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Preface

We exist within a geometric universe, full of geometric information. In order
to live within this universe, we must have some way of processing geometric
information from the world around us. So, how do we do it? How do we
experience geometry?

As it turns out, pondering this question leads very naturally to the idea
of Cartan geometries.

Unfortunately, Cartan geometries have a rather unfair reputation for
being intimidating and geometrically unintuitive. It is easy to see where
this reputation comes from: at first glance, Cartan geometries look like
cognitively impenetrable contrivances, requiring a weird Lie algebra-valued
one-form on a principal bundle to satisfy a bunch of technical-looking, arcane
conditions. Over the course of this book, we intend to convince the reader
that, contrary to this first impression, Cartan geometries actually encode
something profoundly intuitive.

Our singular goal for this book is to give meaningful geometric intuition
for the various major ideas in the modern study of Cartan geometries. We
hope that, in doing so, we can make the topic a bit more accessible to
newcomers and deepen the understanding of those who already have some
knowledge of the subject.

Of course, goals, hopes, and dreams are nice, but we need to be concrete
about this. Reading a math book, even a small one like this, is a significant
time commitment, and we need to be clear about what we are doing so
that we do not waste the reader’s valuable time. So, why read this book in
particular? What are we doing differently?

xi



xii Preface

The first notable difference is our approach to principal bundles. To be
blunt, doing differential geometry on principal bundles is really intimidating
to beginners. Even I remember thinking of principal bundles as a “neces-
sary evil” when I first started learning differential geometry. The reasons
for why we want to work on principal bundles are often poorly presented,
leaving students to simply accept that we do things a particular way. This
must change. In this book, we will make considerable effort to clarify why
principal bundles should be our friends: they are the ideal way of placing
ourselves inside of the geometry.

The second major departure from other works on the topic is that we
actually know how to explain the intuition behind the machinery. At time
of writing, I do not think most Cartan geometers realize the true depth of
intuition behind Cartan geometries. This is not to say that they do not
utilize this intuition, in the same way that one does not need to know the
function of the eyelid in order to blink. Indeed, this is, in some sense, the
primary issue with trying to explain the subject: the machinery is conveying
something so deeply instinctive to how we experience geometry that it is
difficult to put into words. Once one fully “gets” the idea, though, this
instinct makes the machinery very easy to use, even if one does not know
how to explain why it is easy.

Somewhat orthogonal to our main goal for the book, our third significant
distinction from previous literature is how fully we commit to the analogy
between Cartan geometries and Lie groups. This is mostly just a practice we
want to make standard in future works. Several papers on the topic fumble
and fuddle around with complicated additional machinery that obfuscates
the points of their constructions; often, such machinery can be vastly simpli-
fied or discarded entirely by using the concept of development to translate
the ideas into Lie-theoretic ones.

Of course, the final—and very prominent—difference is our focus on
pictures and intuition. We are not kidding around when we include the word
“visual” in the title: a solid chunk of the book is filled with illustrations of
geometric ideas.

To be clear, this will not be a particularly comprehensive introduction,
since we do not think that is what the subject needs right now. Between
the valiant ambition of Sharpe’s flawed masterpiece [5] and the fastidious
ministrations of Čap and Slovák’s encyclopedic juggernaut [2], the existing
literature already covers most of the fundamental technical details for Cartan
geometries quite thoroughly. Instead, this will be more of an invitation
to the subject: we will show the reader how to experience these ideas for
themselves, with the hope that this will prepare and encourage them to read
more challenging works as well.



Preface xiii

That being said, we will be assuming a nontrivial amount of background.
Specifically, we will need the reader to have at least some proficiency with
basic differential geometry. The preliminaries for working on manifolds are
covered so well and in so many places that rehashing them here would be
a disservice to them. For those seeking references to such material, we can
confidently recommend the first volume [6] of Spivak’s well-known introduc-
tion to the subject, as well as [other works that are also good].

As a corollary of this, we will require the reader to know the basics of Lie
theory. Most introductory courses to the topic should be sufficient. We will,
for example, be writing under the assumption that the reader already knows
what the orthogonal group is and understands what semidirect products are.
However, we have written Chapter 1 with the understanding that, at time
of writing, most introductory courses on Lie theory do not actually teach
how to visualize Lie groups and their basic operations, so such gaps will be
filled by the text.

[Acknowledgements] [Be sure to mention that this is based on the lecture
notes we made for “Parabolic Geometries for People that Like Pictures”]

Jacob W. Erickson





Progress notes

Because I want to reference some of the techniques I use for building intuition
with Cartan geometries in my PhD dissertation, I’m putting this online much
earlier than I’d like; there’s a lot of editing and writing left to do before this
even resembles the form I want it to eventually take. Still, I think the
hundred pages I have included so far, and the pictures drawn within them,
will be quite useful to those seeking to understand the intuition behind the
subject.

Aside from general editing, here is a quick run-down of what still needs
to be done:

Chapter 1 – Finish the section on the adjoint representation and the bracket

Chapter 2 – Completely redo this chapter. Sloppy!

Chapter 3 – Redo the sections where we go over the examples
– Especially focus on expanding hyperbolic geometry, since we

need that for doing representation theory later
– Write the section on comparing model geometries (extending

Euclidean geometry to affine geometry, etc.)

Chapter 4 – This chapter is based on the lecture I usually give when I try
to explain Cartan geometries to newcomers, where the point is
to trick the audience into realizing that they actually already
know how to use Cartan geometries. I’m not convinced it
translates well into words on a page, so I might try fiddling
with the wording. In particular, I’m not yet happy with how
the beginning of the chapter connects to the rest of it.

– Write (and also draw the pictures for) the section on Klein
geometries and curvature

xv



xvi Progress notes

Chapter 5 – Finish writing it, obviously.
– A lot of the ideas will come from my holonomy paper, if you

want the ideas but not the pictures

Chapter 6 – Write the chapter
– Consider the placement of the chapter and its contents; the

point of it is to give the reader a chance to practice with some
of the ideas in a more concrete setting, so it should come after
introducing enough of the elementary tools but before doing
anything too intense with the structure theory.

– In particular, we want this to come before the chapter on non-
compact Riemannian symmetric spaces.

Chapter 7 – Write the chapter
– Consider tone?

Chapter 8 – Rewrite the lecture so that it works as a chapter of the book
– Find a way to explain that “it’s just a trace form” is hand-

waving and not intuition, but without sounding like a jerk to
people that use this handwaving as if it were intuition.

Chapter 9 – Rewrite the lecture so that it works as a chapter of the book
– Expand upon the maximal compact subgroup stuff?
– Consider whether to move the introduction to parabolic sub-

groups to the next chapter

Chapter 10 – Rewrite the lecture so that it works as a chapter of the book
– Consider whether restricting this chapter to just being about

structure theory would be better

Chapter 11 – Rewrite the lecture so that it works as a chapter of the book
– Add in the stuff we figured out about the line bundle and how

to explain unipotent tilting formally?
– Consider whether talking about curvature here is a good idea?

Maybe if the chapter on Riemannian geometry does a good
enough job with explaining torsion?

Chapter 12 – Rewrite the lecture so that it works as a chapter of the book
– The pictures really need to be redrawn...
– Consider the curved case?

Chapter 13 – Rewrite the lecture so that it works as a chapter of the book
– Consider the curved case?
– Consider moving the description of Tanaka prolongation to the

next chapter

Chapter 14 – Write the chapter

Appendix A – Write the appendix



Chapter 1

Visualizing the
Fundamental Tools of
Lie Theory

In essence, the idea behind Cartan geometries is to make a principal bundle
over a manifold resemble a particular Lie group. Much of their immense
potency comes from allowing us to “do Lie theory” on geometric objects
where there is no inherent geometric symmetry. Of course, this should
suggest to us that, if we want to talk about geometric intuition for these
things, then we really need to start with Lie groups.

Therefore, in this first chapter, we will answer some basic questions
regarding visualization of Lie groups, including:

• What does left-translation look like?

• What does right-translation look like?

• What does conjugation look like?

• What is the Maurer-Cartan form, and why is it so amazing?

We will also introduce—and hopefully justify—how we will use the terms
transformation and motion, as well as the somewhat technical distinction
we make between them. To do all of this, we will focus primarily on the
main example we will use throughout the beginning of the book: the Lie
group of Euclidean isometries.

By the end of this chapter, the reader should start to have an intuitive
grasp of what it is like to move around inside of a Lie group, and in the next
chapter, we will practice using this to do geometry.

1



2 1. Visualizing the Fundamental Tools of Lie Theory

1.1. Picturing the group of Euclidean isometries

To start, we give a way of placing ourselves inside of Euclidean geometry:
orthonormal frames.

Figure 1. We can depict an orthonormal frame ϕ on R2 by the pair of
tangent vectors (ϕ(e1), ϕ(e2))

Consider the plane R2 equipped with the usual Euclidean structure. An
orthonormal frame over u ∈ R2 is just a linear isometry ϕ from the tangent
space T0R2 at 0, which we will identify with R2 itself, to the tangent space
TuR2 at u. Fixing a pair e1 and e2 of orthonormal vectors in R2 ≈ T0R2,
we can uniquely determine an orthonormal frame ϕ by its values on e1 and
e2, since linear maps are uniquely determined by their values on a basis. In
particular, we can pictorially depict an orthonormal frame ϕ on the plane
as the pair of tangent vectors (ϕ(e1), ϕ(e2)), as we have in Figure 1.

While using pairs of vectors is useful for drawing simple pictures, there
is a different way of visualizing orthonormal frames that will be useful in far
more general settings. Imagine we are walking around on R2. Look directly
in front of us; along this tangent direction, there is a unique unit vector
that corresponds to moving “forward” with unit speed. Similarly, to our
left, perpendicular to the forward direction, there is a unique unit vector
corresponding to leftward motion with unit speed. With this information,
we can identify our configuration on the plane with the unique orthonormal
frame ϕ such that ϕ(e1) is the unit forward vector and ϕ(e2) is the unit
leftward vector.1 In other words, orthonormal frames allow us to place
ourselves inside of Euclidean geometry, as illustrated in Figure 2.

1Of course, the choice to use forward and left is arbitrary, and we could just as easily have
chosen something else as long as we remained consistent.
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Figure 2. Each orthonormal frame corresponds to a unique configura-
tion for ourselves as pedestrians on the Euclidean plane

Now, let us consider the Lie group I(2) of Euclidean isometries of R2

under composition.

To each u ∈ R2, there is a unique isometry τu ∈ I(2) given by v 7→ u+v,
called translation2 by u. In particular, each isometry ϕ ∈ I(2) uniquely
decomposes as a composition

ϕ = τϕ(0) ◦
(
τ−1
ϕ(0) ◦ ϕ

)
,

where τϕ(0) is a translation and τ−1
ϕ(0) ◦ ϕ = τ−ϕ(0) ◦ ϕ is an isometry that

fixes 0. Since isometries preserve lines in the plane, an isometry that fixes
0 must be linear, hence the subgroup of isometries that fix 0 is precisely
the orthogonal group O(2) of linear isometries of R2. In other words, every
ϕ ∈ I(2) can be written uniquely as a composition τu ◦ A for some u ∈ R2

and A ∈ O(2).

Given two isometries τu◦A and τv◦B, we can compute their composition:
for x ∈ R2,

(τu ◦A) ◦ (τv ◦B)(x) = (τu ◦A)(v +B(x)) = u+A(v +B(x))

= (u+A(v)) +AB(x) = (τu+A(v) ◦AB)(x),

so (τu ◦A) ◦ (τv ◦B) = τu+A(v) ◦AB. In particular, we may consider the Lie

group I(2) as the semidirect product R2 ⋊O(2), with group operation given
by

(u,A)(v,B) =
(
u+A(v), AB

)
.

2These correspond to both left-translations and right-translations on R2, viewed as a Lie
group.



