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The purpose of this course will be to give
an introduction to ways in which noncommu-
tative topology can be applied to geometry
and topology in the usual sense (as studied by
topologists, for example) and to string theory:

1. What is noncommutative topology, what
is noncommutative geometry, and what’s the
difference between them? What are some of
the techniques available for studying them?

2. Applications of noncommutative topology,
especially C∗-algebras of groupoids, to study of
group actions on manifolds, geometry of foli-
ations, stratified spaces, and singular spaces.

3. An introduction to twisted K-theory [9],
why it appears in physics, and what it has to
do with noncommutative topology.

4. Some applications of noncommutative topol-
ogy and noncommutative geometry that have
appeared in the recent physics literature.
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Lecture I. Noncommutative topology and
geometry

“Et je ne craindrai pas d’introduire ces termes
d’arithmétique en la géométrie, afin de me ren-
dre plus intelligible.”

(Descartes, La Géométrie, 1638)

Ever since Descartes, it has been standard to
study geometry of a space through the alge-
braic properties of functions on that space.
Noncommutative topology and noncommuta-
tive geometry involve applying this principle
when the algebra of functions is noncommu-
tative.

While noncommutative algebraic geometry,
where the algebras of functions are typically
(left) Noetherian, is a perfectly legitimate sub-
ject of current interest, the focus here will be
on C∗-algebras and their dense subalgebras, in-
stead.

3



The purpose of studying noncommutative ge-

ometry is quite consistent with a philosophy

explained by Émile Borel about a hundred years

ago (in his Introduction géométrique à quelques

théories physiques):
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Definition 1 A C∗-algebra is a Banach algebra

A over C, with a conjugate-linear involution ∗,
satisfying the requirement that ‖a∗a‖ = ‖a‖2

for all a ∈ A.

We recall two important classical theorems:

Theorem 2 (Gelfand-Naimark) A Banach ∗-
algebra is a C∗-algebra if and only if it is iso-

metrically ∗-isomorphic to a ∗-closed, norm-

closed, algebra of bounded operators on some

Hilbert space.

Theorem 3 (Gelfand) X 7→ C0(X) sets up a

contravariant equivalence of categories, from

locally compact Hausdorff spaces and proper

maps to commutative C∗-algebras and ∗-preser-
ving homomorphisms.
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Thus it makes sense to view noncommutative
C∗-algebras as being algebras of functions on
noncommutative spaces. Certain examples are
particularly important:

• C∗(G), the group C∗-algebra of a locally
compact group G, the largest C∗-comple-
tion of the convolution algebra L1(G). This
should be viewed as the algebra of func-
tions on the noncommutative space Ĝ, the
unitary dual of G. (Indeed, when G is lo-
cally compact abelian, Ĝ is also a group,
the Pontryagin dual, and C∗(G) ∼= C0(Ĝ)
via the Fourier transform.)

• The noncommutative torus AΘ defined by
a skew-symmetric n × n matrix Θ. This
is the universal C∗-algebra with n unitary
generators uj satisfying the commutation
relation

ujuk = exp(2πiΘjk)ukuj.
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In other words, AΘ is a completion of an alge-
bra of noncommutative (Laurent) polynomials
in n variables, which because of the commuta-
tion relation can always be ordered as∑

rj∈Z
cr1···rnu

r1
1 · · ·urn

n .

When n = 2 and

Θ =

(
0 θ
−θ 0

)
,

we write Aθ for AΘ and call it a rotation alge-
bra. This algebra is simple when θ is irrational.

The noncommutative tori are closely related to
the first example of group C∗-algebras, since
the 2-cocycle ω : Zn × Zn → T defined by e2πiΘ

gives rise to a nilpotent group G fitting into an
extension

1 → T → G → Zn → 1,

and AΘ is a certain canonical quotient C∗(Zn, ω)
of C∗(G).
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• We can also consider C∗(G), the groupoid

C∗-algebra of a locally compact groupoid

G (with a Haar system), in the sense of

Renault [12]. G may be thought of as the

set of morphisms in a small category in

which all morphisms are invertible. There

are two maps from G to the set G(0) of

objects of G, the range r and source s.

Example: an equivalence relation R. In

this case there is one and only one mor-

phism between any two objects, i.e., r × s

sets up a bijection G ∼= R ⊂ G(0) × G(0).

Such systems arise from spinning particles

in quantum mechanics. A particle of spin

(n − 1)/2 has n states, e.g., when n = 2,

“spin up” and “spin down,” with transi-

tions allowed between any of them. The

algebra of observables is Mn(C).
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State space of a spinning particle, n =
4 (or spin 3/2). The noncommutative
algebra of “functions” is Mn(C).

• Another important example of a groupoid
is a locally compact transformation group
G = G × X, where X is a locally compact
space, G is a locally compact group, and G
acts on X. In this case, G(0) = X and the
range and source maps are

r(g, x) = g · x, s(g, x) = x.
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The multiplication is

(g, h · x) · (h, x) = (gh, x).

The associated noncommutative algebra is

the crossed product C∗-algebra C∗(G) =

G n C0(X), the completion of the convo-

lution algebra L1(G × X). When X = pt,

this is just C∗(G).

• An example of a noncommutative space

that is “not too noncommutative” has as

its associated algebra a continuous-trace

algebra. These algebras were studied by

Fell and Dixmier-Douady [7]; they corre-

spond to Azumaya algebras in ring theory.

Algebras A of continuous trace are charac-

terized by Fell’s condition: the dual space

Â is Hausdorff, and for each x0 ∈ Â, there

is an element x which is a local rank-one

projection for all x in a neighborhood of x0.
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When X is second-countable and locally

compact and δ ∈ H3(X, Z), the stable con-

tinuous-trace algebra with Dixmier-Douady

invariant δ, CT (X, δ), is locally isomorphic

to C0(X,K), K the algebra of compact op-

erators on a separable infinite-dimensional

Hilbert space H. More precisely, we define

CT (X, δ) as Γ0(X,Aδ), where Aδ is the lo-

cally trivial bundle of algebras with struc-

ture group AutK ∼= PU(H) ∼= K(Z,2) and

bundle invariant

δ ∈ [X, BPU(H)]

= [X, K(Z,3)] = H3(X, Z).
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Equivalence Relations

There are several natural equivalence relations
on noncommutative spaces:

• Isomorphism. For us this will always mean
∗-isomorphism of C∗-algebras.

• Stable isomorphism. For separable C∗-al-
gebras, this means ∗-isomorphism after ten-
soring both algebras with K. By a the-
orem of Brown-Green-Rieffel [2], it coin-
cides with Morita equivalence.

• (Strong) Morita Equivalence. Two C∗-al-
gebras A and B are called (strongly) Morita
equivalent if there is an equivalence bimod-
ule AXB such that ⊗AX and X⊗B give
equivalences of categories of (Hilbert space)
representations of A and B. This notion is
due to Rieffel [13].
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For separable C∗-algebras, Morita equiv-

alence coincides with stable isomorphism,

though it has the advantage that often one

wants to make a specific choice of equiv-

alence bimodule, not just know that one

exists.

• Homotopy Equivalence. Two ∗-homomor-

phisms f0, f1 : A → B are said to be homo-

topic if there is a ∗-homomorphism f : A →
C([0,1], B) which is equal to fj after com-

posing with evaluation at j, j = 0,1. Two

algebras are homotopy equivalent if there

are ∗-homomorphisms f : A → B and g : B →
A such that f ◦ g is homotopic to 1B and

g ◦ f is homotopic to 1A.

• Stable Homotopy Equivalence. A and B

are said to be stably homotopy equivalent

if A⊗K and B⊗K are homotopy equivalent.
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• KK-Equivalence. This is a rather compli-

cated relation to explain, but it is implied

by any of the above. There is a triangu-

lated category, called KK, obtained from

the category of separable C∗-algebras and

∗-homomorphisms between them, by re-

quiring homotopy invariance, stability (un-

der tensoring with K), and split exactness.

