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ABSTRACT

We characterize Frobenius algebras A as algebras having a comultiplication which
is a map of A-modules. This characterization allows a simple demonstration of the
compatibility of Frobenius algebra structure with direct sums. We then classify
the indecomposable Frobenius algebras as being either “annihilator algebras” —
algebras whose socle is a principal ideal — or field extensions. The relationship
between two-dimensional topological quantum field theories and Frobenius algebras
is then formulated as an equivalence of categories. The proof hinges on our new
characterization of Frobenius algebras.

These results together provide a classification of the indecomposable two-dimensional
topological quantum field theories.
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1. Introduction

Topological Quantum Field Theories (TQFT’s) were first described axiomati-
cally by Atiyah in [1]. Since then, much work has been done to understand the
algebraic structures arising in the three and four-dimensional cases (see [2] and
the references cited there.) In the two-dimensional case, the algebraic structure
of lattice field theories are well discussed in [3], but the case of a two-dimensional
theory not having distinguished zero-cells, or “corners,” has not been completely
understood. Of course, these two theories are not the same; the most immediately
apparent difference between the lattice and regular cases is the lack of commuta-
tivity in the former. A classification of the two-dimensional case in terms of the
spectrum of a specific linear operator has been offered in [4], but actually deals
with a restricted case, as will be discussed below. Interest specifically in the two
dimensional case goes back to such sources as Segal’s presentation in [5] of two-
dimensional conformal field theories and Witten’s work in [6] relating the same to
results in higher dimensions.

In [7] Voronov presents a “folk theorem” asserting that a two-dimensional TQFT
“is equivalent to a Frobenius algebra” (FA), and sketches a proof. (See [§] for a
physicist’s account.) Nevertheless, there has been difficulty formulating this the-
orem precisely and filling in the details of its proof [9, 10]. Indeed, the existing
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literature on the structure of FA’s (see [11] and [12]) does not seem sufficient to
support such a theorem. In particular, a precise definition of the coalgebra struc-
ture of a FA, and an understanding of its relation to the multiplicative structure,
has been lacking. In addition, no mention has been made of maps which preserve
FA structure. These gaps are filled below by section 2. That section also contains
a small result on the uniqueness of a Frobenius algebra structure for a given alge-
bra. Section 3 continues the discussion of the structure of FA’s, and in particular
classifies the indecomposable FA’s.

A second difficulty is the lack of a careful discussion of the category 2-Cobord
of two-dimensional cobordisms. To eliminate this, section 4 provides a description
of 2-Cobord’s two-category structure particularly convenient for our purposes, and
then details its structure as given by generators and relations.

Section 5 clarifies the exact relationship between TQFT’s and FA’s by expressing
it as an equivalence of monoidal categories. In other words, the correspondence
respects the direct sum and tensor product, and continues to hold on the level of
morphisms. A succinct yet rigorous proof is given. In section 6, certain difficult
points regarding issues of orientation in 2-Cobord are discussed, and it is shown
how these lie at the foundation of the difference between the results here and in [4].
Section 7 presents a variety of examples of FA’s and their corresponding TQFT’s.

Many of the results discussed here were discovered independently by Sawin [13].
However, in addition to results not appearing in [13], the approach here features
a number of advantages: The discussion of comultiplication and its compatibility
with direct sums of algebras allows for a clear definition of direct sums of FA’s, and
therefore of direct sums of TQFT’s. The relationship between comultiplication and
multiplication highlighted here makes the correspondence between 2-Cobord and
FA’s highly intuitive. The results about maps of FA’s and natural transformations
of TQFT’s allows the correspondence theorem to be expressed as an equivalence of
categories. Finally, the lack of any condition about algebraic closure of the ground
field K broadens the possibilities for the structures of FA’s over K.

2. Frobenius Algebras

Fix a field K. No assumption is made about K; it may be finite or infinite
dimensional, algebraically-closed or not. All algebras A/K are assumed to be finite
dimensional and commutative, and to contain a unit 14. Multiplication in A will
be denoted by 3: A® A — A, and 3 : A — End(A) will denote the map taking
a € A to “multiplication by a.” The dual algebra A* has an A-module structure
A® A" — A* given by a @ ( = a - ( := (o B(a).

Proposition 1. The following conditions on A are equivalent:
(i) There exists an A-module isomorphism A : A = A*.

(ii) There exists a linear form f : A — K whose kernel contains no non-trivial
ideals.

(iii) There exists a nondegenerate linear form : A ®@ A — K which is associative,
ie. nab® c¢) =nla @ be).

(iv) For all ideals I € A, ann(ann(l)) =T and (I : K) + (ann() : K) = (A : K).