4 1. Visualizing the Fundamental Tools of Lie Theory

Elements of O(2) are, by definition, linear isometries from R2 ≈ T0R2

to itself, so O(2) can be viewed as the space of orthonormal frames over 0.
By adding in translations, this perspective then allows us to identify I(2)
with the space of all orthonormal frames over R2, which we would usually
call the orthonormal frame bundle over R2. Specifically, for each isometry
ϕ ∈ I(2), the pushforward ϕ∗ : R2 ≈ T0R2 → Tϕ(0)R2 gives a linear isometry
from the tangent space at 0 to the tangent space at ϕ(0), hence ϕ∗ is an
orthonormal frame at ϕ(0).

In review, we identify each element ϕ ∈ I(2) of the isometry group I(2)
with the orthonormal frame ϕ∗ determined by its pushforward at 0. Every
ϕ ∈ I(2) uniquely decomposes as a composition of the form τu ◦A for some
u ∈ R2 and A ∈ O(2). Pictorially, we can depict the orthonormal frame
τu∗ ◦ A : R2 ≈ T0R2 → TuR2 corresponding to τu ◦ A as the pair of tangent
vectors (τu∗(A(e1)), τu∗(A(e2))) at ϕ(0) = u. More importantly, however,
we can identify τu ◦A with the configuration of ourselves on the plane such
that τu∗(A(e1)) is the unit forward vector and τu∗(A(e2)) is the unit leftward
vector.

1.2. Transformation and Motion

Throughout, we will use La : g 7→ ag to denote left-translation by a and
Ra : g 7→ ga to denote right-translation by a. What do left-translation and
right-translation look like? In particular, how are they different? Since we
have some intuition for what elements of I(2) look like, it gives a good place
to investigate these questions.

To start, let us look at how left-translation by τe1 behaves. For an
arbitrary element τu ◦A ∈ I(2), we have

Lτe1
(τu ◦A) = τe1 ◦ (τu ◦A) = (τe1 ◦ τu) ◦A = τe1+u ◦A.

In other words, it behaves basically the same as it does as a transformation
of R2, shifting every orthonormal frame uniformly by e1. This has been
illustrated in Figure 3, and the corresponding situation for rotations has
similarly been illustrated in Figure 4.

To see where this behavior comes from, note that I(2) acts transitively
on R2, so since O(2) is the stabilizer of 0 in I(2), we can think of R2 as the
homogeneous space I(2)/O(2). In particular, we have a natural quotient
map

q
O(2)

: I(2) → R2 ∼= I(2)/O(2)

given by ϕ 7→ ϕ(0), or equivalently, by τu ◦A 7→ u.

This map q
O(2)

lets us think of the space I(2) of orthonormal frames of

R2 as a bundle over R2. In terms of orthonormal frames, q
O(2)

just takes
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Figure 3. Left-translating by τe1 shifts all orthonormal frames uni-
formly by e1, as if we were applying it as a transformation to the plane
and the orthonormal frames were thought of as being inside of the plane

Figure 4. Left-translating by the rotation given by the linear isome-

try rot(θ) :=
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
∈ O(2) uniformly rotates all orthonormal

frames by θ around 0

orthonormal frames over u ∈ R2 and maps them all to u. Equivalently,
thinking as a pedestrian on the Euclidean plane, q

O(2)
takes our precise

configuration on the Euclidean plane and maps it to the point of R2 at
which we are positioned.

For ϕ, ψ ∈ I(2), we have

q
O(2)

(Lϕ(ψ)) = q
O(2)

(ϕ ◦ ψ) = ϕ ◦ ψ(0) = ϕ(q
O(2)

(ψ)),

so under the quotient map q
O(2)

, left-translation by ϕ in I(2) corresponds to
just applying ϕ as a transformation.
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What does this mean for right-translation? For ϕ, ψ ∈ I(2), we have

q
O(2)

(Rϕ(ψ)) = q
O(2)

(ψ ◦ ϕ) = ψ(ϕ(0)).

The key here is to notice that, because I(2) acts on R2 ∼= I(2)/O(2) from the
left, ϕ gets to act before ψ when we apply the transformation ψ◦ϕ = Rϕ(ψ).
This means that right-translation by ϕ moves each orthonormal frame as if
ϕ is acting on the orthonormal frame at the identity.

In an attempt to clarify what this means, let us see what right-translation
by τe1 does. For an arbitrary τu ◦A ∈ I(2), we have

Rτe1
(τu ◦A) = (τu ◦A) ◦ τe1 = τu+A(e1) ◦A.

Under the appropriate identifications between vectors and translations, this
amounts to right-translation by τe1 shifting each orthonormal frame ϕ∗ by
the vector ϕ∗(e1) to which that orthonormal frame maps e1. We have illus-
trated this in Figure 5.

Figure 5. Right-translating by τe1 shifts each orthonormal frame by
the vector to which that orthonormal frame maps e1

Under our identification between orthonormal frames and configura-
tions for ourselves as pedestrians on the Euclidean plane, this gives right-
translation by τe1 a very simple description: it corresponds to walking
forward by one unit. We have shown this in Figure 6.

More generally, we can think of right-translation by an arbitrary ϕ ∈ I(2)
as applying ϕ from the perspective of our configuration. For example, we see

in Figure 7 that right-translation by the rotation rot(θ) :=
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
just turns us on the spot by θ, rather than necessarily rotating us around
the origin at 0.
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Figure 6. Right-translating by τe1 corresponds to walking forward one unit

Figure 7. Right-translating by rot(θ) turns each orthonormal frame on
the spot by θ

Let us attempt to summarize this intuition in just a few words. Under
left-translation, elements act as transformations, effecting each orthonormal
frame uniformly according to the usual action on the homogeneous space
I(2)/O(2). Under right-translation, on the other hand, elements act as
motions, moving orthonormal frames according to their own perspectives.
More evocatively, left-translating by a rotation is like rotating the whole
Earth (with us on it) and right-translating by a rotation is like turning
around.
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1.3. Conjugation

Now that we have some idea of what left-translation and right-translation
look like, we are naturally led to ask: what does conjugation look like?
There are several ways to approach this question, and as we will throughout
these notes, we encourage the reader to wander off the path we are following
and explore when they feel motivated to do so. However, the author has
found one interpretation in particular that is consistently useful and easy to
see.

For g, h ∈ I(2), observe that

Rh(g) = gh = (ghg−1)g = Lghg−1(g).

On the left-hand side, we have g right-translated by h, which we can interpret
as moving by h from the perspective of g. On the right-hand side, we
have g left-translated by ghg−1, which we can interpret as just applying the
transformation ghg−1 to g. In other words, ghg−1 is the element we can
apply to g as a transformation to reproduce the motion given by h.

Let us give some examples. For u ∈ R2, consider the translation τu and
the rotation rot(θ) of angle θ around 0. If we right-translate τu by rot(θ),
then this corresponds to turning on the spot by θ around u. Thus, the
conjugate τurot(θ)τ

−1
u is the transformation that does this to τu, namely

rotation of the whole plane by θ around the point u. We have illustrated
this in Figure 8.

Figure 8. τurot(θ)τ
−1
u rotates the plane by θ around u



1.4. The Maurer-Cartan Form 9

Figure 9. rot(θ)τurot(θ)
−1 shifts the plane by the vector to which the

orthonormal frame corresponding to rot(θ) sends u

Similarly, if we right-translate rot(θ) by τu, then this corresponds to mov-
ing by the vector u according to the perspective of the orthonormal frame
at rot(θ). Therefore, the conjugate rot(θ)τurot(θ) is the transformation that
does this to rot(θ), namely translation by rot(θ) · u.

Using the terminology of transformation and motion, a pithy way of
summarizing this interpretation is that conjugation by g converts motions
to transformations that look like those motions at g.

1.4. The Maurer-Cartan Form

Before talking about the Maurer-Cartan form, let us first examine the struc-
ture of the Lie algebra i(2) of I(2). Using the decomposition of I(2) as the
semidirect product R2⋊O(2), we can decompose i(2) as the semidirect sum
R2 B o(2).

This decomposition has a fairly nice interpretation: it tells us that every
element of i(2) can be written as the sum of a (translational) velocity and an
angular velocity. Characterizing elements of the Lie algebra as generators
for one-parameter subgroups, we can think of the Lie algebra as the space
of instantaneous motions through the identity. The velocities in R2 < i(2)
determine the obvious one-parameter subgroups: for each v ∈ R2 ≈ T0R2,
exp(tv) = τtv. Similarly, the angular velocities t[ 0 −1

1 0 ] ∈ o(2) < i(2) map to
rot(t) under the exponential map.
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By definition, the Lie algebra i(2) of I(2) is the tangent space of I(2) at
the identity element (together with a bracket operation that we shall talk
about later). To describe tangent spaces at other points, we use something
called the Maurer-Cartan form.

Definition 1.1. The Maurer-Cartan form of a Lie group G is the g-valued
one-form ωG given by

(ωG)g : TgG→ g = TeG, Xg 7→ Lg−1∗Xg

at each g ∈ G.

While its definition appears to be mere algebraic formalism, do not be
fooled: the Maurer-Cartan form is one of the most deeply intuitive objects in
modern differential geometry. In fact, it is so intuitive that many students
will frequently use it without consciously recognizing that they are doing
so. In vector calculus courses, for example, vector fields on Rn are often
defined to be maps from Rn to itself; implicitly, this definition is using the
Maurer-Cartan form on Rn to identify all of its tangent spaces with the
Lie algebra Rn. This should be profoundly exciting to anyone interested in
geometric intuition, because if we already have an instinctive understanding
of how to use some geometric objects—so instinctive that we often do not
realize we are using them—then it stands to reason that thinking in terms
of these objects might lead to similarly effortless understanding of corollary
phenomena.

But what does the Maurer-Cartan form actually tell us? Let us try to
elucidate its meaning in the group of Euclidean isometries. Imagine we are
a pedestrian moving around on the Euclidean plane, with our configuration
at time t given by γ(t) for some smooth curve γ : R → I(2), as in Figure 10.

Figure 10. The pictured pedestrian moves according to the smooth
curve γ in I(2)
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For each time t, we have a tangent vector γ̇(t) ∈ Tγ(t) I(2) describing our
current velocity at γ(t) within the space of configurations. These tangent
vectors tell us how we are moving at a given instant, but they mostly lie in
different tangent spaces. How do we describe these velocities in a consistent
way? The elegant answer is to do what we usually do: simply describe our
motion in terms of our own perspective.

Consider how we would describe our trajectory between times t0 and
t3 if we were walking along γ. At t0, we are walking forward along the
curve. When we get to t1, while we are still walking forward, we have also
started to turn to our right (clockwise). By the time we reach t2, we have
stopped turning to the right and have started to—ever so slightly—turn to
our left (counterclockwise), though we are still walking forward along the
curve. Finally, when we arrive at t3, we are still walking forward, and we
have started turning left (counterclockwise) considerably more than before.
This kind of description is exactly what the Maurer-Cartan form tells us.
For example, ω

I(2)
(γ̇(t0)) will simply be a positive scalar multiple of e1, since

e1 ∈ R2 < i(2) is the velocity through the identity corresponding to moving
forward with unit speed. Meanwhile, we will have

ω
I(2)

(γ̇(t1)) = (a1e1,−b1[ 0 −1
1 0 ])

for some a1, b1 > 0, since we are walking forward while turning clockwise.
Likewise, for t2 and t3, we will have

ω
I(2)

(γ̇(t2)) = (a2e1, b2[
0 −1
1 0 ]) and ω

I(2)
(γ̇(t3)) = (a3e1, b3[

0 −1
1 0 ]),

where a2, a3, b2, b3 > 0 and b3
a3
> b2

a2
, since we are walking forward at both

times but are turning counterclockwise considerably more at time t3 than at
time t2.

To summarize, the Maurer-Cartan form is a canonical coframing of the
Lie group that identifies velocities in each tangent space of the Lie group
with corresponding instantaneous motions in the Lie algebra. Since the Lie
algebra, the space of all instantaneous motions through the identity, does not
change, this gives us a constant frame of reference for describing velocities
at different configurations, essentially by describing those velocities from the
perspectives of those configurations.

1.5. The adjoint representation and the bracket

[Conjugation]

[In terms of Maurer-Cartan form]





Chapter 2

Euclidean Geometry

Much of this chapter is sloppy and should be rewritten. Giving the
reader a strong understanding of how the Erlangen Program works for
Euclidean geometry in this perspective is crucial!