Two algebras A and B are called KK-equi-

valent if they become isomorphic in this

category [1, §22]. That implies, for ex-

ample, that they have the same K-theory

groups.
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The Commutative Case

If we specialize just to commutative C∗-alge-

bras, which by Gelfand’s Theorem (Theorem

3) are all of the form C0(X), X locally com-

pact, then isomorphism, stable isomorphism,

and Morita equivalence all coincide with home-

omorphism for spaces. Homotopy equivalence

has its usual meaning. Stable homotopy equiv-

alence is more exotic; for finite CW complexes,

C(X) and C(Y ) are stably homotopy equiva-

lent iff k∗(X) ∼= k∗(Y ) (as Z[u]-modules) and

some other technical conditions are satisfied

[6]. (k∗ = connective K-homology, u = Bott

map.) By [15], KK-equivalence amounts sim-

ply to having the same (complex) K-theory

groups. Thus finite CW complexes X and Y

with torsion-free homology are KK-equivalent

if and only if the sum of the Betti numbers and

the Euler characteristic are the same for both

spaces.
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Motivation for the Various Equivalence Rela-
tions

The use of Morita equivalence or stable iso-
morphism (or something even weaker, such as
stable homotopy equivalence) as a basic equiv-
alence relation in noncommutative topology re-
quires some motivation.

Consider the case of locally compact groupoids
G. It is frequently useful to study groupoids
not up to isomorphism but up to similarity.
(Two abstract groupoids are called similar or
equivalent if they are equivalent as categories;
in the locally compact case, one needs some
topological compatibility also.) Similar grou-
poids have Morita equivalent C∗-algebras [11].
For example, if a group G acts freely on X,
then the groupoid G×X is similar to the quo-
tient space X/G (with trivial group action),
and C0(X)oG is Morita equivalent to C0(X/G).
If G acts transitively, then G × X is similar to
a stabilizer group Gx, so C0(X) o G is Morita
equivalent to C∗(Gx), x ∈ X.
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Geometry vs. Topology: Poincaré’s View (C.R.

Acad. Sci. 115 (1892), 633–636)

“On sait ce qu’on entend par l’ordre de connexion d’une

surface et le rôle important que joue cette notion dans

la théorie générale des fonctions, bien qu’elle soit em-

pruntée à une branche toute différente des Mathéma-

tiques, c’est-à-dire à la géométrie de situation ou Anal-

ysis situs.

C’est parce que les recherches de ce genre peuvent avoir

des applications en dehors de la Géométrie qu’il peut y

avoir quelque intérêt à les poursuivre en les étendant

aux espaces à plus de trois dimensions.

. . .

On peut se demander si les nombres de Betti suffisent

pour déterminer une surface fermée au point de vue de

l’Analysis situs, c’est-à-dire si, étant données deux sur-

faces fermées qui possèdent mêmes nombres de Betti,

on peut toujours passer de l’une à l’autre par voie de

déformation continue. . . . ”
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Geometry vs. Topology: The Noncommuta-
tive Case

Following Poincaré’s lead, we can try to distin-
guish between noncommutative topology and
noncommutative geometry as follows. In non-
commutative (algebraic) topology, we try to
find invariants for classifying noncommutative
spaces up to equivalence relations weaker than
homotopy equivalence. Since, for the reasons
explained above, it is natural to want Morita
invariance, we are forced to consider stable ho-
motopy invariance, which is already somewhat
close to K-theory [14]. As an answer to a ques-
tion close to Poincaré’s question about com-
pleteness of Betti numbers, we have:

Theorem 4 (15) In a category N of separa-
ble C∗-algebras containing the inductive limits
of type I C∗-algebras, two algebras are KK-
equivalent if and only if they have the same
invariants K0 and K1.
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In noncommutative geometry, on the other

hand, we try to study analogues of metric struc-

tures or connections on noncommutative spa-

ces. In most cases, these involve “smooth

structures,” that is, dense subalgebras of a C∗-
algebra consisting of “smooth elements,” and

analogues of differential operators defined on

these subalgebras. Examples of things one can

study are:

• Connections and curvature, as studied in

[3].

• Noncommutative de Rham theory, as stud-

ied in [4] and [8].

• Noncommutative spectral theory, that is

study of spectral properties of analogues

of the classical elliptic operators.
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• Noncommutative complex geometry, as

studied, say, in [10].

• Noncommutative Yang-Mills theory, as stud-

ied, say, in [5].

We will not go into most of these in these

lectures for lack of time, but the reader is en-

couraged to look at the references.
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Lecture II. Noncommutative topology and

equivariant topology

This lecture will deal primarily with applica-

tions of noncommutative topology to equivari-

ant topology, that is, to the study of group ac-

tions on topological spaces. Even the special

case of finite groups acting “locally linearly”

on manifolds is of great interest.

We recall from Lecture 1 that when a locally

compact group G acts on a locally compact

space X, we have a locally compact groupoid

G = G × X, and C∗(G) = G n C0(X). It’s

convenient to remember that this C∗-algebra

is generated (inside its multiplier algebra) by

products ba, where b ∈ C∗(G) and a ∈ C0(X).

The order of the factors can be reversed using

the basic commutation relation gag−1 = g · a.
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Equivariant K-theory

One of the most useful tools for studying equiv-

ariant topology is equivariant K-theory, intro-

duced by G. Segal [12]. Let G be a com-

pact group and X a compact G-space. A G-

vector bundle over X is a (complex) vector

bundle p : E → X (in the usual sense), equipped

with an action of G on E such that g ∈ G

maps the fiber Ex = p−1(x) linearly to Eg·x,
for each g ∈ G and x ∈ X. KG(X) is de-

fined to be the Grothendieck group of isomor-

phism classes of such G-bundles. If X = pt,

a G-vector bundle is just a finite-dimension-

al representation of G, so KG(pt) = R(G),

the representation ring of G. Tensor product

of G-vector bundles gives an external product

KG(X)⊗KG(Y ) → KG(X×Y ), and specializing

to the case X = pt, we see KG(Y ) is always

an R(G)-module.
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Just as with ordinary K-theory, equivariant K-

theory can be made into a cohomology the-

ory on the category of locally compact spaces

and proper maps. For X a locally compact

G-space, we define

KG(X) = ker
(
KG(X+) → KG(pt)

)
,

where X+ is the one-point compactification,

and this agrees with the old definition if X

is already compact, since then X+ = X q pt.

And again as with ordinary K-theory, we let

K−n
G (X) = KG(X × Rn), and get long exact

cohomology sequences. The diagonal inclu-

sion of X in X ×X, together with the external

product, gives a cup-product

Ki
G(X)⊗K

j
G(X) → K

i+j
G (X)

that makes K∗
G(X) into a graded commuta-

tive R(G)-algebra. Bott periodicity, Ki
G(X) ∼=

Ki+2
G (X) is also true, but not elementary (as

the easiest proof requires ideas of equivariant

index theory).
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Equivariant K-theory for Banach algebras

Equivariant K-theory also makes sense for (com-
plex) Banach algebras A with a continuous G-
action. If A is unital, KG(A) is defined to be
the Grothendieck group of isomorphism classes
of finitely generated projective (left) A-modules
P , equipped with continuous G-actions com-
patible with the G-action on A. (In other words,
P must be a G-equivariant direct summand in
A⊗V , for some finite-dimensional complex rep-
resentation V of G.) We extend the theory to
nonunital algebras in the usual way. Equivari-
ant Bott periodicity holds in this context as
well, i.e., KG(A× R2) ∼= KG(A).

Theorem 5 (Equivariant Swan’s Theorem)
Let X be a compact G-space, G a compact
group. If E → X is a G-vector bundle, then
Γ(X, E) is a finitely generated projective (left)
C(X)-module with compatible G-action, and
in this way, one obtains a natural isomorphism
K−i

G (X) ∼= KG
i (C(X)).
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Sketch of proof [Segal]. The key fact is that

there is a surjective G-vector bundle map ϕ : X×
V � E, for some finite-dimensional complex

representation V of G. Construct a G-invariant

hermitian metric on X × V by taking any her-

mitian metric and averaging it. Then the or-

thogonal complement of ker ϕ, for the invari-

ant metric, is a G-invariant direct summand in

X × V isomorphic to E. This makes it pos-

sible to write Γ(X, E) as a G-equivariant di-

rect summand in C(X)⊗V (as C(X)-modules).

To construct ϕ, observe that given x ∈ X,

by the Peter-Weyl Theorem, there is a finite

set of sections sj of E that generate a finite-

dimensional G-subspace of Γ(X, E) and such

that sj(y) span Ey for y in a neighborhood of x.