Proof. A complete proof is given in [11, pages 414-418]. The proof of the
equivalence of the first three conditions rests on the following: Given A : A = A*
satisfying condition (i), the linear form f = A(14) satisfies condition (ii). Given
form f : A — K satisfying condition (ii), the linear form n = fof satisfies condition
(iii). Given n: A ® A — K, the linear form f = n(la @ _) satisfies condition (ii),
and the linear map A = f o 3 satisfies condition (i). O

An algebra A satisfying these conditions is called a Frobenius algebra. When
A is a FA, the maps f,n, A\ which are guaranteed to exist by conditions (i), (ii),
and (iii) will henceforth be presumed to satisty the relationships mentioned above.
When it is useful to emphasize the FA structure endowed by particular f,7, and A,
the algebra will be denoted by (A, f).

Proposition 2. If (A4, f) is a FA, then all FA-structures on A are given by
(A,u - f), where u € A may be any unit.

Proof. If u € A is a unit, then for any a € A such that v - f(az) = f(uaz) =0
for all € A, it must be that wa, and thus a, is 0. By proposition 1, u - f is a FA
form.

Assume (A,g) is another FA structure on A. Now g € A* so we have g =
Mu) = u - f for some u € A. Since ¢ is a FA form, the map X := go 3 is an
isomorphism A = A*, as in the proof of proposition 1. Thus, there is a v € A such
that f =XN(v) =v-g=vu-f. But A(1) = f =vu- f = AN(vu) implies that 1 = vu,
since A is an isomorphism, so w is a unit. O

Proposition 3. If A is a FA, then so is A*

Proof. If (A4, f) is a FA then by proposition 1 all elements of A* are of the
form a- f := f o B(a) for some a € A. The isomorphism A = A* allows us to define
multiplication in A* by (a- f)(b-f) := ab- f. Define 7 : A* — K to be “evaluation at
14”. Then the identity 7(f o f(ax)) = f(ax) and proposition 1 shows that (A*, 1)
isa FA. O

The isomorphism of a FA A with its dual A* endows A with a coalgebra struc-
ture. Define comultiplication a: A — A ® A to be the map (A™' @ A=) o 8% o A
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It is clear from the definition of a that A is coassociative and cocommutative.
Note also that a can be used to define the multiplication in A* since (a- f)(b- f) =
[a-f@b-floaw=ab- f. Let g : K — A denote the unit map 1x — 14, and let
I: A — A denote the identity map. The commutativity of
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Since the top row is nothing other than I, we see that the bottom row is I.
Thus f is the counit in A.

For the next result, view A and A® A as A-modules via the usual module actions
B:AA—Aand fR1: AR A® A — A® A respectively.

Theorem 1. A finite dimensional commutative algebra A with multiplication
B:A®A — A and unit g : K — A is a FA if and only if it has a cocommutative
comultiplication oo : A — A ® A, with a counit, which is a map of A-modules.

Proof. Assume A is a FA with the comultiplication « as defined above. As
discussed, « is coassociative, cocommutative, and has a counit. To show « is an
A-module map, we must confirm commutativity of
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Choose a basis e, ..., e,, and corresponding tensor representations ﬁfj and f;
for 3, f respectively. Viewing 3 as a map A — A ® A*, the commutativity of
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follows from the commutativity and associativity of 3 and the fact that A is the
adjoint of f o 3. By the definition of « it is immediately evident that the diagram
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commutes. Thus, commutativity of the diagram in question follows from the com-
mutativity of the outer edge of the following diagram:
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Since the outer edge is nothing other than an expression of the associativity of 3,
it certainly commutes.

Now assume A has a comultiplication « satisfying the hypotheses, and let f :
A — K be the counit. To show that A is actually a FA, it suffices to show that the
linear form n:= fo 3 : A® A — K satisfies the conditions required by proposition
1. Associativity of n immediately follows from the associativity of 3. It remains to
show non-degeneracy.

Define ¢ := aog : K — A®A. By assumption, the following diagram commutes:
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9® / \ Iof
K@A—— AR A ARA —— AQK
L
A

By definition of g and f, composition along the lower edge of this diagram gives
the identity. Thus, the top line shows that (I ® 1) o (¢» ® I) is the identity map on

A. Choosing a basis eq, ..., e, for A, this composition maps an arbitrary a € A as
follows:
a (Zu] ®ej) @ar— ZUj??(ej ®a)=a
J J

where the u; are some elements in A. In fact, these u; form a basis for A, since
they clearly span A, and there are at most dim(A) of them. Taking a = u;, we see
that u; = 3 u;n(e; ®u;), so n(e; @u;) = 6;;. Assume that for some ky,...,k, € A
we have n( jkie; @ x) = 0 for all z. Plugging in * = w,;, we see that k; = 0 for all
1. In other words, n is non-degenerate, and A is a FA. O

A FA map ¢: (A, f) — (A, f) is a map of algebras which preserves the action
of f,ie. fflop=f.