To start, let us briefly summarize what we have learned so far about the
Lie group I(2) of Euclidean isometries of the plane.

In addition to being the symmetry group of Euclidean geometry, we can
think of I(2) as the space of configurations for ourselves as pedestrians on
the Euclidean plane. Equivalently, we can think of it as the orthonormal
frame bundle over R2, with each ϕ ∈ I(2) identified with the orthonormal
frame

ϕ∗ : T0R2 ≈ R2 → Tϕ(0)R2

given by the pushforward of ϕ at 0 and with bundle map given by the natural
quotient map

q
O(2)

: I(2) → R2 ∼= I(2)/O(2), ϕ 7→ ϕ(0).

This configuration perspective gives us an easy way of placing ourselves
inside of Euclidean geometry.

The Lie-theoretic structure of I(2) also provides us with a natural way
of describing how to move around within the geometry: the Maurer-Cartan
form ω

I(2)
gives a canonical coframing for I(2) that identifies velocities with

instantaneous motions. From the perspective of a pedestrian walking around
on the Euclidean plane, this allows us to speak, for example, about “walking
forward” without having to specify our current configuration.

Of course, our description of I(2) was in terms of Euclidean geometry.
Now that we have learned how to move inside of a Lie group, we would like

13
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to try going the other way: we will reformulate Euclidean geometry in terms
of I(2), or rather, in terms of the pair (I(2),O(2)).

By the end of this chapter, we should be able to talk about how the
geometric structure of the Euclidean plane comes from the pair (I(2),O(2)).
This will open us up to exploring, in the next chapter, how other geometries
might be determined by Lie groups in a similar vein.

2.1. “Isn’t geometry about circles and lines and stuff?”

As we mentioned at the end of the first lecture, when we “walk in a straight
line”, this really just corresponds to moving with constant translational
velocity—which is to say, translational velocity that is constant with respect
to the Maurer-Cartan form. Thus, a line will just be the full path of such
motion projected onto the plane.

Figure 1. A line is the projection to the plane of a curve with ω
I(2)

-
constant translational velocity and zero angular velocity

Definition 2.1. A line on the Euclidean plane I(2)/O(2) ∼= R2 is a subset of
the form q

O(2)
(g exp(Rv)) for some g ∈ I(2) and some nonzero v ∈ R2 < i(2).

Choosing to use right-translations to define lines might seem odd to the
uninitiated. Indeed, if you are not already familiar with Cartan geome-
tries, then it probably seems easier to define lines as orbits of one-parameter
subgroups of translations acting from the left on the Euclidean plane. Un-
fortunately, in this case, the reason for using right-translations is somewhat
obscured by the fact that the subgroup of translations is normal1 in I(2).
By the end of the next lecture, the reason for this choice will be obvious,

1Recall that N ≤ G is normal in G if and only if gN = Ng for all g ∈ G. In other words,

when N is normal, every motion Rn with n ∈ N has a corresponding transformation Ln′ for some
n′ ∈ N that behaves the same way at a given g ∈ G.
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but for now, we will just say that we always want to be able to move along
lines (and, later, geodesics and other distinguished curves).

Note that, for every x ∈ R2, we have τx ∈ q−1
O(2)

(x). Thus, if x+ Rv is a

line in the usual sense on R2, then we can write it in terms of the definition
above as q

O(2)
(τx+Rv) = q

O(2)
(τx exp(Rv)).

While lines themselves are defined in terms of motion along them, we
will define parallelism in terms of transformations. We start with two lines,
and in order to see whether they are parallel, we shift one of those lines onto
the other via a translation.

Definition 2.2. Two lines ℓ and ℓ′ in the Euclidean plane are parallel if
and only if there is some u ∈ R2 such that τu(ℓ) = ℓ′.

Figure 2. Two lines in the Euclidean plane are parallel when one is a
translation of the other

Later, we will show that this definition is equivalent to the classical
definition of parallel lines in terms of intersection.

Given two vectors in the same tangent space, we can measure the angle
between them in terms of the rotation needed to move from one to the other.

Definition 2.3. Let g ∈ I(2) be such that q
O(2)∗((ωI(2)

)−1
g (e1)) is a positive

scalar multiple of v ∈ TxR2. For w ∈ TxR2, the (oriented) angle from v to Small
correction:
In order to
uniquely deter-
mine the direc-
tion of the angle
here, we pick
both a starting
vector and, im-
plicitly, an ori-
entation. Thus,
these should re-
ally be called
oriented angles,
since they are
not preserved
by orientation-
reversing isome-
tries.
We can get un-
oriented an-
gles by forget-
ting the direc-
tion, though
this only de-
termines an ele-
ment of R/2πZ
up to sign, so we
lose meaningful
angle-addition.

w is the unique θ ∈ R/2πZ such that q
O(2)∗((ωI(2)

)−1
grot(θ)(e1)) is a positive

scalar multiple of w.

Note that this defines angles modulo 2π. If we want to talk about angles
larger than 2π, or if we want to distinguish angles that are the same modulo
2π, then we would need to work with the universal cover R of SO(2) ≃
R/2πZ.

An interesting feature of the geometry of the Euclidean plane is that,
fixing an orientation by restricting ourselves to the identity component
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Figure 3. We can define angles between vectors in terms of the rota-
tions needed to move between them

I◦(2) ≃ R2 ⋊ SO(2) of I(2), we have a natural way to add angles at dif-
ferent points. Because R2 is normal in I◦(2), we get a natural homomorphic
quotient map

πR2 : I◦(2) → R2\ I◦(2) ≃ SO(2)

given by τu ◦A 7→ A. Under the map πR2 , we can identify angles at different
points on the plane and add them together.

An alternative way to describe angles comes from the adjoint representa-
tion Ad : I(2) → GL(i(2)). Conveniently, we already have some idea of what
conjugation looks like, so since Adg is, by definition, just the pushforward
at the identity of conjugation by g, we can get a fairly good picture of what
the adjoint representation looks like as well.

For example, conjugating g by rot(θ) gives the transformation that be-
haves like the motion g at the orthonormal frame corresponding to rot(θ).
Thus, rot(θ) ◦ τtv ◦ rot(θ)−1 is just the transformation coinciding with the
motion τtv at rot(θ), namely τtrot(θ)·v, so Adrot(θ) just rotates velocities by

θ. The angle between two vectors v, w ∈ TxR2 can then equivalently be
described as the element θ ∈ R/2πZ ≃ SO(2) such that, for v a posi-
tive scalar multiple of q

O(2)∗((ωI(2)
)−1
g (e1)), w is a positive scalar multiple of

q
O(2)∗((ωI(2)

)−1
g (Adrot(θ)(e1))).

Note that, in the first definition of angle above, we had v be a positive
scalar multiple of q

O(2)
((ω

I(2)
)−1
g (e1)) and w be a positive scalar multiple of

q
O(2)∗((ωI(2)

)−1
grot(θ)(e1)). Examining this second expression more closely, we
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have

q
O(2)∗((ωI(2)

)−1
grot(θ)(e1)) = q

O(2)∗(Lgrot(θ)∗(e1)) = q
O(2)∗(Lg∗ Lrot(θ)∗(e1))

= q
O(2)∗(Rrot(θ)−1∗(Lg∗ Lrot(θ)∗(e1)))

= q
O(2)∗(Lg∗(Lrot(θ)∗Rrot(θ)−1∗)(e1))

= q
O(2)∗(Lg∗Adrot(θ)(e1))

= q
O(2)∗((ωI(2)

)−1
g (Adrot(θ)(e1))),

where the equality in the second line follows from q
O(2)

◦ Rrot(θ) = q
O(2)

and
the equality in the third line is a consequence of left-translation and right-
translation commuting with each other. This verifies that the two definitions
of angle are equivalent.

Finally, we get to circles. We won’t use them much in the Euclidean
geometry planned for this lecture, but it’s still worth giving them a definition
in terms of I(2), to prove that we can.

Definition 2.4. For x ∈ R2 and v ∈ R2, the circle centered at x with radius
(the length of) v is the set

Cv(x) :=
{
q
O(2)

(gτv) : g ∈ q−1
O(2)

(x)
}
.

In other words, Cv(x) is the set of all points that some orthonormal
frame over x thinks are v away from x. Equivalently, if you stand over x
and specify a radius v from your frame, and then you spin around “in a
circle” until you get back to your original configuration, then you will have
traced out a circle.

2.2. Two elementary results from Euclidean geometry

To demonstrate how “actual” Euclidean geometry can be done in terms of
isometries, we shall prove two elementary results.

Proposition 2.5. Suppose two lines ℓ and ℓ′ intersect at a point x, deter-
mining four angles around x as in Figure 5. The angles opposite each other
are congruent, so that θ1 = θ3 and θ2 = θ4.

Using I(2), this is fairly straightforward: imagine you are occupying a
frame g over x such that you are pointed along a vector tangent to ℓ used
to form the angle θ1. By definition, if we rotate ourselves by θ1, which is to
say we right-translate by rot(θ1), then we will be pointing along ℓ′. Now,
imagine we are at g ◦ rot(π) = g ◦ (−1). We are still pointed along ℓ, but
now in the opposite direction, along a vector we can use to form the angle
θ3. But because SO(2) is abelian, if we move by rot(θ1) from g ◦ (−1), then
we’ll be at the orthonormal frame g ◦ (−1) ◦ rot(θ1) = (g ◦ rot(θ1)) ◦ (−1),
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Figure 4. Tracing out a circle as in the above definition

Figure 5. Two lines ℓ and ℓ′ intersecting at x

which points us along ℓ′ again in the opposite direction as g ◦ rot(θ1). In
other words, rotating by θ1 did the same thing as rotating by θ3, so they are
equal.

Equivalently, we could just say that θ1 and θ3 are congruent under the
isometry τx ◦ (−1) ◦ τ−1

x , essentially by the same reason: −1 sends each line
through 0 to itself.

Let us try another.
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Figure 6. Turning on the spot by rot(π) = −1 keeps you on the same
line but points you in the opposite direction

Figure 7. Parallel lines ℓ1 and ℓ′1 intersected by a transversal ℓ2

Proposition 2.6. Suppose ℓ1 and ℓ′1 are distinct parallel lines, and ℓ2 is a
line intersecting both ℓ1 and ℓ′1, forming the angles θ1 and θ2 as in Figure
7. Then, θ1 and θ2 are congruent.

Again, this is not too difficult in terms of I(2): because ℓ1 and ℓ′1 are
parallel, there is some u ∈ R2 such that τu(ℓ1) = ℓ′1, and because the sub-
group of translations is normal, there is some nonzero v ∈ R2 such that
τv(ℓ

′
1) = ℓ′1. For x the point where ℓ1 and ℓ2 intersect and y the point where

ℓ′1 and ℓ2 intersect, there is some t ∈ R such that

τu(x) = u+ x = tv + y = τtv(y),
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hence y − x = u − tv, so τy−x = τ−tv ◦ τu. Since τu sends ℓ1 to ℓ′1 and τ−tv

preserves ℓ′1, this means τy−x sends ℓ1 to ℓ′1. Moreover, since x, y ∈ ℓ2, τy−x

preserves ℓ2, so τy−x sends θ1 to the angle opposite θ2 in the intersection of
ℓ′1 and ℓ2, hence they are congruent by the first proposition.

2.3. How does Euclidean geometry show up, algebraically?

Now that we have seen how to reformulate Euclidean geometry in terms of
I(2), we are led to a natural question: why I(2)? What about this particular
Lie group gives us Euclidean geometry?

Throughout, we have relied heavily on the subgroup R2 < I(2) of trans-
lations. In particular, as we saw in Proposition 2.6, we explicitly used the
fact that R2 is normal in I(2) to use transformations instead of motions.
Implicitly, we also used the fact that R2 < I(2) acts simply transitively on
I(2)/O(2) ∼= R2, when we used the points x and y to determine the trans-
formation τy−x. Translations were also used to describe parallelism, giving
a definition that, as we now show, happens to coincide with the standard
formulation in terms of intersections.

Proposition 2.7. Two distinct lines ℓ and ℓ′ in the Euclidean plane are
parallel if and only if ℓ ∩ ℓ′ = ∅.