By compactness, there is therefore a finite sub-

set of Γ(X, E) generating a finite-dimensional

G-subspace of Γ(X, E) and generating Γ(X, E)

as a C(X)-module. These sections then define

a map ϕ, as required. �
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Now we want to relate equivariant K-theory of
a G-space X to the noncommutative topology
of the crossed product G n C0(X), or equiv-
alently, of the groupoid algebra C∗(G), where
G = G×X.

Theorem 6 (Green, Julg [4]) Let A be a C∗-
algebra equipped with a continuous action G →
AutA, where G is a compact group. Then
there is a natural isomorphism

KG
i (A)

∼=−→ Ki(G n A).

Sketch of proof. Clearly we may assume A is
unital and i = 0. So we will construct a map
Φ from finitely generated projective A-modules
P with compatible G-action to finitely gener-
ated projective G n A-modules. Note: C∗(G),
and thus G n A, will not be unital if G is not
finite, but it doesn’t matter. Our map Φ will
obviously be compatible with direct sums, so
it suffices to deal with the case P = A⊗ V , V
an irreducible G-module. (So as an A-module,
P is free of rank dimV .)
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Since G is compact, C∗(G) is a (possibly infi-

nite) direct sum of matrix algebras, and there

is a projection p in the summand corresponding

to V such that V ∼= C∗(G)p as a left C∗(G)-

module. So let

Φ(A⊗ V ) = (G n A)p,

p viewed also as a projection in G n A (via the

inclusion C∗(G) ∼= G n C ↪→ G n A = A ·C∗(G)).

The rest of the proof is rather routine. �

The map in Theorem 6 is an isomorphism of

R(G)-modules, if we let R(G) act on Ki(GnA)

as follows. Without loss of generality, take A

unital and i = 0, and consider the notation of

the proof above. Then if P is a finitely gener-

ated projective A-module with compatible G-

action, and V is a finite-dimensional G-module,

[V ] · [Φ(P )] = [Φ(P ⊗ V )].
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For applications to equivariant topology, we

often need one more result, the Localization

Theorem.

Theorem 7 (Segal [12]) Let G be a com-

pact Lie group and let p be a prime ideal in

R(G). By a result of Segal [11], there is a sub-

group H which is minimal among subgroups for

which p is induced from R(H), and H is topo-

logically cyclic and unique up to conjugacy. H

is called the support of p. Then the inclusion

X(H) ↪→ X induces an isomorphism on equiv-

ariant K-theory localized at p. Here X(H) is

the G-saturation of XH, or equivalently, the

union of the fixed sets for the conjugates of

H.
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Equivalence relations in equivariant topology

In equivariant topology, there is interest in clas-

sifying G-spaces up to certain natural equiva-

lence relations:

• Equivariant homeomorphism. The strong-

est possible equivalence relation, usually too

strong to be useful.

• Equivariant homotopy equivalence. G-spa-

ces X and Y are equivariantly homotopy

equivalent if there are G-maps f : X → Y

and g : Y → X such that g◦f is G-homotopic

to 1X and f◦g is G-homotopic to 1Y . Func-

tors such as equivariant K-theory are pre-

served by this relation.
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• Pseudoequivalence. Less well known is pseu-

doequivalence. G-spaces X and Y are pseu-

doequivalent if there is a G-map f : X → Y

which, forgetting the G-action, is a homo-

topy equivalence. This relation is not sym-

metric, but it generates the equivalence re-

lation called pseudoequivalence.

• Isovariant homotopy equivalence. A G-map

is called isovariant if it preserves stabilizers.

(Clearly, if f is equivariant, then the stabi-

lizer of f(x) contains the stabilizer of x,

but the containment can be strict.) Two

G-spaces are isovariantly homotopy equiv-

alent if there are G-maps f : X → Y and

g : Y → X such that g ◦ f and f ◦ g are iso-

variantly G-homotopic to the identity.
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A puzzle: pseudoequivalence invariance

A natural question is whether equivariant K-

theory is a pseudoequivalence invariant. By

passage to mapping cones, this can be re-

duced to a question in noncommutative topol-

ogy. We will also discuss some related ques-

tions. These questions are highly nontrivial

even for A commutative.

Questions 8 1. If A is a G-C∗-algebra and

A is contractible, is G n A contractible? Is

KG
∗ (A) = 0? Is K∗(G n A) = 0?

2. If αt is a homotopy of G-actions on a

C∗-algebra A, is KG
∗ (A, αt) constant in t? Is

K∗(G nαt A) constant in t?

34



All these questions are in fact closely related.

By Theorem 6, equivariant K-theory agrees

with K-theory of the crossed product, at least

for G compact. And A contractible certainly

implies K∗(A) = 0, i.e., A is K-acyclic. In

the situation of (2), one gets an action of

G on the contractible algebra C0((0,1], A) by

(αgf)(t) = αt
g(f(t)), so one is reduced to (1).

In fact, by [1], for R-C∗-algebras, K∗(A) = 0

implies K∗(R n A) = 0. And the answer to

Question 2 is also affirmative if G = R. But

similar questions for other groups G are in fact

related to the Baum-Connes Conjecture, and

are taken up in [7] and [6].
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Connection with Smith theory

The commutative case of Questions 8 is re-

lated to Smith theory. Suppose for simplicity

that G = Z/p is cyclic of prime order. By [3],

a finite CW complex Y is the fixed set of a

G-action on a contractible finite CW complex

X if and only if H̃∗(Y, Fp) = 0. Now by the

Localization Theorem, Theorem 7, K∗
G(X)p

∼=
K∗

G(Y )p
∼= R(G)p⊗Z K∗(Y ), if p has all of G as

its support, which means it does not contain

the augmentation ideal. For example, suppose

p = 2, ` is an odd prime, and p = (`, t + 1), so

R(G)/p ∼= F` and R(G)p = Z(`). Note that

we can construct Y so that H̃∗(Y, Fp) = 0

but H̃∗(Y, F`) 6= 0. (For example, Y can be

a Z/`-Moore space.) Then it is quite possi-

ble to arrange for R(G)p ⊗Z K∗(Y ) to have `-

torsion, giving a negative answer to Questions

8. Other counterexamples may be found in [7].
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Invariants from equivariant index theory

We shall now move in a slightly different direc-

tion and consider invariants, that can be inter-

preted in terms of noncommutative topology,

for group actions on manifolds. These invari-

ants come from careful study of invariant ellip-

tic operators. Examples of this approach may

be found in [2], [10], [8], and [5]. We will be

using the theory dual to equivariant K-theory,

equivariant K-homology. Without going into

details, the key thing for us will be that these

are unified in equivariant KK-theory, a bifunc-

tor KKG
i ( , ), with KKG(C, C) = R(G),

KKG
i (C, A) ∼= KG

i (A), KKG
i (A, C) ∼= Ki

G(A),

and an R(G)-bilinear product

KKG
i (A, B)⊗R(G) KKG

j (B, C) → KKG
i+j(A, C).

G-invariant elliptic operators on a manifold X

naturally give classes in KG
i (X) = Ki

G(C0(X)),

i ∈ Z/2.
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A few facts about KKG

Before we begin, it’s worth recalling some facts
about KKG:

• The analogue of the Green-Julg Theorem
(Theorem 6) holds in K-homology if G is
discrete. In other words, for G discrete and
A a G-C∗-algebra, K∗

G(A) ∼= K∗(G n A).
This is useful if G is finite.

• For G compact, the Localization Theorem
(Theorem 7) is valid for KKG [8]. More
precisely, if p is a prime ideal in R(G) with
support H, and X and Y are finite G-CW
complexes, then KKG

i (C(X), C(Y ))p
∼=

KKG
i (C(X(H)), C(Y (H))).

• There is always an induction homomorphism
(related to the Green-Julg homomorphism)
KKG

i (A, B) → KKi(GnA, GnB). It is com-
patible with products.
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For simplicity let’s take G finite and let X be a

compact topological manifold on which G acts

by a locally linear action. Then for H < G, the

fixed set XH is a locally flat topological sub-

manifold. We also assume X has a G-invariant

Lipschitz structure — this is not much of a

restriction; for example, it is obvious if every-

thing is smooth or PL.