Proposition 4. All FA maps ¢ are injective. In addition, ¢ is also a map of
coalgebras if and only if it is an isomorphism.

Proof. Injectivity of ¢ follows from the commutativity of
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This diagram commutes because
0" (f' 0B (6(a)) = ' o F (#(a) 0 & = f' 0 0 a) = f o (a).
It also follows from this that ¢* is surjective. Because
7(g' 0o ¢) =g 0d(la) =g'(1a) =7'(g"),

the map ¢* preserves the action of 7. If ¢ is comultiplicative, then ¢* is multi-
plicative, hence an FA map, and hence both injective and surjective. If ¢ is an
isomorphism, then ¢* must be multiplicative, and thus ¢ is comultiplicative. O

Let Frob/K be the category of FA’s (A4, f) and FA-isomorphisms. (The pur-
pose of restriction to isomorphisms will become clear later.) Each FA (A, f) has a
distinguished element w = w(A) := Boa(ly).

Proposition 5. The distinguished element w of (A4, f) is Z;‘ ejA"!(e}), where
€1,...,en is a basis for A. If u € A is a unit, then u~'w is the distinguished element
of (A, u - f).

Proof. It is easily verified that for each i, j, we have n(e; ® )\_1(6;)) = 6.
Since A is an isomorphism, by proposition 1, we see that A=1(e}),..., A7 t(e?) is
the dual basis of ey, ..., e, relative to 77. Note also that (A"*(e}))* = A(e;). It now
follows that

a(l) = (A eat)os o)
= (Aterhoy
= (A ®)‘_1)02j(ej @ A(ej))
= 2,A7Hep) @¢),

and the first claim follows.

View A* as a module over itself, using the multiplication a* : A* @ A* — A*
defined above. We may also view A* @ A* as an A*-module, using a* @ I'*. It
follows from theorem 1 that we have the equality f* o a* = (a* @ [*) o (I* @ %),
and thus §* is an A* module map. Now, Hom«(A*, A* @ A*) = A* @ A*, and
there is a fixed element ¢ € A* @ A* such that §* is “multiplication by ¢” [14, p.
203]. Clearly, ¢ = p*(1- f) = n, and we therefore have

prlc-f) = (c-fonelaxl)
((c-floejeAe;))o(ael)
(A7H(e]) - f @ Alej)).-



Now let o, and A, denote the appropriate maps of (4, u - f). We have
au(la) = (Ao ep (u-f)
A @A) 25 (wA ™ (es) - f @ Alej)).
= XA THep) @uley).
Thus the distinguished element of (4,u - f) is foa,(la) = 3, A (ef)u"te; =
wtw. O

3. Monoidal Structure and Decomposition of FA’s

A direct sum of FA’s is a direct sum of algebras, each of which is a FA.

Proposition 6. Comultiplication in A respects the direct sum structure.
Proof. Let A = A'® A”. By definition of direct sum for algebras, multiplication
in A is a map

A®Ag(A’®A’)@(A’@A”)@(A”@A’)@(A”@A”)
— Aele0eA" =A'0A"=A
Thus the comultiplication map « as defined above will satisfy this diagram:
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(Al* ® Alk) @ (AII* ® AI/*) (Al* ®Al*) @ 0 @069 (AII* ® A”*).

The result easily follows. O

It follows from this that the distinguished element w(A) of a direct sum A =
A" @ A" is the direct sum w(A") ® w(A"). The FA structure itself of A is also, up
to a unit, determined by the FA structures of the direct summands of A.

Proposition 7. If A = @, A; then (A, f) € Frob/K for some f if and only if for
each i there is an f; such that (A4,;, f;) € Frob/K . Furthermore, if (4, f), (4;, fi) €
Frob/K for all ¢ then f and {f;} determine each other up to module-action by a
unit of A.

Proof. If A € Frob/K then for each i define f; := f |4,. Assume that for some
i there is an element a; € A; such that f;(a;x) = 0 for all z € A. Now, we may view



a; as (0,...,0,a;,0,...,0) € A. Thus f(a;4) = f(a;A;) = fi(a;A;) = 0. It follows
that a; = 0 and therefore (A;, f;) is a FA for each 1.

Conversely, if (A, f;) € Frob/K for all i, then define the form f := @, fi by
flxy, ..., xn) ==, filw;). Let e1, ..., e, denote the canonical basis for A relative
to the given decomposition of A. Assume that there is an element b = (by,...,b,) €
A such that f(bx) =0for all z € A. Then for all 4, f;(b;A;) = f(bA;e;) = 0, showing
that all b;, and hence b, are 0. Therefore, (A, f) is a FA.