Proof. To start, choose x, y, v, w ∈ R2 such that ℓ = q
O(2)

(τx+Rv) and

ℓ′ = q
O(2)

(τy+Rw). If ℓ ∩ ℓ′ = ∅, then x ̸= y and there are no t, s ∈ R
such that

q
O(2)

(τx+tv) = x+ tv = y + sw = q
O(2)

(τy+sw).

In particular, y − x is never in the span of v and w, so because R2 is 2-
dimensional, this means that v and w are scalar multiples of each other
and

τy−x(ℓ) = τy−x(qO(2)
(τx+Rv)) = q

O(2)
(τy+Rv) = q

O(2)
(τy+Rw) = ℓ′.

Conversely, if there exists u ∈ R2 such that τu(ℓ) = ℓ′, then

τu(qO(2)
(τx+Rv)) = q

O(2)
(τu+x+Rv) = q

O(2)
(τy+Rw),

so for every t ∈ R, there is an s ∈ R such that u + x + tv = y + sw. In
particular, u+x−y+ tv is in the span of w for every t ∈ R, so u+x−y and
(u+x−y+v)− (u+x−y) = v are in the span of w. Thus, if ℓ∩ℓ′ ̸= ∅, then
there would be t, s ∈ R such that x+ tw = u+ x+ sw, which would mean
that u is in the span of w, which would mean ℓ and ℓ′ were not distinct. □

Note that the proof of this equivalence explicitly depended on our ability
to use R2 as a vector space. Moreover, it once again implicitly used the
identification between R2 as the homogeneous space I(2)/O(2) and R2 as
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Figure 8. If ℓ ∩ ℓ′ = ∅, then for x ∈ ℓ and y ∈ ℓ′, we have τy−x(ℓ) = ℓ′

the subgroup of translations. For example, we took the points x and y
of the homogeneous space and used them to create the translation τy−x

from their difference, and we showed that v was in the span of w using
(u+ x− y + v)− (u+ x− y) = v.

Indeed, the key feature that allows for parallelism to look the way that
it does in Euclidean geometry is this simply transitive normal subgroup of
translations. To see this, suppose we have another Lie group G acting tran-
sitively on the plane R2, and that G contains a closed normal subgroup
isomorphic to R2 that acts simply transitively on R2. Again, we can decom-
pose elements g ∈ G as g = τg(0)(τ

−1
g(0)g), with τ

−1
g(0)g acting linearly on R2 by

conjugation (since conjugation must give an automorphism of R2 and the
group of automorphisms of R2 is precisely GL2R).

We can then define lines the same way we did above, in terms of transla-
tions. Our definition of parallelism in terms of translations still makes sense
as well, and by repeating the proof of the above proposition, we see that it
is consistent with the usual definition in terms of intersection.

Circles and angles are a bit trickier to find in the structure of I(2). Of
course, we can (correctly) guess that it ultimately comes from the subgroup
O(2) < I(2), but how is still a bit mysterious, since we used translations to
describe both concepts. The key is to notice that we didn’t actually need
the translations for these definitions. For example, when defining circles, we
used v ∈ R2 to describe the radius of Cv(x) because that was more familiar,
but really, every isometry a ∈ τv O(2) = q−1

O(2)
(v) determines the same circle:

Cv(x) =
{
q
O(2)

(gτv) : g ∈ q−1
O(2)

(x)
}
=

{
q
O(2)

(ga) : g ∈ q−1
O(2)

(x)
}
.

Thus, the angles and circles of Euclidean geometry come from the stabilizer
subgroup O(2) of 0 ∈ R2 ∼= I(2)/O(2). In particular, if we were to replace
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I(2) with a Lie group G containing a closed subgroup isomorphic to O(2),
then we could use the definitions from above to talk about “circles” and
“angles” in this other “geometry”.

In the next lecture, we will clarify what we mean here by “geometry”,
and explore some famous examples.



Chapter 3

Geometry from
Symmetry

Having seen that Euclidean geometry on the plane can be reformulated
in terms of the pair (I(2),O(2)), we naturally want to see what else we
can accomplish from this perspective. Delightfully, there turns out to be
quite a lot we can do with this idea of describing geometry in terms of
symmetry. This way of thinking, where symmetries are used to determine
and categorize the structures of various geometries, is often referred to as
the Erlangen program, which Felix Klein introduced toward the end of the
nineteenth century.

In this chapter, we will show how to coax geometric structure from a
pair (G,H), which we will refer to as a model geometry, or just model for
short. Conveniently, much of the general structure can be seen from the
example of Euclidean geometry, so our approach will be to show how each
aspect of the general case extends from a particular aspect of the Euclidean
case. From there, we will give a few examples of geometries that are similar
enough to Euclidean geometry to be easily comparable, but different enough
to highlight how the structure changes with different choices of symmetry.

By the end of this chapter, we should see that the intuition we developed
for Euclidean geometry extends, with some small adjustments, fairly easily
to these other geometries. In addition, we will see how, in some sense, this
geometric structure comes from the Maurer-Cartan form, which will help to
foreshadow some ideas in the next chapter.

23
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3.1. Model geometries

To begin, we define the notion of geometry on which the rest of the book
will be based.

Definition 3.1. A model geometry1 (or simply model) is a pair (G,H),
where G is a Lie group and H ≤ G is a closed subgroup such that G/H is
connected. In a model (G,H), the Lie group G is called the model group
and H is called the isotropy or stabilizer subgroup.

While the jump in abstraction might seem intimidating at first, there
is really not much more going on here than there is in Euclidean geometry.
For a given model (G,H), we are describing a geometric structure on the
manifold G/H. We can, as we did before, think of the model group G as
the bundle of configurations for ourselves as pedestrians wandering the
geometry on G/H, with bundle map given by the natural quotient map

qH : G→ G/H, g 7→ gH.

The isotropy H, then, describes the space of configurations that can occur
over a point of G/H; for each g ∈ G, we can reach every other configuration
lying over qH (g) by right-translating by an element of H. In particular,
because the isotropy subgroup H acts freely and transitively on each fiber
of G over G/H by right-translation, G is a principal H-bundle2 over G/H.
We have organized this analogy into Table 1, and attempted to illustrate
the idea in Figure 1.

Table 1. The following table clarifies how model geometries extend
notions we described for Euclidean geometry on the plane

Euclidean geometry Arbitrary model geometry
(I(2),O(2)) (G,H)

Base manifold R2 ∼= I(2)/O(2) G/H
for geometry (Euclidean plane) (homogeneous space)

Bundle of I(2) (orthonormal G
configurations frame bundle) (principal H-bundle)

Quotient map q
O(2)

: I(2) → R2, qH : G→ G/H,

for bundle ϕ 7→ ϕ(0) g 7→ gH

Isotropy O(2) H

Symmetry group I(2) (as transformations) G (as transformations)

1We sometimes also call these Klein geometries, as Sharpe does in [5], though in the context

of this book, we will usually use this term to refer specifically to the geometric structure of the

model geometry expressed in terms of a Cartan connection. This will be discussed more thoroughly
in the next chapter when we introduce the Cartan machinery.

2Recall that a principal H-bundle G over M is a fiber bundle over M together with a right-
action of H on G that is free and transitive on each fiber.
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Figure 1. In a model (G,H), the model group G can be thought of
as the bundle of pedestrian configurations over the space G/H, and the
isotropy H runs through all the configurations lying over a given point

in G/H

On top of giving us a way to place ourselves inside of the geometry, the
model group G naturally acts on both itself and G/H from the left, and we
take this action to define what symmetry means for the model geometry. In
Euclidean geometry, for example, the model group is precisely the Lie group
of transformations preserving the Euclidean structure: the isometry group.
For a more general model geometry (G,H), the elements of G play the same
role that isometries do in Euclidean geometry, acting as transformations
that preserve the underlying geometric structure.

What is the geometric structure of (G,H)? This is the elegant idea
behind Klein’s Erlangen program: the geometric structure is whatever
is preserved by the symmetries of the geometry!

“Definition” 3.2. We will say that something is geometric for the model
(G,H) if and only if it is preserved by some action of G induced by the
natural left-action of G on itself.

This definition might appear to be a bit nebulous—because it is—so
let us give a few clarifying examples. In Euclidean geometry, distance is
preserved by the group of Euclidean isometries, so distance is geometric.
Likewise, the notions of point, line, and circle are geometric for Euclidean
geometry because Euclidean isometries send points to points, lines to lines,
and circles to circles. Note, however, that specific points, lines, and circles
are not geometric, since they will not be preserved by the group of Euclidean
isometries. Therefore, even though it is often a useful reference point while
doing Euclidean geometry, the origin is not itself a geometric invariant of
Euclidean geometry, since we cannot distinguish it from any other point;
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essentially by definition, the orbit of I(2) through the origin is the whole
Euclidean plane.

3.2. The definitive invariant of a model geometry

It probably seems somewhat surreal to define geometry as simply being
“whatever is preserved by the symmetries”. After all, we are often taught
to think of geometric structures as being encoded by specific, concrete invari-
ants, like Riemannian metrics or contact distributions. We would like the
same thing here: a definitive geometric invariant that uniquely determines
the geometric structure of a given model.

Of course, one thing that is always preserved by the model group G
acting on itself from the left is its Maurer-Cartan form ωG , since it is, by
definition, left-invariant! In fact, this is precisely the type of explicit diffeo-
geometric object we are looking for: the symmetries of the Maurer-Cartan
form on G, where we think of G as a principal H-bundle over G/H, are
precisely the left-translations by elements of G, so the Maurer-Cartan form
can reconstruct the natural left-action of G on itself, which in turn defines
the geometry.

In other words, the Maurer-Cartan form ωG on the principalH-bundle G
over G/H completely captures the geometric structure of (G,H). To convey
this equivalence rigorously, we include the following proposition, which is
more or less the same as Corollary 3.4.11 in [5].

Proposition 3.3. Suppose (G,H) is a model. If f : G→ G is a map such
that f∗ωG = ωG and f(gh) = f(g)h for all g ∈ G and h ∈ H, then there is
some a ∈ G such that f = La.

Proof. Denote by µ : G×G→ G the group operation (g, g′) 7→ gg′ and by
(·)−1 : G→ G the inverse operation g 7→ g−1.

Let σ : G→ G be given by

g 7→ f(g)g−1 = (µ ◦ (f, (·)−1))(g, g).

We want to show that σ is constant, because then

σ(e)g = σ(g)g = (f(g)g−1)g = f(g)

for all g ∈ G, so that f = Lσ(e). Since f(gh) = f(g)h,

σ(gh) = f(gh)h−1g−1 = f(g)g−1 = σ(g)

for all g ∈ G and h ∈ G, so σ is invariant under right-translation by H. In
particular, since G/H is connected, σ is constant if and only if it is constant
on a connected component of G, hence it suffices to prove that σ∗ωG = 0.
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For X ∈ TgG and Y ∈ Tg′G,

µ∗ωG(X,Y ) = Ad(g′)−1(ωG(X)) + ωG(Y )

and

(·)−1∗ωG(X) = −Adg(ωG(X)).

Thus,

σ∗ωG(X) = (f, (·)−1)∗(µ∗ωG)(X,X) = µ∗ωG(f∗X, (·)
−1
∗ X)

= Ad((·)−1(g))−1(ωG(f∗X)) + ωG((·)
−1
∗ X)

= Adg(f
∗ωG(X)) + (·)−1∗ωG(X)

= Adg(ωG(X))−Adg(ωG(X)) = 0. □

Again, this is very good news for our pursuit of geometric intuition: as
we mentioned before when we defined the Maurer-Cartan form, it is one of
the most intuitive objects in modern differential geometry. In particular,
this means we can understand what the geometry looks like in terms of
moving around inside of it. This part needs

to be clearer.
We need the
reader to un-
derstand the
intuition of the
Maurer-Cartan
form before we
introduce Car-
tan connections.

3.3. Spherical geometry

Reread this section and make sure it is satisfactory. We need spherical
geometry for when we do projective geometry later.

