator).

A POM II on B has the property that given any fixed x € H, p,.(-) = (x,I1(:)z) isa
measure on B. (Probability if ||z|| = 1).

A dynamical quantity @ gives rise to a measurable space (X, B) and POM. When
measuring Q, p, (U) is the probability that the outcome of the measurementisin U € B.
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Example

- .

® Suppose we want to measure the position of an electron.

. -
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Example

- .

® Suppose we want to measure the position of an electron.

® The space of all possible positions is given by X = R®.
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Example

- .

® Suppose we want to measure the position of an electron.
® The space of all possible positions is given by X = R?>.

® The Hilbert space is given by H = L*(R?).

. -
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Example

- .

® Suppose we want to measure the position of an electron.
® The space of all possible positions is given by X = R?>.
® The Hilbert space is given by H = L*(R?).

® The corresponding POM is defined for all U € B by
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Example

Suppose we want to measure the position of an electron.
The space of all possible positions is given by X = R®.

The Hilbert space is given by H = L*(R?).

o o o ©

The corresponding POM is defined for all U € B by

® Suppose the state of the electron is given by x € H with unit norm. Then the
probability that the electron is found to be in the region U € B is given by

p(U) = {2, TI(U)z) = /U w()|? dt.

. -
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Parseval frames correspond to POMs

B et F = {e,}]_, be a Parseval frame for a d-dimensional Hilbert space H and let
X =7Zn.

. -
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Parseval frames correspond to POMs

B et F = {e,}]_, be a Parseval frame for a d-dimensional Hilbert space H and let
X =7Zn.

® Forallz € Hand U C X define

II(U)x = Z(x, €i)€;.

eU

. -
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Parseval frames correspond to POMs

® et F = {e,}]_, be a Parseval frame for a d-dimensional Hilbert space H and let
X =7Zn.

® Forallz € Hand U C X define

II(U)x = Z(x, €i)€;.

eU

® Clear that IT satisfies conditions (1)-(3) for a POM. Since F is Parseval, we have
condition (4) (I1(X)x = > ;. x (z, €;)e; = x). Thus II defines a POM.

. -
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Parseval frames correspond to POMs

® et F = {e,}]_, be a Parseval frame for a d-dimensional Hilbert space H and let
X =7Zn.

® Forallz € Hand U C X define

II(U)x = Z(x, €i)€;.

eU

® Clear that IT satisfies conditions (1)-(3) for a POM. Since F is Parseval, we have
condition (4) (I1(X)x = > ;. x (z, €;)e; = x). Thus II defines a POM.

® Conversely, let (X, B) be a measurable space with corresponding POM I1 for a
d-dimensional Hilbert space H. If X is countable then there exists a subset K C Z, a
Parseval frame {e; };c k-, and a disjoint partition { B; } jc x of K such that forall j € X
andy € H,

I(j)y = > (y,ei)es.

iEBj

. -
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Quantum detection for finite frames

-

® [ afinite dimensional Hilbert space (corresponding to a physical system).

. -
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Quantum detection for finite frames

-

® Suppose that the state of the system is limited to be in one of a finite number of possible
unit normed states {z;}Y_, C H with corresponding probabilities {p;}#_, that sum to 1.

® [ afinite dimensional Hilbert space (corresponding to a physical system).

. -
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Quantum detection for finite frames

=

® Suppose that the state of the system is limited to be in one of a finite number of possible
unit normed states {z;}Y_, C H with corresponding probabilities {p;}#_, that sum to 1.

® [ afinite dimensional Hilbert space (corresponding to a physical system).

® Our goal is to determine what state the system is in by performing a "good"
measurement. That is, we want to construct a POM with outcomes X = Z such that if
the state of the system is z; for some 1 <1 < N, then

1 ifi=j

Pz; (J) = (4, 1(f)xi) %{ 0 it

. -
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Quantum detection for finite frames

=

® Suppose that the state of the system is limited to be in one of a finite number of possible
unit normed states {z;}Y_, C H with corresponding probabilities {p;}#_, that sum to 1.

® [ afinite dimensional Hilbert space (corresponding to a physical system).