It (A, f),(A4;, fi) € Frob/K for all i, then by proposition 2 any FA form f :
A — K must satisfy f = u - (D, fi) for some unit v € A. Conversely, for each i
there is a unit u; € A; such that f; = u; - (f |4,). But w :=u; & ... D u,, is a unit
in A, and f; = (u- f) |a, for each i. O

FA’s which are indecomposable under direct sum possess easily described struc-
tures, as we will now show. Let N' = N(A) denote the nilradical of A.

Proposition 8. If A is indecomposable then A consists of all non-units of A.

Proof. This follows from a series of results in [11, pp. 370-372] and the com-
mutativity of A. O

Since A is an ideal, it is a subspace of A. (Note that A" # A, since A has an
identity element.) We may therefore choose a basis for A such that all basis elements
not in A are units. Let ¢/ be the (non-trivial) subspace generated by the unit basis
elements. Note that any non-unit in ¢/ lies in A as well, so the only non-unit in ¢/
is 0. It follows that (M : K)+ (U : K) = (A : K). Assume now that A is a FA.
Since N is an ideal, proposition 1 shows that (N : K) + (ann(N) : K) = (4 : K),
and thus (ann(N) : K) = (U : K) # 0. Let S denote the ideal ann(N). This is the
socle of A.

Proposition 9. § is a principal ideal, any of whose elements is a generator.

Proof. Choose a basis of units u,...,u, for 4, and let a be any non-zero
element of S. Assume that > | s;(au;) = 0 for some s1,...,s, € K not all zero.
Now w = > | s;u; is a unit, so we have a = Ou~! = 0, a contradiction. Thus the
elements auq, ..., au, of § are linearly independent. Since (§: K) = (U : K), we
see that S = alf = aA. O

If A is indecomposable and N(A) = 0, then A contains only units and 0, so
is just a field extension of K. If N'(A) # 0, we will refer to A as an “annihilator
algebra.”

Proposition 10. If algebra A is a field, any nonzero f € A* is a FA form. If A
is an annihilator algebra, any f € A* such that f(a) # 0, where a is a generator of
S, is a FA form.

Proof. Assume A is a field and that f(z) # 0. Given any b € A, we have
f(b(b=1z)) # 0. Now assume A is an annihilator algebra with S = aA, and that
f(a) # 0. As mentioned in [13], the fact that A is finite dimensional guarantees that
each element in A divides a. Given any b € A, let b’ € A be an element such that
bb' = a. Then f(bb') # 0. Both cases of the proposition now follow from proposition
1. 0

Combining the discussion above with propositions 2 and 7, we have proven:

Theorem 2. Every FA A decomposes into a direct sum of fields and indecom-

posable annihilator algebras, and the FA form of A is determined, up to a unit, by
its indecomposable constituents.



In addition to a direct sum operation, the category Frob/K also has a tensor
product.

Proposition 11. If (4, f),(A’, f') € Frob/K, then (A® A’, f® f') € Frob/K
also.

A detailed proof is given in [12, pp. 203-204]. The direct sum and the tensor
product each endow Frob/K with a monoidal structure. In other words, we have
associative bifunctors Frob/K x Frob/K — Frob/K with identity K for the
tensor product and identity O (i.e. the zero-dimensional algebra) for the direct sum.
Note that we appeal here, and in the sequel without explicit mention, to Mac Lane’s
coherence theorem [15, Chapter 7] in order to assure associativity. Intuitively, this
theorem allows us to work with natural equivalence in a monoid as if it were identity.

4. The Category of Two-Dimensional Cobordisms

Let Pre2-Cobord denote the two-category defined as follows:

e Objects are disjoint unions of labelled, oriented, compact one manifolds.
Specifically, define By : [0,27) — C by By(t) := 3k + cost + isint. For
each k, orient the image of By in accordance with the parametrization, and
label the image with the index k. The objects are taken to be the empty
manifold 0 and the disjoint unions n := {J;_, Bi([0,27)) for all n € N — {0}.

e Morphisms ¥ :n — m are oriented topological surfaces (not necessarily con-
nected) equipped with an orientation preserving homeomorphism from the
boundary 9% to the disjoint union n* U m. Here, n* indicates reversal
of orientation. In other words, the orientation induced by ¥ on the por-
tion of 0¥ corresponding to n is the opposite of the orientation that portion
inherits from n. Each boundary component is given the labelling induced
by its homeomorphic image. Composition of morphisms consists of gluing
correspondingly-labelled boundaries in an orientation-preserving manner.

e Two-morphisms are orientation-preserving homeomorphisms 7' : ¥ — X' of
morphisms such that the following diagram commutes:

Y —— nUm"

Tlos

oy’
Note that T |px must preserve labelling.

The two-morphisms of Pre2-Cobord form a topological space X. With the
exception of those path components of X consisting of 7' : ¥ — ¥/, where ¥ :0 —
0 is of genus zero (the sphere) or genus one (the torus), the path components of
X are contractible [16]. The group mp(X) is the direct sum of the mapping class
groups of the morphisms of Pre2-Cobord . For a discussion of the mapping class
group, see [17].
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Figure 1: The generators of 2-Cobord. Incompatibly-oriented boundaries are shown to the left
of each component, compatibly-oriented boundaries are shown to the right.