Fix a G-invariant (Lipschitz) Riemannian met-

ric on X. Then we have a natural G-invariant

elliptic operator, the Euler operator D = d+d∗

(with even-odd grading of forms), and if X is

oriented and the action preserves orientation,

then we also gave a G-invariant signature op-

erator (really the same operator D, but with

a different grading on the forms, coming from

the Hodge ∗-operator, which uses the orienta-

tion). The G-index of the Euler operator is

the G-Euler characteristic; the G-index of the

signature operator is the G-signature.

39



Invariants from equivariant index theory (cont’d)

The G-Euler characteristic and the G-signature
are actually pseudoequivalence invariants. To
see this, consider a G-map of manifolds M → N
which, nonequivariantly, is a homotopy equiv-
alence. The map preserves Betti numbers,
so gives an isomorphism of G-representations
Hi(M, R) → Hi(N, R) for each i, so it preserves
the G-Euler characteristic (the alternating sum
of these in RO(G)) as well as the G-signature
(the difference of the “positive” and “nega-
tive” parts of Hmiddle).

But we get more interesting invariants by look-
ing at more of the KG-homology class of D,
not just the G-index.

For the Euler operator, a formula for this class
was given in [5] in terms of the “universal Euler
characteristic,” which assembles essentially all
possible Euler characteristic data of fixed sets.
Thus this class in KOG

0 (X) is an invariant of
isovariant homotopy equivalences.
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The case of the G-signature operator Dsign is

really more interesting, because one gets gen-

uine “higher invariants.”

Conjecture 9 (equivariant Novikov [9]) Sup-

pose M is an oriented G-manifold and f : M →
Y is a G-map, where Y is a G-space which is

equivariantly aspherical, i.e., Y H is aspherical

for all H ≤ G. Then f∗([Dsign]) in KG
∗ (Y ) is an

oriented pseudoequivalence invariant.

If Y is a complete manifold of nonpositive cur-

vature and G acts on Y by isometries, then Y

is equivariantly aspherical (Cartan-Hadamard)

and the conjecture is true(essentially Kasparov).

Furthermore, [Dsign] is computable, at least

rationally, using the Localization Theorem [8].

When G is abelian and one localizes at p with

support H, one gets basically the signature op-

erator class on MH twisted by a certain charac-

teristic class of the equivariant normal bundle.
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Another (nonelementary) application

Further examination shows that in “good cases,”

the class of the equivariant signature operator,

after inverting 2, gives the “normal invariant”

term in the equivariant surgery sequence, and

the “assembly map” is just given by the equiv-

ariant index theorem. Thus one ends up with:

Theorem 10 ([10]) A topological orientation-

preserving action of a finite group G on a com-

pact simply connected topological manifold M ,

such that for all subgroups H ⊆ K ⊆ G, the

fixed sets MK and MH are simply connected

submanifolds of dimension 6= 3 and the inclu-

sion of MK in MH is locally flat and of codi-

mension ≥ 3, is determined up to finite inde-

terminacy by its isovariant homotopy type and

the classes of the equivariant signature opera-

tors on all the fixed sets MH.
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variante, C.R. Acad. Sci. Paris Sér. I Math.

306 (1988), 777–782.

3. L. Jones, The converse to the fixed point

theorem of P. A. Smith, I, Ann. of Math.

(2) 94 (1971), 52–68.
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Lecture III. Noncommutative topology and
topology of singular spaces

This lecture will deal with applications of non-
commutative topology to topology of singular
spaces, that is, to the study of manifold-like
spaces which are not everywhere locally Eu-
clidean. Important examples of such spaces
are “quotient spaces” of foliations, orbifolds,
singular complex projective varieties, and Z/k-
manifolds. The case of the quotient space of
a group action also brings us back to the sub-
ject of Lecture II. Incidentally, a related notion
which will come up from time to time is that
of a stratified space [9]. For our purposes,
this will be a locally compact space with an
increasing filtration

X0 ⊆ X1 ⊆ · · · ⊆ Xn = X

by locally closed subsets, such that X0 = X0

and Xj = Xj \Xj−1, j ≥ 1, are manifolds, and
Xj−1 is open and dense in Xj \ Xj−2. In ad-
dition, one usually imposes conditions on how
Xj is attached to Xj−1.
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To explain what we will be doing, let’s try to

enunciate a general principle. To a singular

space, we will try to attach a noncommutative

C∗-algebra, in such a way that the noncom-

mutative topology of the algebra reflects the

extra structure of the space. For example, in

the case of a stratified space as a above, we

might want to attach a C∗-algebra A with a

filtration

I−1 = 0 ⊂ I0 ⊆ I1 ⊆ · · · ⊆ In = A

by ideals, such that Ij/Ij−1 is related to C0(Xj),

j = 1, · · · , n, for example stably isomorphic to

it, and such that the structure of A helps to

understand X not just as an abstract space,

but as a stratified space.
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Filtration of the crossed product

Example: Suppose a compact group G acts
smoothly on a manifold Y . Then there are
only finitely many orbit types and the quotient
space X = Y/G is a stratified space, with strat-
ification coming from the orbit types. A natu-
ral choice of A in this case is the crossed prod-
uct G n C0(Y ). This C∗-algebra comes with a
filtration coming from the orbit type decom-
position of Y , with each subquotient having
spectrum which is a bundle over Xj. More
precisely Xj comes from Yj, which is a lo-
cally closed subset of Y with only one orbit
type, say with all stabilizers conjugate to H <
G. We have Yj/G ∼= Y H

j /(NG(H)/H), and
the groupoid G × Yj is similar to the smaller
groupoid NG(H) × Y H

j , i.e., Ij/Ij−1 is Morita

equivalent to NG(H) n C0(Y
H
j ). The struc-

ture of the crossed product was computed by
Wassermann [8]; it is a continuous trace al-
gebra with spectrum an Ĥ-bundle over Yj/G.
We have already seen that the K-theory of A
agrees with the equivariant K-theory of Y .
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A simple example: orbifolds

One of the simplest kinds of singular spaces

is an orbifold. This is a space X equipped

with charts, like those for a manifold, except

that the charts identify an open subset of X

not with an open subset of Rn but with an

open subset of Rn/G, G a finite group acting

orthogonally. We keep track of the G as well as

of the topology of the quotient, and transition

functions between charts are required to come

from linear equivariant maps. Example: the

teardrop:
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In general, it is not true (the teardrop is a
counterexample) that an orbifold, even if com-
pact, must be a quotient of a manifold by a
finite group. (Orbifolds that are such quotient
spaces are usually called “good.”) But nev-
ertheless, every orbifold X is the quotient of
a manifold X̃ (namely the orthonormal frame
bundle FX) by a locally free action of a com-
pact Lie group G. (“Locally free” means all
stabilizers are finite.) This suggests that to
each orbifold X we should attach the orbifold
C∗-algebra, which can be defined simply to be
G n X̃, though one could also give an intrin-
sic definition in terms of the orbifold charts
of X. While the same orbifold can be writ-
ten as a quotient of a manifold by a locally
free compact group action in more than one
way (clearly one can multiply both X̃ and G

by the same compact Lie group), the result
C∗(X) of this construction is well defined up
to Morita equivalence [4]. And “index theory
for orbifolds” can be formulated in terms of
the noncommutative geometry of C∗(X).
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Foliations

The next important example is that of folia-
tions. This example is quite important, but
we will not go into too many details since Be-
nameur will give a whole course on this subject.

Attached to a foliation F on a manifold M ,
we have a locally compact holonomy groupoid
[10]. We have G(0) = M , and Gy

x 6= ∅ if and
only if they lie on the same leaf L of F. More
exactly, Gy

x is the set of holonomy classes of
paths from x to y lying in L. Two paths are
in the same holonomy class if they induce the
same local diffeomorphism of a transversal to
F at x to a transversal to F at y. Thus Gy

x is a
quotient of π(L)y

x, where π(L) is the fundamen-
tal groupoid of the connected manifold L. For
example, if G has leaves which are lines spiral-
ing in to a closed leaf which is a circle, then for
x on this circle, Gx is a line, not a circle. Fol-
lowing Connes, we define C∗(M,F) = C∗(G).
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The simplest case of a foliation is a fibration

F → M → B. In this case, all holonomy is triv-

ial and C∗(M,F) is Morita equivalent to C0(B),

B = M/F. For this reason, it makes sense in

general to think of C∗(M,F) (at least up to

Morita equivalence) as defining the noncom-

mutative space of leaves of the foliation.