In the previous chapter, we explained how circles and (unoriented) angles
in Euclidean geometry ultimately came from the behavior of the subgroup
O(2) < I(2), which was the stabilizer of the point 0 ∈ R2 ∼= I(2)/O(2).
Using our new terminology, this was clearly referring to O(2) as the isotropy
subgroup of the model (I(2),O(2)). Now, we will investigate what another
geometry with isotropy O(2) looks like.

Consider an orthonormal basis {e1, e2, e3} of R3 with the usual Euclidean
structure. The Lie group O(3) acts on R3 by linear isometries (by definition),
and we get a copy of O(2) in O(3) as the subgroup stabilizing the vector
e1. This points us toward a new model geometry: (O(3),O(2)), also called
(2-dimensional) spherical geometry.

Since O(2) is the stabilizer of e1, we can identify O(3)/O(2) with the
O(3)-orbit through e1, which—as one might expect from our name for this
geometry—happens to be precisely the unit 2-sphere S2 in R3. Just like we Fix the colors

to be consistent
with the general
themes for the
colors. Also,
maybe show how
the linear frame
looks first?

did for I(2) in Euclidean geometry, we can think of O(3) as the orthonormal
frame bundle over S2, with bundle map q

O(2)
: O(3) → S2 ∼= O(3)/O(2)

given by g 7→ g · e1. We have illustrated this in Figure 2.
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Figure 2. The Lie group O(3) thought of as the orthonormal frame
bundle of S2 ∼= O(3)/O(2)

At the identity element 1 = [e1 e2 e3] ∈ O(3), we have the tangent space
T1O(3), which we identify with the Lie algebra

o(3) =


0 −x −y
x 0 −z
y z 0

 : x, y, z ∈ R

 .

Considering i(2) and o(3) as O(2)-representations, using the restriction of
their adjoint representations to their copy of O(2), we have an isomorphism
of O(2)-representations

ρ+ : i(2) → o(3)

given by ([
x
y

]
,

[
0 −z
z 0

])
7→

0 −x −y
x 0 −z
y z 0

 .
In particular, O(2) behaves the same way on the subspace ρ+(R2) as it does
on the subalgebra of translations R2 < i(2). The subspace ρ+(R2) is not
itself a subalgebra, though the one-parameter subgroups it generates can be
thought of as “translations” in spherical geometry.

Writing {ē1, ē2} for the usual orthonormal basis for R2, with bars to
distinguish them from e1 and e2 in R3, we can consider the one-parameter
subgroup exp(tρ+(ē1)) corresponding to

ρ+(ē1) =

0 −1 0
1 0 0
0 0 0

 .
As we can see in Figure 3, exp(tρ+(ē1)) behaves as a transformation when
acting on the left, rotating the sphere in a way that preserves the “equator”
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Figure 3. Acting on the left by the one-parameter subgroup of trans-

formations exp
(
t
[
0 −1 0
1 0 0
0 0 0

])
rotates the sphere in a way that preserves

its intersection with the plane ⟨e1, e2⟩ generated by e1 and e2

given by the intersection of the sphere with the plane ⟨e1, e2⟩ generated by
e1 and e2 in R3.

In general, the “translations” exp(tρ+(xē1+yē2)) will preserve the great
circle given by the intersection of the sphere with ⟨e1, xe2 + ye3⟩.

Definition 3.4. A great circle in spherical geometry is a subset given by
the intersection of the sphere with a 2-dimensional subspace (through the
origin) of R3.

Because O(3) acts linearly on R3, it sends 2-dimensional subspaces to
2-dimensional subspaces, so since O(3) also preserves the sphere, it sends
great circles to great circles. In other words, the notion of great circle is
preserved under the action of the model group O(3), hence great circles are
geometric objects in spherical geometry. We can think of great circles as the
spherical analogue of lines.

Note that only one orbit of exp(tρ+(ē1)) on S2 was a great circle; all
the others were intersections of the sphere with translations of ⟨e1, e2⟩ by
some multiple of e3, which are not subspaces of R3 as a vector space. Such
intersections are also preserved by the action of O(3), but they are not the
spherical analogue of lines.

When acting on the right, exp(tρ+(ē1)) behaves as a motion, which
we can think of as the spherical analogue of “walking forward” in Eu-
clidean geometry: for g ∈ O(3), g exp(tρ+(ē1)) is given by starting at g
and moving for time t along the great circle S2 ∩ g · ⟨e1, e2⟩ with velocity
q
O(2)∗((ωO(3)

)−1(ρ+(ē1))), the tangent vector corresponding to g · e2.
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Figure 4. Acting on g ∈ O(3) from the right by the one-parameter
subgroup of motions exp(tρ+(ē1)) moves along the great circle given by
the intersection of the sphere with the plane g · ⟨e1, e2⟩

In particular, motion by a one-parameter subgroup of “translations” in
spherical geometry will always trace out great circles on the sphere, so we
could have defined great circles to be subsets of the form q

O(2)
(g exp(Rρ+(v)))

for some g ∈ O(3) and some nonzero v ∈ R2, as we did with lines in Eu-
clidean geometry.

Exercise 3.5. Using what “translations” look like (as motions) in spherical
geometry and the discussion from Chapter 1 on visualizing the Lie bracket,
verify that ρ+(R2) is not a subalgebra of o(3) without doing any computa-
tions.

For circles, we can use the same definition as before in Euclidean geom-
etry: pick a center x ∈ S2, a radius given by some a ∈ O(3), and define
Ca(x) := {q

O(2)
(ga) : g ∈ q−1

O(2)
(x)}. Again, such sets are given by “all the

points in S2 that some orthonormal frame over x thinks is a away from
itself”. They happen to be precisely those (nonempty) intersections of the
sphere with affine planes from before; in particular, great circles also happen
to be special examples of circles in spherical geometry.

3.4. Hyperbolic geometry

Expand this section and make it better. We need hyperbolic geometry
for representation theory later.
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Figure 5. The intersection of an affine plane in R3 with S2 gives a circle

Now, consider R3 with the Minkowski quadratic form Q given by

Q(ae1 + be2 + ce3) := a2 − b2 − c2,

for which the linear isometries are given by O(1, 2). When we take O(1, 2)
and quotient by the center, generated by −1, we get PO(1, 2), which natu-
rally acts on RP2, the space of 1-dimensional linear subspaces of R3.

In R3, the set Q−1(1) is a two-sheeted hyperboloid on which O(1, 2)
acts transitively. The two sheets are images of each other under the linear
transformation −1, so the image of Q−1(1) in RP2 is connected and PO(1, 2)
acts transitively on it. The stabilizer of the line ⟨e1⟩ is a copy of O(2),
which leads us to consider the model geometry (PO(1, 2),O(2)), also called
(2-dimensional) hyperbolic geometry.

Again, we identify PO(1, 2) with the orthonormal frame bundle of H2 ∼=
PO(1, 2)/O(2), with bundle map q

O(2)
: PO(1, 2) → H2 given by g 7→ g ·⟨e1⟩.

Indeed, we can topologically identifyH2 with a more familiar space: choosing
a sheet of Q−1(1), each point of the sheet projects to a unique point of the
plane ⟨e2, e3⟩, so we can topologically identify H2 with R2.

As with spherical geometry, there is a convenient isomorphism of O(2)-
representations

ρ− : i(2) → po(1, 2)



32 3. Geometry from Symmetry

Figure 6. A drawing of the two-sheeted hyperboloid Q−1(1) in R3

Figure 7. Each point of a sheet of Q−1(1) projects to a unique point
of the plane ⟨e2, e3⟩

given by ([
x
y

]
,

[
0 −z
z 0

])
7→

0 x y
x 0 −z
y z 0

 ,
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so that O(2) behaves the same way on the subspace ρ−(R2) as it does on
the subalgebra of translations in Euclidean geometry.

Similar to the above, we get hyperbolic analogues of lines—called geodesics—
by taking images of (nonempty) intersections with Q−1(1) of 2-dimensional
linear subspaces in R3. Naturally, these geodesics happen to be equivalent
to subsets of the form q

O(2)
(g exp(Rρ−(v))) for some g ∈ PO(1, 2) and some

nonzero v ∈ R2. Circles follow a similar pattern to before as well.

3.5. Affine geometry

Expand this section and make it better. Attention to the change in
isotropy helps solidify the general intuition for these geometries as struc-
tures on principal bundles.

At the end of the last chapter, we also described how the behavior of lines
and parallelism in Euclidean geometry came from the closed normal sub-
group of translations R2 acting simply transitively on the Euclidean plane.
In other words, in a model geometry (G,H) such that the model group G
has a closed normal subgroup isomorphic to R2 that acts simply transitively
on G/H, we should get the same notions of lines and parallelism.

To give another example of this, consider the Lie group Aff(2) of trans-
formations of the plane generated by translations and (not necessarily iso-
metric) linear transformations. This is the group of affine transformations
of the plane, and by essentially the same argument we made for I(2), we
get an isomorphism Aff(2) ≃ R2 ⋊GL2R. The model (Aff(2),GL2R) gives
(2-dimensional) affine geometry.

Instead of the orthonormal frame bundle of R2, we identify Aff(2) with
the full frame bundle of R2.

Definition 3.6. A frame over a point x ∈ R2 is a linear isomorphism from
R2 ≈ T0R2 to TxR2.

As before, elements g ∈ Aff(2) are identified with their pushforwards
at the origin g∗ : T0R2 → Tg(0)R2, and we get the natural bundle map

q
GL2 R : Aff(2) → R2 ∼= Aff(2)/GL2R given by g 7→ g(0) ∼= gGL2R.

It is worth spending some time thinking about what it is like to be a
pedestrian on the affine plane. We are accustomed to only being able to
rotate on the spot, but in affine geometry, we have a much wider range of
options. For example, imagine “rotating” by the unipotent transformations
[ 1 t
0 1 ]: our notion of “forward” remains the same, but our notion of “left”
skews forward by t.
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Figure 8. Right-translating by [ 1 1
0 1 ] looks quite different from just ro-

tating on the spot

We can also rescale ourselves by right-translating by a linear transfor-
mation of the form λ1 for some λ > 0. For λ ∈ (0, 1), such transformations
shrink us, and for λ ∈ (1,+∞), they expand us.

Figure 9. Right-translating by 1
2
1 rescales us by 1/2

We can, again, define lines as subsets of Aff(2)/GL2R ∼= R2 of the
form q

GL2 R(g exp(Rv)) for some g ∈ Aff(2) and some nonzero translational

velocity v ∈ R2 < aff(2). This definition coincides with the usual notion of
line, and parallelism works the same as it does in Euclidean geometry by
the argument from last lecture.

Of course, we already knew that lines and parallelism would be the same
as before; that was the point. We start to see changes when we try to use
the definition of circles from last time. Indeed, for a ∈ Aff(2) and x ∈ R2,
consider the set

Ca(x) := {q
GL2 R(ga) : g ∈ q−1

GL2 R(x)}.

For a ∈ GL2R, Ca(x) is just the point x. For a ∈ τv GL2R for some nonzero
v ∈ R2, however,

q
GL2 R(ga) = q

GL2 R(τx ◦A ◦ τv) = q
GL2 R(τx+A(v))

for some A ∈ GL2R such that g = τx◦A, hence Ca(x) is the set x+GL2R·v =
R2 \ {x}, the set of all points on the plane other than x. In other words, a
nontrivial “affine circle” centered at a point will just be the complement of
that point.
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3.6. Comparing model geometries

[Extension functors?]

3.7. What makes an interesting model geometry?

Knowing that the geometric properties of models ultimately come from the
behavior of their symmetries, it should not be especially surprising to learn
that Lie-theoretically interesting pairs (G,H) tend to give geometrically in-
teresting model geometries. Of course, we are then led to an obvious ques-
tion: “What are some ways to identify Lie-theoretically interesting models?”

While the matter of what makes a particular Lie group or subgroup
“interesting” is somewhat subjective, there are two main classes of models
that are generally agreed to give compelling examples. The first, and also
by far the most well-understood, are the so-called reductive geometries.

Definition 3.7. A model (G,H) is said to be reductive3 if and only if there
exists an AdH -invariant subspace m that is complementary to h in g, so that
g = m⊕ h as an H-representation.

All of the model geometries presented so far have been reductive; the
subspace of “translations” that we constructed for each of them is precisely
the AdH -invariant complement in the above definition.