Define 2-Cobord to be the category whose objects are those of Pre2-Cobord,
but whose morphisms are the equivalence classes of morphisms induced by the
two-category structure of Pre2-Cobord. In other words, two morphisms X, %'
are equivalent in 2-Cobord if there is a two-morphism 7" : ¥ — ¥’ in Pre2-
Cobord. Because boundary-preserving homeomorphisms of surfaces are homotopy
equivalences, the morphisms of 2-Cobord are distinguished only up to homotopy
class.

Note that 2-Cobord is in fact the “topological skeleton” of the category origi-
nally studied in [5].

2-Cobord also has a monoidal structure induced by disjoint union. When
referring to the monoidal structure, disjoint union will be termed “tensor product.”
The equivalence relation induced by the two-morphisms guarantees well-definedness
and hence associativity of this tensor product.

Proposition 12. The morphisms in 2-Cobord are generated by gluing copies
of the five basic surfaces shown in figure 1, subject to the five sets of relations shown
in figure 2.

Proof. According to the classification theorem for two-dimensional surfaces
with boundary, each connected morphism ¥ € 2-Cobord is determined up to ho-
motopy class by a triple (m, g,n), where g is genus, m is the number of incompatibly-
oriented boundaries, and n is the number of compatibly-oriented boundaries. Thus,
each such ¥ with m,g,n > 0 may be decomposed as shown in figure 3. If this &
has m = 0 (n = 0) then the left (right) portion of the shown decomposition will
be replaced with ¥, (Xf). If g = 0 then the central portion will be deleted. It is
clear that the five basic shapes of figure 1 generate all X, whether connected or not,
via composition and tensor product. Completeness of the relations follows easily by
inspection. O

5. TQFT’s and FA’s

Let Vect/K denote the category consisting of finite dimensional vector spaces
over K and linear maps, with the monoid structure given by tensor products. A
topological quantum field theory is a monoidal functor Z:2-Cobord— Vect/K
taking 0 — K and n — V®". As in [1], the functor Z is normalized so that Z(Z;)
:=id z(1y-

Proposition 13. Each TQFT Z induces a FA structure on Z(1).
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Figure 2: The relations of 2-Cobord. Within each relation, correspondingly oriented boundaries
are labelled consistently from top to bottom.
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Figure 3: Decomposition of a generic morphism.



Figure 4: The surfaces corresponding to “the handle operator” and “the distinguished element.”

Note: The following proof uses the functoriality of Z repeatedly, although no
explicit reference will be made.

Proof. Denote Z(1) by V. The relations (C), (A) and (U) from proposition
12 guarantee that the operators § := Z(3g) and g := Z(X,) define a commutative
algebra structure, with identity, on V. These same relations guarantee that the
operators a := Z(X,) and f := Z(Zy) define a cocommutative coalgebra structure,
with counit, on V. Relation (F) implies that we have commutativity of the diagram

B

VeV V

I®a

I
vevev 2L vev

It follows from theorem 1 that Z induces a FA structure on V. O

Any TQFT Z sends the morphism ¥y = X3 0 X, depicted in figure 4 to a map
H:=pfoa: A — A called a “handle operator.” Here, we use A to denote Z(1).
That this H is in fact a module homomorphism follows from the commutativity of

A0d 220 4oa04 2 404
B

Iop B

«

A

A®a A.

Commutativity of the left hand square follows from theorem 1. The right hand
square simply expresses associativity of 3. Thus, H = B(a) for some a € A [14,
ibid.]. Since H(14) = Boa(la) = w, it follows that H = 3(w). Note that Z sends
the morphism ¥, shown in figure 4 to w € A. Gluing the surface ¥y to a boundary
corresponds to the addition of a loop in a Feynman diagram, and therefore the
distinguished element corresponds to Planck’s constant .

A map ®: Z — Z' of TQFT’s is a monoidal natural transformation. Explicitly,
® consists of a collection of linear maps ®,, := ®P" : A9" — A" where ®; :
A— A A9 .= K ®; :=idy, and A, A" are Z(1), Z'(1) respectively, such that the
following diagram commutes for all n and any ¥ : n — m € 2-Cobord:



A®m ﬂ, A®m

Note that ® satisfies all three of the following commutative diagrams:

o3 Al A @ A A® A &, A QA

U

K A9A 20 4o A A’

A

It follows from proposition 4 that ®; is a FA isomorphism.