The connection between foliation C∗-algebras

and those defined by group actions is that if

F comes from a locally free and generically

free (i.e., free orbits are dense) action of a Lie

group G on M , then G = G×M and C∗(M,F) =

G n C0(M).

Incidentally, the theory of foliation C∗-algebras

doesn’t really require smoothness in the trans-

verse direction, and thus one can replace foli-

ations by laminations, spaces locally modeled

by Rp×T , T any compact space. Here p is the

leaf dimension.
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Foliation index theory and applications

Now we are ready for some analysis. Suppose

D is a differential operator on M (assumed

compact) that is elliptic in the direction of the

foliation F. Then D can be viewed as giv-

ing a family of elliptic operators D` on the

leaves `, that vary continuously in the trans-

verse direction in a suitable sense. In typi-

cal examples, one has a Riemannian metric

on the tangent bundle F to the leaves, and

we take D to be one of the associated “stan-

dard” elliptic operators (Euler, Dirac, signa-

ture, or Dolbeault). Then Connes-Skandalis

define IndD ∈ K0(C
∗(M,F)) and give a topo-

logical formula for it, which when F is a fibra-

tion with compact base B is the Atiyah-Singer

Index Theorem for Families, for the index in

K0(B) of a family of elliptic operators on F

parameterized by B.
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To get numerical invariants, we can apply a

homomorphism K0(C
∗(M,F)) → R, for exam-

ple the trace defined by an invariant transverse

measure µ. (This was the case originally stud-

ied by Connes using von Neumann algebras.)

Then one gets a formula of the form

Trµ(IndD) =
∫

Indtop σ(D) dµ,

where Indtop is the topological index and σ(D)

is the symbol of the operator.

As we mentioned before, see Benameur’s course

for more details on foliation index theory. But

we’ll give one example.
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Theorem 11 (Connes) Let (M,F) be a com-

pact laminated space with 2-dimensional ori-

ented leaves and a smooth Riemannian met-

ric g along the leaves. Let µ be an invari-

ant transverse measure, Cµ its Rulle-Sullivan

class (which is dual to tangential de Rham 2-

forms). Let ω be the curvature 2-form of g. If

〈[ω], Cµ〉 > 0, then F has a set of closed leaves

of positive µ-measure. If 〈[ω], Cµ〉 < 0, then F
has a set of (conformally) hyperbolic leaves of

positive µ-measure. If all the leaves are (con-

formally) parabolic, then 〈[ω], Cµ〉 = 0 for every

invariant transverse measure µ.
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The groupoid C∗-algebra of a Z/k-manifold

We will now consider an application of groupoid
C∗-algebras [6] to the Z/k index theorem [5].
This index theorem is a bit unusual in that the
index only takes torsion values.

Definition 12 A Z/k-manifold is a smooth com-
pact manifold with boundary, Mn, along with
an identification of ∂M with a disjoint union
of k copies of a fixed manifold Nn−1. It is
oriented if M is oriented, the boundary com-
ponents have the induced orientation, and the
identifications are orientation-preserving.

Figure: A Z/3-manifold
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This space doesn’t look singular, but that’s

because it should be viewed as a desingular-

ization of the space X obtained by collapsing

the k copies of N down to a single copy of N .

If k = 2 (and everything is oriented), the result

is a nonorientable manifold; if k ≥ 3, the re-

sult is not a manifold at all, as points in N ⊂ X

have neighborhoods of the form Rn−1×c(k ·pt)

and not open subsets of Rn. Here c(k · pt) is

the cone on k points (shown again for k = 3):

Thus X is a stratified space with two strata:

the open nonsingular stratum X0 = M rN and

the closed singular stratum X1 = N . Such

spaces were introduced by Sullivan as a way

of giving geometric models for bordism classes

(or homology cycles) with coefficients in Z/k.
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To do index theory on the stratified space X,

we will introduce a groupoid C∗-algebra. First

add infinite cylinders to M to make a noncom-

pact manifold M̃ without boundary, as shown:

Figure: A Z/3-manifold extended
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Now we define a locally groupoid G with

G(0) = M̃ = M ∪k·N k ·N × [0,∞)

by means of the equivalence relation in which

points in M (including those in ∂M) are equiv-

alent only to themselves and points in any copy

of N×(0,∞) are equivalent to the correspond-

ing points in all the other copies. Note that

C∗(G) can be described by an extension

0 → C0(N × (0,∞))⊗Mk(C)

→ C∗(G) → C(M) → 0.

There is a closely related C∗-algebra, which

we’ll call C∗(C;Z/k), obtained by collapsing M

and N to points:

0 → C0((0,∞))⊗Mk(C)

→ C∗(C;Z/k) → C → 0.

The long exact sequence in K-theory shows

K0(C
∗(C;Z/k)) = 0 and K1(C

∗(C;Z/k)) = Z/k.
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The Z/k-index theorem

We will now state and prove the Z/k-index the-

orem of Freed and Melrose [5]. Consider an

elliptic differential operator D on M , which in

a collar neighborhood of N is the restriction of

a (Z/k×R)-invariant operator on N ×Z/k×R.

The standard elliptic operators will have this

property if we make the right choice of metric

on the collar neighborhood. Such an operator

(acting, say, between sections of two vector

bundles) gives a class in K0(C∗(G)). Via the

obvious map c : C∗(C;Z/k) → C∗(G), we get a

class in K0(C∗(C;Z/k)) ∼= Z/k called the ana-

lytical index of D.

The purpose of the index theorem is to show

that the analytical index can be computed topo-

logically.
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Define the topological index of D by taking an

embedding

ι : (M, ∂M) ↪→ (D2r, S2r−1),

r large, which is equivariant for the action of

Z/k on the boundary on each side. This in-

duces a map X → Mk, where

Mk = D2r/(Z/k-action on S2r−1)

is a Z/k-Moore space with its reduced homol-

ogy all concentrated in degree 2r−1 and equal

to Z/k. Note that ι induces a Gysin map on

K-theory and thus a map of the class of the

symbol of D to K̃(Mk) = Z/k. This is the

topological index.
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Theorem 13 (Z/k index theorem) The ana-

lytical and topological indices agree in Z/k.

Sketch of proof. We mimic the KK proof of

the usual Atiyah-Singer Theorem. For sim-

plicity let’s assume M is spinc and D is Dirac

with coefficients in a bundle E (which carries a

compatible Z/k-action on the boundary). So E

defines a class [E] in K0(X) (recall X = M/∼)

and

[D] = [E]⊗C(X) α,

where α ∈ KK(C(X) ⊗ C∗(G), C) is the basic

Dirac “fundamental” class. We have (by asso-

ciativity of the Kasparov product and definition

of the Gysin map):

Inda(D) = [c]⊗C∗(G) [D]

= [c]⊗C∗(G)
(
[E]⊗C(X) α

)
= [E]⊗C(X)

(
[c]⊗C∗(G) α

)
= Indtop(D). �
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Some cases still to be treated

Let me mention a few cases where the same

sort of ideas might be helpful, though nobody’s

gotten them to work so far:

• Singular complex projective varieties. These

have a natural stratification and satisfy Poin-

caré duality not for ordinary homology and

cohomology but for intersection homology

and cohomology. Can one do something

similar in K-theory, and get it to match

up with the K-theory of a noncommuta-

tive C∗-algebra attached to the stratified

structure? A first step might be found in

[3].

63



• Witt spaces. More generally, one can try

to do the same thing with Witt spaces, a

class of pseudomanifolds introduced in [7].

These have less structure than projective

varieties, but Witt bordism (after inverting

2) is naturally isomorphic to KO-homology,

which suggests that C∗-algebra ideas might

work somehow.

• The singular foliation on g∗. Let G be a

connected and simply connected nilpotent

Lie group. The exponential map exp gives

a diffeomorphism from the Lie algebra g

to G. Recall (say from Xu’s lectures) that

g∗ has a natural structure of Poisson man-

ifold, for which the symplectic leaves are

the coadjoint orbits. The problem is to re-

late a C∗-algebra coming from the singular

foliation of g∗ by orbits to the noncommu-

tative space represented by C∗(G).
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Motivation: the dual topology problem

To explain why this would be interesting and

natural, recall that by the Kirillov orbit method,

Ĝ is in natural bijection with the space of orbits

g∗/G. The map in one direction is given by the

Kirillov character formula; given an irreducible

representation π of G, there is a unique orbit

O = O(π) such that

Tr π(ϕ) =
∫
O
(ϕ ◦ exp)̂ dβO,

for ϕ ∈ C∞
c (G). Here βO is the canonical mea-

sure on the orbit O defined by the symplectic

structure.