The other major class of examples—currently the one that most re-
searchers are (justifiably) excited about—are the parabolic geometries, which
consist of a pair (G,P ) where G is a semisimple Lie group and P is a para-
bolic subgroup. Unfortunately, these will require a considerable amount of
set-up to understand intuitively, so we will wait until later in the book to
give the relevant definitions.

3Note that this is different from requiring that G or H be reductive Lie groups.





Chapter 4

Geometry from Motion

We live within a geometric world, interacting with geometric phenomena
almost constantly as part of being alive. Our minds must, then, have some
way of interpreting this geometric information from the world around us.
Can we describe this mechanism through which we perceive our ambient
geometry, and if so, then can we encode it into diffeo-geometric terms?

This is the key question we will seek to answer in this chapter: how do
we formalize the way in which we experience geometry?

4.1. How to walk in a straight line

To answer this question, let us start with a seemingly innocuous observation:
human beings often move along geodesic paths. When we cross the street,
for example, we typically walk straight across. As we move along a geodesic
path, our minds must somehow interact with our ambient geometry—at the
very least to tell our bodies what to do—so if we examine how we think
about moving when we walk along geodesic paths, then we might be able to
answer our question.

In an effort to negate any obfuscatory sensory stimuli, imagine that we
blindfold ourselves, plug our ears, and then have someone take us to an
unfamiliar location with plenty of open space to walk around in. For the
purposes of this thought experiment, assume that we know nothing about
our surroundings except that we can move freely without risk of injuring
ourselves. Now, in this situation, we ask ourselves: how do we move in a
straight line?

After some thought, most people seem to answer fairly similarly: to walk
in a straight line, we simply “pick a direction, and then keep going in that

37



38 4. Geometry from Motion

direction (until we hit some kind of obstacle)”. Crucially, the language used
to describe this motion almost always implicitly assumes that the direction in
which we are moving is, in some way, constant. This implies that, formally,
we are somehow comparing tangent vectors from different tangent spaces
in order to determine whether two velocities are pointed in the “same”
direction.

Consider how we pick a given direction in the situation of our thought
experiment. Since we do not know anything about our surroundings, we
cannot use them to specify a direction; the only thing we can use for reference
is ourselves. With this in mind, our formalization of this mechanism for how
we interact with our ambient geometry should start to sound very familiar,
because this forces us to name directions in terms of words like “forward”
and “left” that only reference ourselves and our configuration within the
geometry.

Of course, “forward” and “left” depend upon our configuration, so if we
change our configuration, then “forward” and “left” change as well. This
means that the mechanism formalizing how we interact with the geometry
around us relies on the space G of configurations for ourselves over the space
M that we are walking around in. On the other hand, without information
from our surroundings, there is nothing to distinguish between different
configurations lying over the same point of M ; they should all, in some
sense, be “the same”. Formally, this means that we have a group H, which
we might as well assume to be a Lie group, that acts transitively on all of the
different configurations lying over a given point of M . Because turning in
some direction should always result in a different configuration, we also want
this action to be free, and since each point of M should allow for the same
range of configurations, this free action should extend to all of G, acting
transitively on the space of configurations lying over each point. In other
words, we can think of our configuration space G as a principal H-bundle
over the space M that we are walking around in, with a quotient map that
we will call qH : G →M .

Even without knowing where we are in the geometry, we can describe
our motion within the configuration space G using words like “forward” or
“left” or “turn left (counterclockwise)”, since these terms are meaningful
regardless of our current configuration within the geometry. To formalize
this, we consider a constant vector space g of instantaneous motions and
use a g-valued one-form ω to identify each space of velocities inside the
configuration spaceG with this constant vector space, allowing us to describe
vectors in arbitrary tangent spaces using terms like “forward” that we can
prescribe for the constant vector space.



4.2. The definition of Cartan geometries 39

Within the context of our current example, we are thinking of M as a
2-dimensional manifold (the floor we are walking on), with the Lie group
H corresponding to either O(2) or SO(2) to represent all the different ways
we can turn on the spot as we stand atop the surface. Our vector space g
of instantaneous motions is then given by the sum of a 2-dimensional space
R2 of velocities—generated by vectors that we can designate as “forward”
and “leftward”—and a 1-dimensional space h ≈ o(2) of angular velocities; in
other words, we can identify the space g of instantaneous motions with i(2),
the Lie algebra of the isometry group of the Euclidean plane. Using this
constant vector space for reference, the mechanism ω allows us to compare
velocities within the configuration space with corresponding instantaneous
motions in i(2) the way we usually do when we, for example, walk in a
straight line. If we want to walk “forward” along a geodesic path, then
we simply move with, at each point in time, a velocity that ω identifies as
“forward” in i(2); writing e1 for the “unit forward” vector in R2 < i(2), this
can be achieved by flowing along the vector field ω−1(e1) as in Figure 1.

Figure 1. Walking forward along a geodesic with unit speed by flowing
along the vector field ω−1(e1)

4.2. The definition of Cartan geometries

At this point, we should hopefully all recognize that the mechanism ω bears
striking resemblance to a Maurer-Cartan form. Indeed, it basically fulfills
the same role that the Maurer-Cartan form did for a model geometry (G,H),
both as the defining invariant for the geometric structure and as a way of
describing how we move around within the configuration space. The key
difference, naturally, is that the configuration space G, while still a principal
H-bundle over the base space M , is not necessarily a Lie group G anymore.

On the other hand, it did look like a Lie group; while the configuration
space G might not have literally been I(2) in our example, the geometry
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clearly resembled that of the model geometry (I(2),O(2)). In fact, one might
even say that the geometry determined by the pair (G, ω) was modelled on
(I(2),O(2)).

In general, we can model such Cartan geometries (G, ω) on any model
geometry (G,H) that we want. The one-form ω will, then, be an example
of what we will call a Cartan connection, but first, we need to specify a few
criteria that it must satisfy. These three criteria, while they may appear
intimidating at first glance, actually just encode “common sense” things
that, implicitly, we are probably already assuming about ω.

First, and most obviously, we want ω to identify each tangent space of G
with the constant space g of instantaneous motions. The whole point of ω is
to allow us to consistently describe arbitrary velocities in the configuration
space in terms of corresponding elements of g; it would be silly to somehow
forget what “forward” means at certain points, for example. Formally, this
just means that, for each configuration g ∈ G, the map

ωg : TgG → g

should be a linear isomorphism.

Second, when we turn on the spot, the ground beneath us should stay
where it is, even though our description of it changes. To see what we mean
by this, imagine we are standing on top of an arrow painted onto the ground,
facing toward its tip as in Figure 2.

Figure 2. If we start pointed in the direction indicated by an orange
arrow painted onto the ground, and then we rotate by some angle θ,
then our description using ω of the direction indicated by the arrow is
rotated in the opposite direction by the same angle θ
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If we turn ourselves on the spot by an angle of θ, then the painted
arrow does not move, but we do. In particular, the arrow no longer points
“forward” for us; from our new perspective, the arrow has rotated in the
opposite direction by the same angle θ. Formally, if we started at g ∈ G,
then the arrow specifies a vector v ∈ Tq

H
(g)M , and we can lift this to a

vector v̂ ∈ (qH )
−1
∗g(v) ⊆ TgG. If we then right-translate by h ∈ H, pushing

v̂ ∈ TgG to Rh∗ v̂ ∈ TghG, then our description ωgh(Rh∗ v̂) of Rh∗ v̂ using ω
is given by applying the inverse of h to the original description ωg(v̂). More
succinctly, for each h ∈ H, R∗

h ω = Adh−1 ω.

Third, moving with a given angular velocity should always correspond to
rotating with that angular velocity. In the context of our example modelled
on (I(2),O(2)), consider the curve γ : R → G given by t 7→ g exp(t[ 0 −1

1 0 ]),

where [ 0 −1
1 0 ] ∈ o(2) ≈ h is the “unit counterclockwise” angular velocity and

g ∈ G. As before, we would describe the motion along γ within the principal
O(2)-bundleG as rotating on the spot with constant “unit counterclockwise”
angular velocity for time t, and since ω is there to describe motion within
the configuration spaceG in precisely this way, we want its description of the
velocities of γ to agree with this. Therefore, we want ω(γ̇(t)) = [ 0 −1

1 0 ] for all
t, since γ is moving with constant “unit counterclockwise” angular velocity.
In general, we will have a subalgebra h ≤ g corresponding to the isotropy
H, and we want ω to use the elements of h to describe their corresponding
right-actions on the principal H-bundle G. Formally, this means that, for
Y ∈ h, flowing for time t along the vector field ω−1(Y ) should be equivalent
to right-translation by exp(tY ): exp(tω−1(Y )) = Rexp(tY ).

With these three criteria, we can finally define Cartan geometries.

Definition 4.1. Let (G,H) be a model and M be a smooth manifold.
A Cartan geometry of type (G,H) over M is a pair (G, ω), where G is
a principal H-bundle over M with quotient map qH : G → M and ω is
a g-valued one-form—called the Cartan connection—on G satisfying the
following three criteria:

• For every g ∈ G, ωg : TgG → g is a linear isomorphism.

• For every h ∈ H, R∗
h ω = Adh−1 ω.

• For every Y ∈ h and t ∈ R, exp(tω−1(Y )) = Rexp(tY ).

To summarize, a Cartan geometry (G, ω) of type (G,H) overM consists
of a principal H-bundle G, which we think of as the space of configurations
for ourselves as pedestrians on or within the spaceM , together with a Cartan
connection ω, which is a g-valued one-form on G that describes velocities
within the configuration space in terms of the constant vector space g of
instantaneous motions. The Cartan connection ω is required to satisfy three
criteria that, while initially impressive-looking, are actually just formalizing
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certain “common sense” stipulations that we likely would have assumed
about ω anyway. Finally, the geometric structure determined by the pair
(G, ω) looks like the geometry of (G,H), with G resembling G, M ∼= G/H
resembling G/H, and ω resembling the Maurer-Cartan form of G.

4.3. Klein geometries and curvature

[Use ωG as the Cartan connection to get an easy example of a Cartan ge-
ometry]

[Comparing Cartan geometries using geometric maps]

[Bumps and hills?]



Chapter 5

How to Pretend to Do
Lie Theory

In the previous chapter, we defined Cartan geometries and saw that they, in
some sense, resemble their archetypal model geometries. Specifically, for a
Cartan geometry (G, ω) of type (G,H), we said that the principal H-bundle
G looked like the Lie group G. This comparison has, so far, been fairly
superficial. After all, G is generally not going to be a Lie group, so we
cannot talk about doing Lie theory on G the way that we can with G.

But what if we could? What if we pretended that G was actually the
Lie group G, and that ω was actually the Maurer-Cartan form ωG?

In this chapter, as fanciful and implausible as it may seem, we will
describe how to do this rather judiciously. The analogy between Lie groups
and Cartan geometries turns out to be surprisingly robust, and as long as
we take the holonomy and topology into account, we can—kind of—treat
Cartan geometries as if they were their model groups.

5.1. Development

Remember to point toward the appendix! We want to completely elim-
inate any barriers to collaboration between Cartan geometers and the
people studying locally homogeneous geometric structures, so we need
them to see that we’re talking about the same things in different ways.
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5.2. Holonomy

5.3. Subgroups and cosets

5.4. Automorphisms of Cartan geometries



Chapter 6

Riemannian Geometry

At some point, we need to give the reader a chapter to put the ideas so
far into more concrete practice. Doing this with Riemannian geometry
here seems like a good choice, though we probably want to do some stuff
with affine geometry too?
We also don’t want to overwhelm the reader with Riemannian geometry
stuff; they’re probably reading these notes because they want to under-
stand parabolic geometries.

Shortlist of potential topics to include:

• Torsion (getting the unique Levi-Civita connection motivates nor-
mality later)

• Model mutations and extension functors (being able to prove the
classification of space forms in three lines is a fairly good indication
of the power of the machinery)

• Isometries?

• Recovering the Riemannian metric and distances?
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Chapter 7

How to Pretend to Do
Representation Theory

[Tractor bundles and tractor connections]

[Levi-Civita and affine connections as examples]
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Chapter 8

Interpreting the Killing
Form

Again, rewrite this so that it looks better and fits well within the book.