® Our goal is to determine what state the system is in by performing a "good"
measurement. That is, we want to construct a POM with outcomes X = Z such that if
the state of the system is z; for some 1 <1 < N, then

1 ifi=j

Pz; (J) = (4, 1(f)xi) %{ 0 it

® Since (z;,I1(i)x;) is the probability of a successful detection of the state x;, then the
probability of a detection error is given by

N
Pe =1- sz<$7j,n(’&)$@>
1=1

. -
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Quantum detection problem

® |f we construct our POM using Parseval frames, the error becomes
N
Pe = 1 — sz(xz,l'[(z):cl)
i=1
N
= 1 —Zpi<xi,<a}¢,€¢>€¢>
i=1

N
= 1= pi[{wi el
=1

. -
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Quantum detection problem

® |f we construct our POM using Parseval frames, the error becomes
N
Pe = 1— sz@z,ﬂ(z)xz)
i=1
N
= 1 —Zpi(xi,<w¢,ei>ei>
i=1

N
= 1= pi Kzi,e)]?
1=1

® Quantum detection problem: Given a unit normed set {z;}&Y ; C H and positive weights
{pi}_, that sum to 1. Construct a Parseval frame {e;}_, that minimizes

N
Pe=1=> pil(zi el
1=1

over all N-element Parseval frames. ({e; ,f\; , exists by a compactness argument.)
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Naimark theorem

- .

Naimark Theorem Let H be a d-dimensional Hilbert space and let {e;}Y., C H, N > d, be
a Parseval frame for H. Then there exists an N-dimensional Hilbert space H’ and an
orthonormal basis {e;} , C H’ such that H is a subspace of H’ and

Vi=1,...,N, Pge: = e;,
where Py is the orthogonal projection H' — H.

® Given {z;}Y, C H and a Parseval frame {e; })¥ , C H. If {e/}} | is its corresonding
orthonormal basis for H’, then, foralli = 1,..., N, (z;,e;) = (x;,€’).

1

. -
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Naimark theorem

- .

Naimark Theorem Let H be a d-dimensional Hilbert space and let {e;}Y., C H, N > d, be
a Parseval frame for H. Then there exists an N-dimensional Hilbert space H’ and an
orthonormal basis {e;} , C H’ such that H is a subspace of H’ and

Vi=1,...,N, Pge: = e;,
where Py is the orthogonal projection H' — H.

® Given {z;}Y, C H and a Parseval frame {e; })¥ , C H. If {e/}} | is its corresonding
orthonormal basis for H', then, foralli = 1,..., N, (x;,e;) = (x;, e).

® Minimizing P. over all N-element Parseval frames for H is equivalent to minimizing P
over all N-element orthonormal bases for H’.

. -
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Naimark theorem

=

Naimark Theorem Let H be a d-dimensional Hilbert space and let {e;}Y., C H, N > d, be
a Parseval frame for H. Then there exists an N-dimensional Hilbert space H’ and an
orthonormal basis {e;} , C H’ such that H is a subspace of H’ and

Vi=1,...,N, Pge: = e;,

where Py is the orthogonal projection H' — H.

9

9

.

Norbert Wiener Center

Given {z;}IY , C H and a Parseval frame {e;}* , C H. If {¢}}}_, isits corresonding
orthonormal basis for H', then, foralli = 1,..., N, (x;,e;) = (x;, e).
Minimizing P. over all N-element Parseval frames for H is equivalent to minimizing P.
over all N-element orthonormal bases for H’.

Thus we simplify the problem by minimizing P. over all N-element orthonormal sets in
H'.

-
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Quantum detection error as a potential

B

® Treat the error term as a potential.
N N
P="P.=> pi(1- [(zi,e))]) =D P;.
i=1 i=1

where we have used the fact that 3" | p; = 1 and each

Py = pi(1= [(zs, e)[?).

. -
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Quantum detection error as a potential

B

® Treat the error term as a potential.
N N
P="P.=> pi(1- [(zi,e))]) =D P;.
i=1 i=1

where we have used the fact that 3" | p; = 1 and each
P; = pi(1— [z, ep)]").
® ror H' = RY, we have the relation,
lej — @ill* = 2 — 2(wi, €])

where we have used the fact that ||e || = ||z;|| = 1. We can rewrite the potential P; as

J%ZM<L—P—%Wr%Nﬂ7-
| -
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A central force corresponds to quantum detection error

- .