Let TQFT /K be the category whose objects are TQFT’s and whose morphisms
are the maps ® defined above. We now describe two senses in which ® is monoidal.
Given Z,7' € TQFT/K, define the tensor product Z @ Z' by (Z @ Z')(n) :=
Z(n) @ Z'(n). This is well defined, since we have the isomorphism

AoA)e - 0Aed) =R oA oA o o).

This in turn shows that for morphisms ¥ € TQFT/K, it is consistent to define
(Z®Z')(X)=Z(2)® Z'(X). For example, (Z ® Z')(Xp) is defined by the compo-
sition

Ao AN® (A0 A) 2+ (AsA) e (A oA) — 227

A A

Note that (Z @ Z")(Zf) = f @ f', where f = Z(Zf) and f' = Z'(Zy). It is clear
from proposition 11 that Z ® Z' € TQFT/K.

Given Z,7Z' € TQFT/K, it is also possible to define the direct sum Z & Z' by
(Z® Z')(n) := Z(n) ® Z'(n). It is not obvious that this is well defined since, in
general, (A® A') ® (A® A’) is not isomorphic to (A ® A) & (A’ @ A"). However,
proposition 12 shows that it suffices to insure that the images under Z ¢ Z' of the
five basic morphisms satisfy the relations induced by the relations of 2-Cobord.
To this end, define the images of the five basic morphisms to act “componentwise.”
For example, if 3 = Z(Xg), we have

B(adb)@(cdd)=p8a®c)dB(bed).

In other words, § gives Z(1) the structure of a direct sum of algebras. Consis-
tency with the desired relations follows from propositions 6 and 7 and the following
theorem:

Theorem 3. The functor F:-TQFT/K— Frob/K which maps objects by Z —
(Z(1),Z(2s)) and morphisms by ® — ®; is an equivalence of categories which
respects tensor products and direct sums.



Note: Proposition 13 and the remarks preceding this theorem show that F is
well defined.

Proof. It is necessary to construct a TQFT for an arbitrary (A4, f) in Frob/K .
Define Z € TQFT/K by n = [J;” |1 — A®" and

Ygr—= B Yo a Yre— 1
Yr—=f Ygmg

Since 3, a, f, the unit g, and I already satisfy the conditions of (co)associativity,
(co)commutatitivity, (co)unit and identity, we need only check that the relation in
A corresponding to relation (F) of proposition 12 holds. In other words, we must
confirm commutativity of

A A

A

I®a
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However, this has already been shown in theorem 1.

Given a morphism ¢ of Frob/K, there is a unique morphism ® of TQFT/K
having ®; = ¢. Thus, we have successfully constructed, up to isomorphism, an
inverse G for F.

Obviously, if TQFT Z is a tensor product Z' ® Z" then F(Z) = (Z'(1) ®
Z"(1),Z'(Z5) ® Z"(Zy)) is a tensor product in Frob/K. To show the converse,
assume that Z(1) = (A’ ®@ A", f' @ f") € Frob/K. Denote by Z’, Z" the functors
G(A', f1), G(A", f") respectively. We have Z = Z' @ Z".

Similarly, if TQFT Z is a direct sum, then F(Z) is clearly a direct sum as well.
Because direct sums in Frob/K are direct sums of algebras, propositions 6 and
7 show that if Z(1) is a direct sum, then Z can be written as a direct sum in
TQFT/K. O

The equivalence of the categories Frob/K and TQFT /K shows that theorem
2 may be viewed as a decomposition theorem for TQFT’s.

6. Clarification

Durhuus and Jonsson [4] classify two-dimensional TQFT’s with K=C in terms of
the spectrum of the “handle operator” Z(Xy) mentioned above. The relationship of
that classification to the results in this paper bears clarification. The most obvious
difference is the choice in [4] of a particular base field. More subtle differences,
however, arise from issues regarding orientation of morphisms and duals of algebras.

If ¥ is a morphism in 2-Cobord, let ¥* denote X with orientation reversed.
Because the two-morphisms in 2-Cobord were defined using only orientation-
preserving maps, there is no a priori reason to assume that Z(X) = Z(X*), as
is assumed in [4]. Of course, there is necessarily a relationship between Z(X) and
Z(¥*), because any such ¥ can be decomposed as ¥’ o (Z9™ @ ©* @ £7") o & for
some X', X" m,n. See figure 5 for an example of such a decomposition of Xg. For a
given choice of FA (A, f) and corresponding TQFT Z = G(A, f), these relationships



Figure 5: An example of the “orientation relations.”

determine a unique isomorphism A : A = A* — namely the adjoint of Z(X o £g).
This isomorphism determines the effect in Vect/K of the reversal of orientation in
2-Cobord.

In [1], Atiyah specifically leaves the possible axiom Z(X*) = Z(X)*, where the
latter use of * indicates the vector space dual, as an open issue. It is important
to note that this axiom is assumed in [4]. The two assumptions made there yield
the strong identity Z(X) = Z(X)*, which forces A and the “handle operator” to
be simultaneously diagonalizable. Durhuus and Jonsson use the phrase “unitary
topological field theory” to indicate these particular assumptions.