The Killing form is an exceptionally powerful idea in Lie theory. It is
the key to understanding much of the structure theory of Lie algebras, and
as such, it will be a vital part of our exploration into parabolic geometries.

Unfortunately, the Killing form is quite tricky to understand intuitively. To be clear, I
do not consider
“it’s just the
trace form” to
be intuition.
Given a pair of
elements in a Lie
algebra, we can
obviously com-
pute the Killing
form applied to
that pair, but
that ultimately
just gives us a
number.
Visually, what
is that number
telling us?

This lecture and its sequel are the result of nearly a decade of trying to
understand the intuition behind the Killing form; I am still not entirely
satisfied—perhaps after another eight years I’ll have even better answers—
but I hope that, by sharing this, I can help you avoid struggling with it as
much as I did.

The lecture should proceed as follows:

• Review the definition of the Killing form

• Rediscover a convincing reason for the conic section terminology in
the classification of elements of sl2R

• Compare the Killing form on sl2R to the notion of eccentricity for
conic sections

• Learn how to interpret the Killing form for general Lie algebras

As we said above, a fundamental understanding of the Killing form will
be crucial for the lectures to come. In the next lecture, we will present the
Killing form in a more geometric context, after which we will finally be ready
to define parabolic subgroups.
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8.1. Introduction

To start, let’s define the Killing form.

Definition 8.1. The Killing form ŋ on a Lie algebra g is the symmetric
bilinear form given by ŋ(X,Y ) := tr(adX ◦ adY ).

As an example, let us look at sl2R. For [ a b
c −a ], [

z y
x −z ] ∈ sl2R,[[

a b
c −a

]
,

[[
z y
x −z

]
,

[
0 0
1 0

]]]
=

[[
a b
c −a

]
,

[
y 0

−2z −y

]]
=

[
−2bz −2by

2cy + 4az 2bz

]
,

[[
a b
c −a

]
,

[[
z y
x −z

]
,

[
1 0
0 −1

]]]
=

[[
a b
c −a

]
,

[
0 −2y
2x 0

]]
=

[
2(bx+ cy) −4ay

−4ax −2(bx+ cy)

]
,

and [[
a b
c −a

]
,

[[
z y
x −z

]
,

[
0 1
0 0

]]]
=

[[
a b
c −a

]
,

[
−x 2z
0 x

]]
=

[
−2cz 4az + 2bx
−2cx 2cz

]
,

so

ŋ
(
[ a b
c −a ], [

z y
x −z ]

)
= tr

(
ad[ a b

c −a

] ◦ ad[ z y
x −z

])
= 2cy + 4az + 2(bx+ cy) + 4az + 2bx

= 8az + 4(bx+ cy).

In particular, note that the elements [ 1 0
0 −1 ], [

0 1
1 0 ], and [ 0 −1

1 0 ] are orthogonal
with respect to ŋ, with

ŋ([ 1 0
0 −1 ], [

1 0
0 −1 ]) = ŋ([ 0 1

1 0 ], [
0 1
1 0 ]) = 8

and

ŋ([ 0 −1
1 0 ], [ 0 −1

1 0 ]) = −8,

so that ŋ is nondegenerate on sl2R with signature (2, 1).

Arguably one of the main reasons that the Killing form is so remarkably
useful is that it is intrinsic to the Lie algebra itself, so that it does not depend
on any particular description of its elements. Formally, this just means that
the Killing form is automorphism-invariant.
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Proposition 8.2. The Killing form is invariant under automorphisms of
the Lie algebra. In other words, if ϕ is an automorphism of g and X,Y ∈ g,
then ŋ(ϕ(X), ϕ(Y )) = ŋ(X,Y ).

Proof. Because ϕ is an automorphism, [ϕ(X), Y ] = ϕ([X,ϕ−1(Y )]), hence
adϕ(X) = ϕ ◦ adX ◦ϕ−1. Thus,

ŋ(ϕ(X), ϕ(Y )) = tr(adϕ(X) ◦ adϕ(Y ))

= tr((ϕ ◦ adX ◦ϕ−1) ◦ (ϕ ◦ adY ◦ϕ−1))

= tr(ϕ ◦ (adX ◦ adY ) ◦ ϕ−1)

= tr(adX ◦ adY ) = ŋ(X,Y ). □

Note that, for every g ∈ G, Adg is an automorphism of g, so forX,Y, Z ∈
g, ŋ(Adexp(tX)(Y ),Adexp(tX)(Z)) = ŋ(Y,Z). Differentiating this, we get
another useful property of the Killing form.

Corollary 8.3. For X,Y, Z ∈ g, ŋ(adX(Y ), Z) + ŋ(Y, adX(Z)) = 0.

Even with just this information so far, the Killing form lets us prove
very interesting things.

Proposition 8.4. The Lie algebra sl2R is isomorphic to o(1, 2).

Proof. Consider the symmetric bilinear form −ŋ on the 3-dimensional vec-
tor space sl2R. By Corollary 8.3, for X,Y, Z ∈ sl2R,

−ŋ(adX(Y ), Z)− ŋ(Y, adX(Z)) = 0,

so under the adjoint representation, sl2R maps into the Lie algebra o(−ŋ) ≈
o(1, 2). Since the adjoint representation of sl2R is injective and dim(sl2R) =
3 = dim(o(1, 2)), this means that the adjoint representation gives an iso-
morphism of sl2R with o(1, 2). □

An explicit realization of this isomorphism ρ : sl2R → o(1, 2) is given by[
a b
c −a

]
7→

 0 b+ c 2a
b+ c 0 c− b
2a b− c 0

 ,
with inverse ρ−1 : o(1, 2) → sl2R given by0 r s

r 0 −t
s t 0

 7→ 1

2

[
s r + t

r − t −s

]
.

We’ll use this to relate elements of sl2R to hyperbolic geometry.
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8.2. Classification of elements of sl2R

Elements of sl2R have a well-known classification using the terminology of
conic sections: every X ∈ sl2R is either hyperbolic, parabolic, or elliptic.

Definition 8.5. Suppose X ∈ sl2R, viewed as a linear endomorphism of
R2.

• If X is diagonalizable over R, then we say that X is hyperbolic.

• If X is nilpotent, then we say that X is parabolic.

• If X has purely imaginary eigenvalues, then we say that X is ellip-
tic.

It’s not too difficult to see that every nonzero X ∈ sl2R falls into ex-
actly one of these three categories: because X has trace 0 by definition,
the complex eigenvalues of X must be λ and −λ for some λ ∈ C. Since X
is a real matrix, the eigenvalues must be complex conjugates of each other
if they are not real, so if they are not real, then λ and −λ = λ̄ must be
purely imaginary. If λ = 0 = −λ and X ̸= 0, then X must be nilpotent.
Finally, if λ and −λ are real and nonzero, then X is diagonalizable over R
by definition.

Of course, none of this explains why we’re using this conic section ter-
minology. Where does this terminology come from?

Recall that our model for the hyperbolic plane was (PO(1, 2),O(2)), so
that elements of o(1, 2) determine one-parameter subgroups of hyperbolic
isometries. We also had a projection map pr : H2 → R2, given by identifying
H2 ∼= PO(1, 2)/O(2) with the sheet through e1 of the hyperboloid Q−1(1)
for Q(ae1+be2+ce3) = a2−b2−c2 and then projecting to the plane ⟨e2, e3⟩,
which allowed us to topologically identify H2 with R2.

Utilizing the isomorphism ρ : sl2R → o(1, 2), let us look at some one-
parameter subgroups of hyperbolic isometries corresponding to elements of
sl2R.

The parabolic element [ 0 1
0 0 ] of sl2R maps to

ρ([ 0 1
0 0 ]) =

0 1 0
1 0 −1
0 1 0

 ,
so

exp(tρ([ 0 1
0 0 ])) =

1 + t2

2 t − t2

2
t 1 −t
t2

2 t 1− t2

2

 .
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Figure 1. The map pr : H2 → R2 identifies the point ae1 + be2 + ce3 ∈
Q−1(1) with the point [ bc ] ∈ R2

Applying this to e1, thought of as the identity coset of PO(1, 2)/O(2), and
looking at the image under the projection pr, we get

pr(exp(tρ([ 0 1
0 0 ])) · e1) =

[
t

t2/2

]
.

In particular, the orbit of this one-parameter subgroup through e1 projects
to a parabola! Indeed, all of its orbits on H2 project to parabolas!

Figure 2. The orbits of the one-parameter subgroup exp(tρ([ 0 1
0 0 ])) all

project to parabolas!

More generally, let’s consider the element 1
2 [

0 r+1
r−1 0 ]. For r2 > 1, this

element has eigenvalues λ = 1
2

√
r2 − 1 and −λ, so it is diagonalizable over
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R, hence it is hyperbolic. In this case, we get corresponding one-parameter
subgroups

exp

(
t

2
ρ([ 0 r+1

r−1 0 ])

)
=


r2 cosh(

√
r2−1t)−1

r2−1
r sinh(

√
r2−1t)√

r2−1
−r cosh(

√
r2−1t)−1

r2−1

r sinh(
√
r2−1t)√

r2−1
cosh(

√
r2 − 1t) − sinh(

√
r2−1t)√

r2−1

r cosh(
√
r2−1t)−1

r2−1
sinh(

√
r2−1t)√

r2−1

r2−cosh(
√
r2−1t)

r2−1

 ,

and the orbit of this through e1 projects to (the connected component
through 0 of) the hyperbola given by(

y +
r

r2 − 1

)2

− x2

r2 − 1
=

(
r

r2 − 1

)2

.

Figure 3. When r2 > 1, the orbits of the one-parameter subgroup
exp( t

2
ρ([ 0 r+1

r−1 0 ])) all project to hyperbolas with eccentricity |r|

In fact, every orbit of this one-parameter subgroup projects to (a connected
component of) a hyperbola with eccentricity1 |r|.

Finally, as you may have guessed by now, the element 1
2 [

0 r+1
r−1 0 ] is

elliptic for r2 < 1. Such elements give us one-parameter subgroups

exp

(
t

2
ρ([ 0 r+1

r−1 0 ])

)
=


1−r2 cos(

√
1−r2t)

1−r2
r sin(

√
1−r2t)√
1−r2

−r 1−cos(
√
1−r2t)

1−r2

r sin(
√
1−r2t)√
1−r2

cos(
√
1− r2t) − sin(

√
1−r2t)√
1−r2

r 1−cos(
√
1−r2t)

1−r2
sin(

√
1−r2t)√
1−r2

cos(
√
1−r2t)−r2

1−r2

 ,

whose orbits project to ellipses of eccentricity |r| (except for the orbit thatIt’s probably
worth noting
as well, as I re-
membered the
night before the
lecture, that el-
liptic and hy-
perbolic one-
parameter sub-
groups for SL2R
also trace out
ellipses and hy-
perbolas from
the action on
R2.

1Recall that the eccentricity of a conic is the ratio of the distance of a given point from a

point called the “focus” and the distance of that same point from a line called the “directrix”. The
actual definition isn’t really that important though; the significance of the eccentricity is that it
completely determines a conic section up to similarity transformations, with ellipses of eccentricity
in [0, 1), parabolas of eccentricity 1, and hyperbolas of (finite) eccentricity greater than 1.
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consists of the fixed point of the one-parameter subgroup). In particular,
for r ̸= 0, the orbit of exp

(
t
2ρ([

0 r+1
r−1 0 ])

)
through e1 projects to the ellipse

determined by the equation(
y − r

1− r2

)2

+
x2

1− r2
=

(
r

1− r2

)2

.

Figure 4. When r2 < 1, the orbits of the one-parameter subgroup
exp( t

2
ρ([ 0 r+1

r−1 0 ])) all project to ellipses with eccentricity |r|, except for
the one orbit corresponding to the fixed point

In general, elements of sl2R are elliptic, parabolic, or hyperbolic accord-
ing to whether the orbits of their one-parameter subgroups project to conic
sections of eccentricity in [0, 1), equal to 1, or greater than 1, respectively.