The map in the other direction is given by in-

duced representations. Given f ∈ g∗, choose

a polarization for f , i.e., a maximal isotropic

subalgebra h for f([ , ]), and induce eif from

H to G.
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It turns out in this way that Ĝ ∼= g∗/G even

as (non-Hausdorff) topological spaces, though

bicontinuity of the Kirillov map is a difficult

theorem [1].

If we could show directly that there were some

way to define a “singular foliation algebra”

C∗(g∗,F) out of the singular foliation of g∗

coming from the Poisson structure, along with

a Morita equivalence C∗(g∗,F) from C∗(G),

then presumably it would be obvious that

C∗(g∗,F)̂ ∼= g∗/G

as topological spaces, and thus one would get

an easier proof of the dual topology theorem.
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Lecture IV. Twisted K-theory

This lecture will give an introduction to twisted

K-theory, and some of the reasons why it is in-

teresting for geometry and physics. This topic

will be touched on from other points of view

in some of the other courses in the trimester.

Motivation: Poincaré duality in (ordinary) co-

homology

To explain what we mean by twisted K-theory,

it helps to recall what twisting means and does

for ordinary cohomology, say with coefficients

in Z. Let’s recall the idea of Poincaré dual-

ity. Suppose Mn is a compact (connected)

oriented manifold. The choice of an orienta-

tion gives a fundamental class [M ] ∈ Hn(M, Z),

and cap product with [M ] gives an isomorphism

Hj(M, Z) → Hn−j(M, Z).
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The twisted case

But if M is not orientable, no such isomor-

phism can exist. For example, if M = RP2,

H∗(M, Z) = Z[a]/(2a, a2), where a is a 2-torsion

element in degree 2, and H1(M, Z) ∼= Z/2,

H2(M, Z) = 0. So certainly there is no funda-

mental class in H2(M, Z) and no isomorphism

Hj(M, Z) → Hn−j(M, Z). However, we can

remedy this by using the local coefficient sys-

tem Zw defined by the non-trivial oriented dou-

ble cover M̃ → M with invariant

w = w1(M) ∈ Hom(π1(M), Z/2) = H1(M, Z/2).

Here w1 is the first Stiefel-Whitney class. Now

M does have a fundamental class [M ] ∈ Hn(M,

Zw), and cap product with [M ] defines an iso-

morphism Hj(M, Z) → Hn−j(M, Zw) or Hj(M,

Zw) → Hn−j(M, Z). (One can put the twist in

either homology or cohomology, as long as one

group is twisted and the other is not.)
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Poincaré duality in K-theory

The situation in K-theory and K-homology is

similar, the only difference being that we can’t

just define twisted cohomology this time by

means of a nonconstant locally constant sheaf.

Instead, the simplest approach is to use contin-

uous-trace C∗-algebras.

Poincaré duality is simplest in the case of a

spinc manifold Mn. For such manifolds, a Dirac

operator D is defined and gives a fundamental

class

[D] ∈ Kn(M) = KKn(C(M), C).

Kasparov product with this class defines Poin-

caré duality Kj(M)
∼=−→ Kn−j(M).
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The spinc condition fails if either w1 or w3
is non-zero. The simplest non-spinc oriented
manifold is X5 = SU(3)/SO(3). Except for
H0 and H5 (which of course have to be Z),
the only non-zero homology is a Z/2 in degree
2. Thus K̃∗(X) is Z/2 in degree 0 and Z in
degree 1. By UCT, K̃∗(X) vanishes in degree
0 and is Z ⊕ Z/2 in degree 1. Any Poincaré
duality map would have to give

K0(X) = Z ∼= K1(X) = Z⊕Z/2, contradiction.

However, the Dirac operator makes sense on
the Clifford algebra bundle of the tangent bun-
dle. So we get a fundamental class

[D] ∈ KKn(Γ(M,Cliff(TM)), C) := Kw
n (M)

and Kasparov product with [D] gives Kj(M)
∼=−→

Kw
n−j(M). Here Cw(M) = Γ(M,Cliff(TM)) is a

continuous-trace algebra over M with Dixmier-
Douady class w = w3(M). In the spinc case,
it’s Morita equivalent to C(M), and the twist
goes away.
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Twisted theories and continuous-trace alge-

bras

Abstracting from the examples we have seen,

topologists define twisted cohomology theories

as follows. In a reasonable category of spaces

(say those homotopy equivalent to CW com-

plexes), any cohomology theory X 7→ E∗(X) is

representable by a representing object E called

a spectrum. (There is no connection with

the spectrum of an element of a Banach al-

gebra, or the word “spectrum” meaning “dual

space” for a C∗-algebra.) So, for example,

E0(X) = [X,E], meaning homotopy classes of

(based) maps. A twisted E-group of X will be

E0
E(X) = π0 (Γ(X, E)), where E is a (possibly

non-trivial) “principal E-bundle” over X, i.e.,

there is a fibration

E → E → X.
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So this agrees with the usual definition of E0(X)

when E is trivial, i.e., is just a product bundle

X × E. Since ordinary (topological) K-theory

is closely associated to the algebra of compact

operators, K, and in fact one can construct E

from the topological group

{u ∈ U(L(H)) : u ≡ 1 mod K},

this point of view suggests twisted K-theory

should be associated with nontrivial bundles of

algebras with fibers that are algebras of com-

pact operators, i.e., with continuous-trace al-

gebras. And of course the example we saw

above, with Clifford algebra bundles, is also of

this type, though with finite-dimensional fibers.
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The Brauer group

Recall the notion of Brauer group in algebra.
For a field F , Br F is constructed from cen-
tral simple separable algebras over F , mod-
ulo Morita equivalence, with group operation
coming from ⊗F . There is a similar notion
over a commutative ring R, and applying this
definition to R = C(X) gives Bralg C(X) ∼=
TorsH3(X, Z) [4]. Again the equivalence re-
lation is Morita equivalence over C(X) and the
group operation is ⊗C(X).

P. Green noticed that one can make slight
changes in the definitions and construct a Brau-
er group out of continuous trace algebras over
X, possibly infinite dimensional and nonunital.
Then one gets a natural isomorphism Br C(X)
∼= H3(X, Z) (via the Dixmier-Douady class).
Incidentally, inversion in the Brauer group is
given by A 7→ Aop. One can find an exposition
of all of this in [12].
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The graded case

Even though we won’t go into this much here,

there are good reasons to consider Z/2-graded

algebras and get a graded Brauer group. This

allows a slightly more general kind of twisted

K-theory, needed for Poincaré duality in K-the-

ory on nonorientable manifolds (where w1 6= 0,

in addition to possibly having w3 6= 0). The

theory with finite-dimensional fibers was first

worked out in [3], then generalized to the case

of infinite-dimensional fibers and continuous-

trace algebras in [11]. This theory works well

in KK, since the Kasparov formalism is set up

to work with Z/2-graded algebras.
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Computing twisted K-theory

To summarize, if X is locally compact, we

have the Brauer group of continuous-trace al-

gebras over X up to Morita equivalence over

X. At least in the separable case, each class

has a unique stable representative CT (X, δ).

And the Dixmier-Douady class gives an isomor-

phism Br C0(X) ∼= H3(X, Z). Given δ ∈ H3,

the associated twisted K-theory is K∗
δ (X) =

K∗(CT (X, δ)). How do we compute this, say if

we understand the homotopy type of X?