® Given P;, define the function p; : R — R by

pi(x) = pi (1 — {1 - %332} 2) :

. -
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A central force corresponds to quantum detection error

- .

® Given P;, define the function p; : R — R by
1 2
pi(x) = ps <1 — {1 — 5332} > .

® Thus P; is a potential corresponding to a central force in the following way:
1 2
—ofi(x) = pi(x) =20 (1 - Sa

= fi(x) = —2p; (1 — —x ) :

. -
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A central force corresponds to quantum detection error

- .

® Given P;, define the function p; : R — R by
1 2
pi(x) = ps <1 — {1 — 5332} > .

® Thus P; is a potential corresponding to a central force in the following way:
1 2
—xfi(z) = pi(z) =2p; (1 - 5%
S hi(@) = —2p (1 L ) |
® Hence, the force F; = —VP; is

Fi(zi, e5) = fi(llzi — ejll) (s — €5) = —2ps (x4, e5) (xi — €;),

a multiple of the frame force! The total force is given by
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A reformulation of the quantum detection problem

® We reformulate the quantum detection problem in terms of frame force and the Naimark
Theorem.

. -
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A reformulation of the quantum detection problem

® We reformulate the quantum detection problem in terms of frame force and the Naimark
Theorem.

® The given elements {z;}}Y, C H’ can be viewed as fixed points on the sphere
SN=1 c H.

. -
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A reformulation of the quantum detection problem

® We reformulate the quantum detection problem in terms of frame force and the Naimark
Theorem.

® The given elements {z;}Y , C H’ can be viewed as fixed points on the sphere
SN=1 c H.

® The elements {e/}#Y , C H’ form an orthonormal set which move according to the
interaction between each z; and e by the frame force

Fi(xs,e5) = —2pi{xq, ef) (€] — x4).

. -
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A reformulation of the quantum detection problem

- .

® We reformulate the quantum detection problem in terms of frame force and the Naimark
Theorem.

® The given elements {z;}Y , C H’ can be viewed as fixed points on the sphere
SN=1 c H.

® The elements {e/}#Y , C H’ form an orthonormal set which move according to the
interaction between each z; and e by the frame force

/

Fi(xs,e5) = —2pi{xq, ef) (€] — x4).

® The equilibrium position of the points {e/}4' , is the position where all the forces
produce no net motion. In this situation, the potential P is minimized.

. -
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A reformulation of the quantum detection problem

We reformulate the quantum detection problem in terms of frame force and the Naimark
Theorem.

The given elements {a:i},fil C H’ can be viewed as fixed points on the sphere
SN=1 c H.

The elements {e/}#Y , C H’ form an orthonormal set which move according to the
interaction between each z; and e by the frame force

Fi(xs,e5) = —2pi{xq, ef) (€] — x4).

The equilibrium position of the points {e/}#' | is the position where all the forces
produce no net motion. In this situation, the potential P is minimized.

For the remainder, let {e}}#_; be an ONB for R"V that minimizes P. Recall that {e/}_,
exists by compactness. The quantum detection problem is to construct or compute

N
{e; i=1"

-
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A parameterization of O(N)

-

® Consider the orthogonal group

O(N) = {0 € GL(N,R) : ©70 = I}.

. -
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A parameterization of O(N)

-

® Consider the orthogonal group

O(N) = {0 € GL(N,R) : ©70 = I}.

® Since O(N)isan N(N — 1)/2-dimensional smooth manifold, we can locally
parameterize O(N) by N(N — 1)/2 variables, i.e., © = ©(q1,...,qn(n-1)/2) for each
© € O(N).

Hence, for all & € O(N) there is a surjective diffeomorphism by

O(N)
U
bg: Uy —UCRNENZD/2

for relatively compact neighborhoods Uy C O(N) and U C RN(N=1)/2 g ¢ 14,.

. -
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A parameterization of ONBSs

® et {w;}Y | bethe standard ONB for H' = RY: w; = (0,..., 0, 1.,0,...,0).