7. Examples

In this section, connected morphisms of 2-Cobord will be denoted by triples
(m, g,n) as in the proof of proposition 12.

Example 1. Truncated polynomial algebras P, := K|[z]|/(z™).

Let w = 2"~ !. Take the standard basis for P,, and let f = w*. Since every basis
element divides w, we see that w* is a FA form. In fact, P, contains no idempotents,
so is indecomposable, and is thus an annihilator algebra with S = wA. By the proof
of proposition 5, comultiplication is determined by a(1l) = Y, (zF @ z"717%), and
w=nz""1. Since w? = 0, the TQFT Z = G(P,,w") sends any morphism (m, g,n)
with ¢ > 1 to the O-map.

Example 2. Commutative cohomology rings H* := H*(M; K) of n-dimensional
connected K-orientable manifolds.

By Poincaré duality, H? = H,_,. By the universal coefficient theorem, since
the coeflicients are in a field, H™~? is naturally isomorphic to the vector space
dual of H,_,. It follows that for each ¢ there is a non-degenerate bilinear pairing
n : HI@ H" 1 — K defined by u®uv +— [uUv, up], where [+, -] denotes the Kronecker
index, and pup € H, is the fundamental orientation class of M. Define a non-
degenerate linear form n : H*®@ H* — K by n(uUv) :=n'(vUv) if |u | + |v|=n,
and 0 otherwise. By proposition 1, H* is a FA with FA form A*, where A denotes
the generator of H™. The grading of H* and the connectivity of M guarantee that
H* is indecomposable, and § = H™ is an annihilator ideal.

Calculation of a(1), and hence w, is simplified by the fact that we can choose



bases af,...,af, for each H? such that af Uay " = ¢;A. In fact, a(l) =
Y, 2 (@l @af™?), and thus w = (H* : K)A. Note that w Uw = 0 so that,
as with P,, G(H*,A*) “kills” all genus greater than one.

Note that even if H* is not commutative, as long as n is even the sub-algebra
consisting of the elements of even degree in H* is an annihilator FA. In addition, if
K is chosen to be Z/2Z, then M will not only be K-orientable for any M, but H*
will automatically be commutative.

It is also possible to work with the entirety of a non-commutative cohomology
ring, even though this does not strictly determine a TQFT as defined here. In
order to do so, specify the A-module action on A* by a @ g — g o 3,(a), where
3, denotes multiplication on the left. To see what happens, take a basis element
a € H* of odd degree, and let b be the basis element such that ab = A. Then
A1(a*) = —b, and A1 (b*) = a. Assuming a # b, these basis elements contribute
Bla® (=b) + b® a) = —2A to the distinguished element w. Of course, elements of
even degree will contribute copies of A with positive coefficients. It follows that the
distinguished element of this special FA structure is the Euler class, i.e. YA, where
x is the Euler characteristic of M.

The FA structure exhibited by a noncommutative H* corresponds nicely to
its structure as a super-algebra, i.e. a vector space V = VO & V! with a Z/2Z-
graded multiplication. A linear mapping of super-algebras is called even (odd) if
it maps an element of degree ¢ to an element of degree i (i + 1); this distinction
gives End(V') a super-algebra structure. Super-algebras have an even endomor-
phism € : V' — V which is the identity on V° and multiplication by —1 on V''. Note
that even (odd) endomorphisms commute (anti-commute) with e. The super-trace
Trs:End(V) — K, corresponding to the usual linear algebra trace Tr of endomor-
phisms, is defined by Tr,(g) := Tr(e o g). Tr, vanishes on odd endomorphisms, and
on even endomorphisms gives the difference of the traces on V° and V1.

In the case of cohomology, take V° (V1) to be the space of elements of even
(odd) degree in H*. Clearly, the identity map I : H* — H* is even, and we have
Trs(I) = x. This is consistent with the fact that f(w) = x, and corresponds to the
equality Tr(I)= (A : K) = f(w) for (A4, f) with the usual FA structure.

The next example is similar to cohomology; it includes the case of a truncated
polynomial algebra.

Example 3. Finite dimensional (graded) commutative connected Hopf alge-
bras.

Margolis [18] shows that if A is such an algebra then it is a Poincaré algebra,
i.e. there is an isomorphism A, = A,,_,, where n = (A : K). It follows that A is
an annihilator algebra with socle generated by the highest degree element.

This same argument applies to the K-theory of a compact spin-manifold, which
is also a Poincaré algebra. As in cohomology, the distinguished element is the Euler
class, but in this case need not be self-annihilating; the associated TQFT would
therefore be able to detect genus greater than one.