Theorem 14 ([13]) Suppose X is a finite CW

complex and δ ∈ H3(X, Z). Then there is a

spectral sequence

Hp(X, Kq(pt)) ⇒ K
p+q
δ (X),

for which the first nonzero differential is d3 =

∪ δ + Sq3.
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Sketch of proof. Filter X by skeleta and con-

sider the induced filtration of CT (X, δ). It is

then easy to check that the E2 term is as de-

scribed. There cannot be any d2 (since E
p,q
2 6=

0 only for q even). To compute d3, observe

that it has to be given by a universal formula

involving cohomology operations and δ, and

check on a few key examples (such as CT (S3, δ))

to determine the formula. �

Example. If X = S3 and δ = ky 6= 0 in

H3(X, Z) = Z · y, then cup product with δ is

injective, so K0
δ (S3) = 0 and K1

δ (S3) ∼= Z/k is

torsion.
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K-theory in string theory

We’ll just give a quick introduction to a way

K-theory shows up in physics. This was first

noticed in [9] and [15]; another exposition, per-

haps more readable, is in [10].

This application shows up in string theory, may-

be a way of combining the quantum field the-

ory of elementary particles with general rela-

tivity. In string theory, one initially considers

maps from a 2-dimensional manifold (repre-

senting a string propagating in time) into a

high-dimensional spacetime manifold X. There

are various other background fields on X. One

can have either closed strings (compact 2-man-

ifolds without boundary) or open strings (really

a misnomer, as these are compact 2-manifolds

with boundary).
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Geometry of branes

In the open case, strings begin and end on

submanifolds Y of X called D-branes (“D” for

“Dirichlet” [conditions], “brane” a word cre-

ated out of “membrane,” and meaning “man-

ifold”). One of the most interesting parts of

the theory is the analysis of “charges” on the

D-branes and ways the branes can split apart

or coalesce. The important part of this should

be given by some sort of generalized homol-

ogy theory with the D-branes as typical cycles.

In fact each brane is to carry a Chan-Paton

bundle, and (at least initially) both X and the

branes should be spinc manifolds. (This is be-

cause we need spinors to have a theory of

fermions, and a certain anomaly must cancel.)

Many will recognize here the Baum-Douglas

approach [2] to topological K-homology. Thus

we think of D-branes with their Chan-Paton

bundles as giving K-homology classes in X,

Poincaré dual to K-cohomology classes.
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Twisted K-theory in physics

Then why twisted K-theory? As we mentioned

above, spacetime carries a number of back-

ground fields. One of these is denoted H, and

represents a class in H3(X, Z). This class plays

an important role in the WZW model, in which

X is a connected, simply connected, simple

compact Lie group G, and thus H2(X, Z) = 0

and H3(X, Z) ∼= Z. In this model, H is usu-

ally the generator of H3(X). We neglected H

above, but the anomaly cancellation argument

really shows that w3 of a brane should cancel

the mod 2 reduction of H. This is reminis-

cent of what we said above about Poincaré

duality in twisted K-theory for non-spinc man-

ifolds; there is no Dirac operator on the brane

by itself, just on a certain bundle of algebras

over it.
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It is argued in [6] and [8] that the proper set-

ting for D-brane charges is really H-twisted

K-homology or K-theory of X (depending on

point of view). In fact, the importance of

twisted K-theory seems to be reinforced by

work in [5] showing that one can recover the

Verlinde algebra, which plays an important role

in conformal field theory, from the structure of

KH
G (G), the H-twisted equivariant K-theory of

the simple compact Lie group G acting on itself

by conjugation, with H the canonical generator

of H3.
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Lecture V. An application of noncommutative

topology to string theory

As Julia already mentioned in his first lecture

(and will probably discuss in greater detail later),

one of the very interesting dualities in string

theory is T-duality (“T” for torus). This kind

of duality says that the field equations on two

different spacetime manifolds give indistinguish-

able physics, even though a circle of radius R

in one spacetime is replaced by one of radius

1/R (perhaps with a factor of 2π, depending on

normalizations) in the other. Thus the duality

interchanges small-scale behavior in one space-

time with behavior near ∞ in the other. This

should be reminiscent of the Fourier transform,

which gives an equivalence of representations

of the Heisenberg commutation relations on

configuration space and on its dual, momen-

tum space. Indeed, T-duality has been related

to the Fourier-Mukai transform [13].
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Derivation of classical T-duality

T-duality was originally discovered [5] by cal-

culations in local coordinates with Lagrange

multipliers. Global considerations were not so

relevant since spacetime was taken to be X =

Z × S1, and only the metric structure changed

under the duality.

Consider the simplest case. Take Σ a closed

Riemannian 2-manifold and consider the La-

grangian for maps x : Σ → S1
R:

L(x) =
∫
Σ

g0〈dx, dx〉 dvolΣ,

g0 coming from the metric on S1
R. We can

think of dx as a variable ω that ranges over

1-forms on Σ (with periods in 2πRZ) and con-

sider instead

E(ω, θ) =
∫
Σ

(g0〈ω, ω〉 dvolΣ + θ dω) .
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For an extremum of E for fixed non-zero θ,

we need dω = 0, so we get back the original

theory. But instead we can take the variation

in ω:

δE =
∫
Σ

(2g0〈δω, ω〉 dvolΣ + θ dδω)

=
∫
Σ

δω ∧ (2g0 ∗ ω + dθ) ,

so ∗ω = −1
2g0

dθ, ω = 1
2g0

∗ dθ. Substituting back

in the formula for E gives

E′(θ) =
∫
Σ

(g0〈ω, ω〉 dvolΣ + θ dω)

=
∫
Σ

(
1

4g0
〈dθ, dθ〉 dvolΣ +

1

2g0
θ d ∗ dθ

)

= −
1

4g0

∫
Σ
〈dθ, dθ〉 dvolΣ

which is just like the original action (with θ

replacing x) except for a switch from g0 to
1

4g0
.
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T-duality and mirror symmetry

It was realized pretty soon (by numerous au-

thors) that T-duality is closely related to mir-

ror symmetry [14], which in its original form

deals with the case where X = R4 × Y , Y

a Calabi-Yau 3-fold, and the symmetry inter-

changes Y with another Calabi-Yau, Y #, and

roughly speaking, deformations of Kähler struc-

ture on one C-Y correspond to deformations

of complex structure on the other. (In par-

ticular, the Hodge numbers h1,1 and h2,1 are

switched.)

However, we will not consider here the parts of

the field equations in string theory that force

(at least when the background fields vanish)

Y to be a Calabi-Yau, and will assume for the

moment that X can be any manifold.
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T-duality for bundles

For T-duality to make sense for a general space-
time X, we want X to be “fibered by tori,”
so we assume for now that there is a princi-
pal T -bundle p : X → Z, where T = Tn is an
n-torus. T-duality should then in some sense
replace the torus T = Rn/Λ by the dual torus
T̃ = R̃n/Λ̃. It was discovered in [2] in this
context that the topology of the bundle will
change in general. Furthermore, the H-flux
will usually change also.

To explain this, recall that D-brane charges
live in the twisted K-theory (or twisted K-
homology) of X. (Assuming X is spinc and
is compact, or compact × Euclidean, these
are Poincaré dual except for a sign conven-
tion switch.) Since the physics on X and the
T-dual X# is supposed to be the same, this
forces the relation

K∗
H(X) ∼= K∗+n

H# (X#).
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The isomorphism

K∗
H(X) ∼= K∗+n

H# (X#).

on twisted K-theory should be determined by
the duality and should be involutive, so that
doing duality again brings us back to the start-
ing point.

Note that there is a degree shift here by the
dimension of the tori (mod 2). That is because
there are really two kinds of D-brane charges,
R-R and NS-NS, and the duality is expected
to interchange them when n is odd. (This
corresponds to switching from type IIA string
theory to type IIB and vice versa.)

The topology change in passing from X to the
T-dual X# was first discovered when X = S2×
S1, a trivial bundle over Z, but with H the usual
generator of H3(X). In this case, calculations
as above in local coordinates suggested that
the T -dual should be S3 with trivial H-flux.
And indeed, K∗

H(S2×S1) is Z in both even and
odd degree, just like the K-theory of S3!
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An approach to T-duality for circle bundles

through noncommutative topology

The following approach through noncommtu-

ative topology, first explored in [2], explains

T-duality for circle bundles in quite a nice way.

One can also do everything purely topologi-

cally, as in [3].