. -
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A parameterization of ONBSs
- o

® Let {w;}Y . be the standard ONB for H' = R¥: w; = (0,...,0, 1 ,0,...,0).
1=1 -~

,I:th

® Since any two orthonormal sets are related by an orthogonal transformation, we can
smoothly parameterize an orthonormal set {e; }Y_, with N elements by N(N — 1)/2
variables, i.e.,

{eilqa, - ->QN(N—1)/2)}z 1 =1{O9(q1, - -,QN(N—1)/2)wz'}fV=1 C H'.

RNWN-1/2Z  Q(N)
U U
Z/lg = RN

U ——
b@ — ('_) [/V.i
e /

where for all ¥ € O(N), W; (V) = Yw;.

ei(q) = €i(qr,-- - an(n—1y/2) = Wi o b, ' (9) = (by ' (@))w; € RY.

.
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Lagrangian dynamics onO(N )
B -

® We now convert the frame force F" acting on the orthonormal set {e; }¥_, into a set of
equations governing the motion of the parameterization points

q(t) = (q1(t),-- . an(v—1)/2(t)), see (1). We define the Lagrangian L and total energy
E defined for ¢(t) by:

L:T_Pe, E:T+P€7

where
N(N—=1)/2

T= le (%qj(t)>2-

. -
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Lagrangian dynamics onO(N )
B -

® We now convert the frame force F" acting on the orthonormal set {e; }¥_, into a set of
equations governing the motion of the parameterization points

q(t) = (q1(t),-- . an(v—1)/2(t)), see (1). We define the Lagrangian L and total energy
E defined for ¢(t) by:

L:T_Pe, E:T+P€7

where
S (% -<t>)2
2 at '

j=1

® Using the Euler-Lagrange equations for the potential P,
d <8L> oL 0
dt \ 9q; 0q; -

we obtain the equations of motion

d2 N - (961' -
(1) 00 =22 plre@) (=0 5 @0 )

. ' -
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Point of view

-

® cChoose ¢/ € RNIN=1/2 gychthate;(7') = e, ¢ RN foralli =1,..., N,

. -
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Point of view

-

® Choose ¢’ ¢ RN(N=1)/2 sych thate;(§’) = e, € RN foralli = 1,..., N.

® Define §: R — RN(V=1)/2 gych that §(t) = ¢’ (a constant function).

. -

N Orb ert Wi ener C ent er Waveform design and quantum detection matched filtering — p.39/4



Point of view

® Choose ¢’ ¢ RN(N=1)/2 sych thate;(§’) = e, € RN foralli = 1,..., N.
® Define §: R — RN(V=1)/2 gych that §(t) = ¢’ (a constant function).
® Recall

d2
dt2

1) L gt = —2sz (1, €4 (@(1))) <:c oL @)).

Remark The definition of g and equation (1) introduce t into play for solving the quantum
detection problem.

R

L Theorem Constant function g : R — RN(N—1)/2is a minimum energy solution of (1). J
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Results

-

It can be shown that

® Theorem Denote by ¢(t) = (q1(¢),. .. , N (N—1)/2(t)) asolution of the equations of
motion that minimizes the energy E and denote by Py the orthogonal projection from
H’ into H. Then ¢(t) is a constant solution and the set of vectors

{Prei(qt)}is, C H

IS a Parseval frame for H that minimizes P..

. -
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Results

=

It can be shown that

® Theorem Denote by ¢(t) = (q1(¢),. .. , N (N—1)/2(t)) asolution of the equations of
motion that minimizes the energy E and denote by Py the orthogonal projection from
H’ into H. Then ¢(t) is a constant solution and the set of vectors

{Prei(q(t)}L, C H
IS a Parseval frame for H that minimizes P..

® Theorem A minimum energy solution is obtained in the SO(N) component of O(N).

. -
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Results

=

It can be shown that

® Theorem Denote by ¢(t) = (q1(¢),. .. , N (N—1)/2(t)) asolution of the equations of
motion that minimizes the energy E and denote by Py the orthogonal projection from
H’ into H. Then ¢(t) is a constant solution and the set of vectors

{Prei(q(t)}il, C H
is a Parseval frame for H that minimizes P-.
® Theorem A minimum energy solution is obtained in the SO(N) component of O(N).