As an application of the results in section 3, we offer the following:

Example 4. Finite dimensional local rings (gradient algebras) Q(hg) :=
C§(R™)/(ho), where h : (R*,0) — (R™,0) is a smooth map, hg is the germ of
h at 0, (ho) is the ideal generated by the components of kg, and C§°(R™) denotes



the ring of germs at 0 of smooth functions R* — R".

Let J be the Jacobian of h, and let Jy be the residue class of J in Q(hg). It is
shown in [19] that any linear functional f : Q(ho) — R such that f(Jp) > 0is a FA
form. In fact, Q(ho) is local, and hence an annihilator algebra. It follows from the
discussion in section 3 that Q(ho) has annihilator ideal S = JyQ(ho).

A similar structure is exhibited by topological Landau-Ginzburg models in physics
[20]. This is the study of the ring of states Clz;]/0W, where x; denote chiral su-
perfields, and W (x;) is a quasi-homogenous superpotential.

The next example is perhaps the best known example of FA’s, and is a rich
source of TQFT’s:

Example 5. Group algebras K[H]|, where H is a finite abelian group.

These are actually just ungraded Hopf algebras.

Let f = 1},. Since each basis element has an inverse, f is clearly a FA form.
Moreover, because the basis elements form a group, we have a(ly) = >,y h@h 1,
and thus w =| H | 1. The associated TQFT Z := G(K[H],1};) sends a morphism
(m,g,n) to the map | H |9 Z(m,0,n).

If f is adjusted by a unit, then more interesting things can happen. For instance,
if ' € H is an element of order d, then the FA form | H |~! A’ - f yields the
comultiplication given by an (1g) =| H |7t Y, cyhh/" ' @h™! and w = h'~'. The
associated TQFT will now send a morphism (m, g,n) to the map Z(m, g mod d,n);
in other words, it will only distinguish genus “mod d.”

Group algebras can be used, at least in some cases, to distinguish morphisms
of 2-Cobord both in terms of genus and number of components. Assume K has
characteristic 0 and that Z/2Z is given as a multiplicative group by the elements
eo, e1, satisfying {epe; = e1,e = ey = e?}. Define (A, f) := (Kleo,e1],€e}). Let
¥ :=(0,9,1)® (0,h,1) and &' := (0,9 + h, 2). The following table shows the value
of G(A, f) when evaluated on ¥ and X', for various classes of genus.

| = | &
g,h both odd: | 29%"e; @e; | 29" (e; @ ep + 9 @ €1)
g, h both even: | 29t"ey @eq | ¢ "
geven, hodd: | 29%"ey @e; | 29 (eg @ eg + €1 @ e1)

Example 6. The character ring R(H) of representations of finite or compact
groups H, tensored with Q.

Let V,...,V, denote the irreducible representations of H, and let xq,...,Xn
respectively denote their characters. Assume Yy is the trivial character. The bilinear
form 7 defined by < x;,x; >:=dim Hompg(V;,V;) = &;; is non-degenerate. It
is associative because dim Homp(V;,V;) equals the dimension of the space of H-
invariant bilinear forms, i.e. dim(V;* @ V;*)¥; associativity follows from the (non-
canonical) isomorphism V; & V7 and the associativity of the tensor product. We
see that n defines a FA structure having FA form x{. Since each basis element of
R(H) is self-dual relative to 7, we have w = > | x?. For h € H let ¢(h) denote
the number of members of the conjugacy class of h in H. The virtual character w
then has the following well known definition [21, p. 20]:

(h) = | H| /c(h) if h and h™! are conjugates
“W=100 otherwise.



It follows that if every element of H is conjugate to its inverse, which is equivalent
to saying that all representations are real and also that w is invertible, then R(H)
must be a direct sum (as algebras) of field extensions.

Example 7. Fusion algebras and quantum cohomology rings.

Fusion algebras are the representation rings of loop groups. See [22] for details.
The (non-commutative) FA structure of quantum cohomology, and its applications,
are discussed in [23, chapter 8]. The examples of representations and cohomology
are actually most naturally defined over Z, so we ask:

e What effects does the additional structure of a “Frobenius ring” have on its
associated “TQFT’s”?

Example 8. Algebraic number field extensions L/K.

The usual trace Try/x is in fact a FA form, since Trp, k(1) = (L : K). In this
case, 1) is the “trace form” sending (a,b) —Try, x(ab). The discriminant of L/K
is the discriminant of this 5, which is just det(Trz,x(e;e;)), where {e;} is a basis
for L/K. The study of trace forms goes hand-in-hand with the study of the Witt
ring W (I). See [24] for a discussion of these matters. It is clear that the definition
of discriminant generalizes to all FA’s, and from [24] we see that the Witt ring
corresponds to a certain quotient of Frob/K .

e What information can the generalized discriminant and Witt ring give about
FA’s and their associated TQFT’s?
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