Consider a principal T-bundle p : X → Z and

a fixed class H ∈ H3(X, Z). We already know

that the pair (X, H) corresponds to a stable

continuous-trace algebra A = CT (X, H) with

Â = X. Now in general, the free action of T
on X does not lift to an action of T on A. (It

lifts iff H ∈ p∗(H3(Z)).) However, if we think

of T as R/Z, we can always lift to an R-action α

on A, which is unique up to the natural equiva-

lence relation (exterior equivalence of actions).
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Take the crossed product A# = A oα R. By

Connes’ Thom isomorphism theorem [6], there

is a natural isomorphism

K∗+1(A) ∼= K∗(A#).

The left-hand group is K∗+1
H (X), essentially by

definition. But A# has spectrum X# a circle

bundle over Z = X/T, and in fact the fibers of

p# : X# → Z can be naturally identified with

Ẑ, the dual circle to the original T. Further-

more, it’s easy to show that A# is a stable

continuous-trace algebra. So if its Dixmier-

Douady class is H#, we get the desired iso-

morphism

K∗+1
H (X) ∼= K∗

H#(X#).

Furthermore, repeating the process brings us

back to the starting point (by Takai duality).
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It turns out this C∗-algebraic situation, exactly

the one needed for T-duality, had been stud-

ied in [12] (without any physics applications in

mind).

Theorem 15 ([12]) Suppose R acts on a con-

tinuous-trace A with spectrum X, so that the

induced action of R on X passes to a free ac-

tion of T = R/Z on X with quotient Z. Then

the crossed product A# is also a continuous-

trace algebra, with spectrum X# a principal

bundle for the dual torus with the dual action.

Furthermore, the characteristic classes of the

circle bundles p : X → Z and p# : X# → Z and

the Dixmier-Douady classes H ∈ H3(X) and

H# ∈ H3(X#) satisfy:

[p] =
(
p#

)
!
(H#), [p#] = (p)! (H).
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An example

Suppose X = S2n+1, n ≥ 1, and p : X →
Z = CPn is the Hopf fibration. If n ≥ 2,

H3(X) = 0, and any continuous-trace alge-

bra over X must be stably trivial. In general, if

we T-dualize the pair (X,0) with respect to p,

then of course p!(H) = 0, so the dual bundle is

trivial, i.e., X# = CPn×S1, with p# just projec-

tion on the second factor. Note that X# has

much bigger cohomology, and thus K-theory,

than X. But on the other hand, we need to

have (p#)!(H
#) = [p], which is the canonical

generator of H2(CP2). So one can see that

H# = [p] × y, where y is the standard gen-

erator of H1(S1). And sure enough, one can

see that in the spectral sequence for comput-

ing K∗
[p]×y

(CPn×S1), most of the cohomology

cancels out and the twisted K-theory is just Z
in both even and odd degree.
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The case of higher-dimensional fibers

Let p : X → Z be a principal T -bundle as above,

with T an n-torus, G its universal cover (a vec-

tor group). Also let H ∈ H3(X, Z). For the

pair (X, H) to be dualizable, we want the T -

action on X to be in some sense compatible

with H. A natural hope is for the T -action

on X to lift to an action on the principal PU-

bundle defined by H, or equivalently, to an ac-

tion on CT (X, H). Equivariant Morita equiva-

lence classes of such liftings (with varying H)

define classes in the equivariant Brauer group

[7]. Unfortunately

p∗ : Br(Z)
∼=−→ BrT (X)

and so BrT (X) is not that interesting. But

BrG(X), constructed from local liftings, is quite

a rich object.
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Theorem 16 Let

T � � ι // X
p

// // Z

be a principal T -bundle as above, with T an

n-torus, G its universal cover (a vector group).

The following sequence is exact:

BrG(X)
F−→ Br(X) ∼= H3(X, Z)

ι∗−→ H3(T, Z).

Here F is the “forget G-action” map. Thus

if n ≤ 2, every stable continuous-trace algebra

on X admits a G-action compatible with the

T -action on X. In general, imageF = ker ι∗.

When such a G-action exists, we will construct

a T-dual by looking at the C∗-algebra crossed

product

CT (X, H) o G.

The desired K-theory isomorphism will come

from Connes’ Thom isomorphism theorem.
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The case of fibers of dimension n = 2

From now on, we stick to the case n = 2 for
simplicity. H∗

M denotes cohomology with Borel
cochains in the sense of C. Moore.

Theorem 17 ([7], [10]) If n = 2, there is a
commutative diagram of exact sequences:

H0(Z, Z)

��

0

��

H2(X, Z) // H2
M(G, C(X, T))

ξ
//

a
��

ker F
η

//

��

0

C(Z, H2
M(Z2, T))

h
��

BrG(X)Moo

F
��

H1(Z, Z)

��

H3(X, Z)
p!oo

��

0 0

M : BrG(X) → C(Z, H2
M(Z2, T)) ∼= C(Z, T) is

the Mackey obstruction map, F : BrG(X) →
Br(X) is the forgetful map, and h : C(Z, T) →
H1(X, Z) sends a continuous function Z → S1

to its homotopy class.
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Applications to T-duality

Theorem 18 Let p : X → Z be a principal T2-
bundle as above. Let H ∈ H3(X, Z) be an “H-
flux” on X. Then:

1. If p!H = 0 ∈ H1(Z, Z), one can choose an
element of BrG(X) lifting H and with vanishing
Mackey obstruction. Taking the crossed prod-
uct by G gives a classical T-dual to (p, H), con-
sisting of p# : X# → Z, which is a another prin-
cipal T2-bundle over Z, and H# ∈ H3(X#, Z),
the “T-dual H-flux” on X#. One has an iso-
morphism

K∗
H#(X#) ∼= K∗

H(X).

2. If p!H 6= 0 ∈ H1(Z, Z), then a classical T-
dual as above does not exist. However, there
is a “nonclassical” T-dual bundle of noncom-
mutative tori over Z. It is not unique, but the
non-uniqueness does not affect its K-theory,
which is naturally ∼= K∗

H(X).
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An example

Let X = T3, p : X → S1 the trivial T2-bundle.
If H ∈ H3(X, Z) 6= 0, p!(H) 6= 0 in H1(S1).
By Theorem 18, there is no classical T-dual
to (p, H). (The problem is that non-triviality
of H would have to give rise to non-triviality
of p#, but there are no nontrivial T2-bundles
over S1.)

One can realize CT (X, H) in this case as fol-
lows. Let H = L2(T). Define the projective
unitary representation ρθ : Z2 → PU(H) by let-
ting the first Z factor act by multiplication by
zk, the second Z factor act by translation by
θ ∈ T. Then the Mackey obstruction of ρθ is
θ ∈ T ∼= H2(Z2, T). Let Z2 act on C(T,K(H))
by α, which is given at the point θ by ρθ. Define
the C∗-algebra

B= IndR2

Z2 (C(T,K(H)), α)

=
{
f : R2 → C(T,K(H)) :

f(t + g) = α(g)(f(t)), t ∈ R2, g ∈ Z2
}

.
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Then B is a continuous-trace C∗-algebra hav-

ing spectrum T3, having an action of R2 whose

induced action on the spectrum of B is the

trivial bundle T3 → T. The crossed product

algebra B o R2 ∼= C(T,K(H)) o Z2 has fiber

over θ ∈ T given by K(H) oρθ Z2 ∼= Aθ ⊗ K(H),

where Aθ is the noncommutative 2-torus. In

fact, the crossed product B o R2 is isomor-

phic to C∗(Hk) ⊗ K, where Hk is the integer

Heisenberg-type group,

Hk =


1 x 1

kz
0 1 y
0 0 1

 : x, y, z ∈ Z

 ,

a lattice in the usual Heisenberg group HR
(consisting of matrices of the same form, but

with x, y, z ∈ R).

The Dixmier-Douady invariant H of B is k

times a generator of H3. We see that the

group C∗-algebra of Hk serves as a non-classical

T-dual.
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Further work

This just seems to be the beginning of the

story, and several people are now working on

noncommutative T-duality. Groupoids and

stacks are appearing more and more. Block

et al. [1] have been studying a Fourier-Mukai

duality in a context like that of mirror symme-

try in algebraic geometry, using derived cat-

egories. Bunke et al. [4] have a version of

topological T-duality using stacks. Daenzer

[8] has a version of noncommutative T-duality

based on groupoids. Pande [11] has studied T-

duality for S1-bundles that are allowed to de-

generate at isolated fixed points, and found an

interesting duality between H-monopoles and

Kaluza-Klein monopoles, which he explains in

terms of gerbes.
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