® So we need only consider parameterizing SO(N).

. -
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Results

=

It can be shown that

® Theorem Denote by ¢(t) = (q1(¢),. .. , N (N—1)/2(t)) asolution of the equations of
motion that minimizes the energy E and denote by Py the orthogonal projection from
H’ into H. Then ¢(t) is a constant solution and the set of vectors

{Prei(q(t)}L, C H
IS a Parseval frame for H that minimizes P..

® Theorem A minimum energy solution is obtained in the SO(N) component of O(N).

°

So we need only consider parameterizing SO(NN).

® Theorem A minimum energy solution, a minimizer of P., satisfies the expression

N
Zpi<$i7 €;) <£Uz', %> = 0.
i=1

0q;

. -
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Numerical problems

-

® The use of Lagrangia provides a point of view for computing the TF minimizers of P..
(Some independent, direct calculations are possible (Kebo), but not feasible for large
values of d and N.)

. -
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Numerical problems

=

® The use of Lagrangia provides a point of view for computing the TF minimizers of P..
(Some independent, direct calculations are possible (Kebo), but not feasible for large
values of d and N.)

® The minimum energy solution theorem opens the possibility of using numerical methods
to find the optimal orthonormal set. For example, a type of Newton’s method could be
used to find the zeros of the function

N

Oe;
Zpi<ﬂ3i7€i> <3?z', —e> :
i=1

8qj

. -
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Numerical problems

=

® The use of Lagrangia provides a point of view for computing the TF minimizers of P..
(Some independent, direct calculations are possible (Kebo), but not feasible for large
values of d and N.)

® The minimum energy solution theorem opens the possibility of using numerical methods
to find the optimal orthonormal set. For example, a type of Newton’s method could be
used to find the zeros of the function

N

Oe;
Zpi<ﬂ3i7€i> <ﬂfz‘, —€> :
i=1

8qj

B With the parameterization of SO(N), the error P, is a smooth function of the variables
(Q]_, SRR 7QN(N—1)/2)1 that iS,

N

Pe(q,---,aN(N-1)/2) =1 — Zpi (@i, ei(q, - an(n—1)2))
i—1

A conjugate gradient method can be used to find the minimum values of P..
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Analytical methods
- -

® Problem: Let p = {p;}rcz be positive definite, i.e., for any
finite set ' C Z and any {c;};cr C C:

Z Cjékp(j — ]ﬂ) > ()

jkEF

Suppose p = 0 on a given F' C Z. When can we
construct unimodular v : Z — C such that:

1

o o
plk) = lim 2N+1;Nu(1 +k)u(j)
JI>

. -
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Analytical methods
- -

® Problem: Let p = {p;}rcz De positive definite, i.e., for any
finite set ' C Z and any {c;};cr C C:

Z Cjékp(j — /f) > ()

jkEF

Suppose p = 0 on a given F' C Z. When can we
construct unimodular v : Z — C such that:

1

o o
plk) = lim 2N+1;NU(J +k)u(j)
JI>

#® This is the same problem for Z that we have been
L addressing for Z, in the one-dimensional CAZAC case.J
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Techniques:

# lterative Generalized Harmonic Analysis (GHA of
Wiener)

. -
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Techniques:

# lterative Generalized Harmonic Analysis (GHA of
Wiener)

# Uniform distribution and discrepancy theory

. -
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-

Techniques:

# lterative Generalized Harmonic Analysis (GHA of
Wiener)

# Uniform distribution and discrepancy theory
#® Generalized Gauss polynomials with irrational factors:

. -
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-

Techniques:

# lterative Generalized Harmonic Analysis (GHA of
Wiener)

# Uniform distribution and discrepancy theory
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Techniques:
# lterative Generalized Harmonic Analysis (GHA of
Wiener)
# Uniform distribution and discrepancy theory
#® Generalized Gauss polynomials with irrational factors:
e2min"0 integer o > 2, and ¢ irrational

# Finite approximation and software as with algebraic
CAZACs.
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