8.3. The Killing form on sl2R

Eccentricity gives us a parameter that uniquely determines a conic section up
to similarity transformations. We would like something similar for elements
of sl2R: a real number that completely characterizes an element of sl2R up to
automorphism. As it turns out, the Killing form gives us such a parameter.

Theorem 8.6. For nonzero X,Y ∈ sl2R, there is an automorphism ϕ such
that ϕ(X) = Y if and only if ŋ(X,X) = ŋ(Y, Y ).

Proof. This is actually much less daunting than it seems. To start, auto-
morphisms of sl2R are exactly conjugations by elements of GL2R, so this
is just a fancy way of saying that X and Y are conjugate over R whenever
ŋ(X,X) = ŋ(Y, Y ). To show this, we just find representatives of each conju-
gacy class and evaluate ŋ on them; since ŋ is invariant under automorphisms,
the choice of representative does not matter.
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The Jordan decomposition tells us that every nonzero X ∈ sl2R is con-
jugate over C to precisely one matrix of the form [ λ 0

0 −λ ], [
0 1
0 0 ], or [ iλ 0

0 −iλ ]
for some λ > 0. Since real matrices that are conjugate over C are conju-
gate over R and [ 0 −1

1 0 ] is conjugate to [ i 0
0 −i ] over C, this means that every

nonzero X ∈ sl2R is conjugate over R to exactly one element of the form
[ λ 0
0 −λ ], [

0 1
0 0 ], or [

0 −λ
λ 0

] for some λ > 0.

Thus, because we have ŋ([ λ 0
0 −λ ], [

λ 0
0 −λ ]) = 8λ2, ŋ([ 0 1

0 0 ], [
0 1
0 0 ]) = 0, and

ŋ([ 0 −λ
λ 0

], [ 0 −λ
λ 0

]) = −8λ2, which never coincide for λ > 0, each conjugacy
class is uniquely determined by the value of the Killing form. □

Figure 5. We can imagine ŋ(X,X) for X ∈ sl2R to be a parame-
ter describing X on a continuum where negative values correspond to
diagonalizability over C with imaginary eigenvalues, 0 corresponds to
nilpotence, and positive values correspond to diagonalizability over R

From the above proof, we see that an element X ∈ sl2R is elliptic if and
only if ŋ(X,X) < 0, parabolic if and only if ŋ(X,X) = 0, and hyperbolic
if and only if ŋ(X,X) > 0. In particular, we can imagine ŋ(X,X) to be a
parameter describing X on a continuum where negative values correspond
to diagonalizability over C with imaginary eigenvalues, 0 corresponds to
nilpotence, and positive values correspond to diagonalizability over R.

8.4. What does the Killing form tell us?

For general Lie algebras g, the Killing form obviously isn’t going to com-
pletely determine elements up to automorphism the way it does for sl2R.
Nevertheless, ŋ can still tell us a lot about how elements of g behave, if we
look at it the right way.
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To start, note that ŋ(X,X) = tr(ad2X) is the sum of the squares of the
eigenvalues of adX . This tells us, in particular, that if we want to understand
ŋ, then we need to look at elements, as well as notions like diagonalizability
and nilpotence, from the perspective of the adjoint representation. Going
back to the special case of sl2R, for example, we can reclassify elements in
terms of the adjoint representation.

Definition 8.7. Suppose X ∈ sl2R.

• X is hyperbolic if and only if adX is diagonalizable over R.
• X is parabolic if and only if it is ad-nilpotent.

• X is elliptic if and only if adX is diagonalizable over C with eigen-
values in iR.

Even in a general real Lie algebra g, if adX is diagonalizable over R, then
we will have ŋ(X,X) > 0. Of course, we won’t necessarily get the converse
as we do for sl2R, but if ŋ(X,X) > 0, then we can say that the sum of the
squares of the real parts of the eigenvalues of adX is bigger than the sum
of the squares of the imaginary parts. In other words, ŋ(X,X) > 0 if and
only if the real parts of the eigenvalues contribute the most to the behavior
of adX , in which case we can think of it as “mostly scaling”.

Similarly, when ŋ(X,X) < 0, the sum of the squares of the imaginary
parts of the eigenvalues of adX is more than the sum of the squares of the
real parts. In particular, if adX is diagonalizable over C with all eigenvalues
in iR, then ŋ(X,X) < 0, and while we can’t get a true converse in general,
we can think of adX in this case as being “mostly rotation”. Notably, we
will have ŋ(X,X) < 0 whenever X comes from a subalgebra corresponding
to a compact subgroup and X isn’t central.

Figure 6. Attempted illustrations of the terms “mostly scaling” and
“mostly rotation”
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Finally, ad-nilpotent elements X will satisfy ŋ(X,X) = 0. Again, unlike
in the case of sl2R, ŋ(X,X) = 0 doesn’t necessarily guarantee that adX is
nilpotent, but it does mean that the sum of the squares of the eigenvalues
of adX is 0. We can kind of think of this as meaning that “the compact and
scaling parts of adX cancel out”.

Exercise. Suppose K is a compact Lie group. What can we say about
the Killing form on the Lie algebra k? (Note that K could have nontrivial
center.)

Exercise. Suppose N is a nilpotent Lie group. What can we say about the
Killing form on the Lie algebra n?

Exercise. Using that elements of the ideal of translations in i(2) are ad-
nilpotent, describe the Killing form on i(2) without performing any compu-
tations.

Of course, we would also like to be able to say things about ŋ(X,Y ) for
X ̸= Y . Using polarization,

ŋ(X,Y ) =
1

2
(ŋ(X + Y,X + Y )− ŋ(X,X)− ŋ(Y, Y )).

This is particularly useful when X and Y are ad-nilpotent, in which case
ŋ(X,Y ) = 1

2ŋ(X+Y,X+Y ). Thus, for ad-nilpotent X and Y , ŋ(X,Y ) > 0
when adX+Y is “mostly scaling” and ŋ(X,Y ) < 0 when adX+Y is “mostly
rotation”. For example, ŋ([ 0 1

0 0 ], [
0 0
1 0 ]) > 0 because [ 0 1

0 0 ] + [ 0 0
1 0 ] = [ 0 1

1 0 ] is
“mostly scaling”, and ŋ([ 0 −1

0 0 ], [ 0 0
1 0 ]) < 0 because [ 0 −1

1 0 ] is “mostly rota-
tion”.

Next time, we will focus on g where ŋ is nondegenerate, in which case
we say that g is semisimple. For semisimple Lie algebras, the behavior of
ŋ described above suggests a particular form for g: there should be an ad-
diagonalizable part together with ad-nilpotent elements occurring in pairs
on which the Killing form is nonzero.



Chapter 9

Noncompact
Riemannian Symmetric
Spaces

Again, rewrite this so that it looks better and fits well within the book.
Specifically, discuss the maximal compact subgroup stuff a bit more?
Also, move the stuff about parabolic subgroups to the next chapter? Al-
ternatively, consider keeping it here and reframing the next chapter to
just cover the filtration stuff?

Whenever G is a Lie group with finitely many connected components,
a fundamental result (see, for example, Theorem 14.1.3 of [4]) in the gen-
eral structure theory of Lie groups tells us that G has a maximal compact
subgroup, and that all maximal compact subgroups are conjugate to each
other. Moreover, maximal compact subgroups contain all of the nontrivial
aspects of the topology of G: for K ≤ G a maximal compact subgroup, G is
diffeomorphic—though generally not isomorphic—to the product of K with
a vector space.

We saw this, for example, in Euclidean geometry: I(2), viewed as the
orthonormal frame bundle over R2, was clearly diffeomorphic to R2 ×O(2);
indeed, it was isomorphic to R2 ⋊ O(2). Here, O(2) is a maximal com-
pact subgroup of I(2), and all other maximal compact subgroups of I(2) are
conjugate to O(2).

59
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As we said earlier, if we want to find geometrically interesting models,
then it makes sense to look for Lie-theoretically interesting models. Choos-
ing our isotropy to be a maximal compact subgroup K is amongst the most
Lie-theoretically interesting choices we can make in this case, and if, more-
over, we choose our model group G to be a semisimple Lie group, then the
underlying geometry is, as we would expect, remarkably deep. Such models
(G,K) correspond to Riemannian symmetric spaces of noncompact type,
and the Killing form gives several key tools for studying them, including:

• A ŋ-orthogonal decomposition of the Lie algebra of the model group,
called the Cartan decomposition

• A canonical Riemannian metric and notion of distance on G/K

• A convenient description of the stabilizers of “points at infinity”

While this doesn’t directly help us understand the Killing form unless
we already have experience with symmetric spaces, it does let us visualize
several important interactions between the Killing form and the underly-
ing representation theory. In particular, it will give us insight into what
parabolic subgroups look like, and in the next lecture, we will explore our
algebraic definition of parabolic subgroups and connect it to the more im-
mediately geometric idea of “points at infinity”.

9.1. Riemannian symmetric spaces of noncompact type

For the rest of the lecture, let us fix a model (G,K), where G is a semisimple
Lie group with finitely many connected components such that the identity
component G◦ has finite center and K is a maximal compact subgroup. In
this case, the notion of Killing perpendiculars gives us a very convenient
description of the topological decomposition of G as a product of K with a
vector space.

Definition 9.1. For a subspace V ⊆ g, its Killing perpendicular (or Killing
perp) is the subspace

V ⊥ := {X ∈ g : ŋ(X, v) = 0 for each v ∈ V }.

In our case, the Lie algebra g decomposes, as a vector space, as a ŋ-
orthogonal direct sum k⊥ ⊕ k, where the subspace k⊥ is the Killing perp of
the Lie subalgebra k corresponding to K. The exponential map restricts
to an embedding on k⊥, so that exp(k⊥) is diffeomorphic to k⊥, and more-
over, the map µ : exp(k⊥)×K → G given by applying the group operation
(exp(X), k) 7→ exp(X)k is a diffeomorphism. In particular, the usual quo-
tient map qK : G → G/K restricts to a diffeomorphism from exp(k⊥) to
G/K, and we get a projection map

pr : G→ exp(k⊥),
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which induces a section of qK .

Figure 1. The projection pr : G → exp(k⊥) gives a section to the
natural quotient map qK : G → G/K

The decompositions g = k⊥ ⊕ k for the Lie algebra and G = exp(k⊥)K
for the Lie group are both called the Cartan decomposition corresponding
to K. At the level of Lie algebras, we can think of this as a decomposition
into symmetric and skew-symmetric elements.

We’ve actually seen this before with hyperbolic geometry. In that case,
our model (G,K) had G = PO(1, n) and K ≃ O(n), and we had a nice pro-
jection map that we used to give a diffeomorphism from PO(1, n)/O(n) =
Hn to Rn after recognizing a subspace

k⊥ =

{(
0 v⊤

v 0

)
: v ∈ Rn

}
vaguely analogous to translations in the Euclidean case. It turns out that
the symmetric space projection map pr : PO(1, n) → exp(k⊥) for hyperbolic
geometry is given by (

a α
x R

)
7→

(
a x⊤

x 1+ 1
1+axx

⊤

)
,

and the image of this projection is uniquely determined by x ∈ Rn. After
identifying pr(( a α

x R )) with x, the induced map from PO(1, n)/O(n) to Rn

happens to coincide with that nice projection map that we used to identify
Hn ∼= Rn ∼= exp(k⊥).

For Cartan decompositions, our heuristic for the Killing form works
exactly as expected: on the subalgebra k corresponding to the maximal
compact subgroup, ŋ is negative-definite, and on the subspace k⊥, whose
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elements generate scaling transformations in the adjoint representation, ŋ is
positive-definite. This gives us an easy way of describing the pushforward
projection pr∗ : g → k⊥ at the identity: for X ∈ g, the projection pr∗(X) ∈
k⊥ is the element X ′ ∈ X + k for which ŋ(X ′, X ′) is maximal. Moreover,

ŋ(X,Y ) = ŋ(pr∗(X),pr∗(Y )) + ŋ(X − pr∗(X), Y − pr∗(Y )),

so we can genuinely decompose ŋ(X,X) as the sum of the “scaling part”
and the “compact part”, and for X ∈ k⊥, ŋ(X,Y ) = ŋ(X,pr∗(Y )).

Since pr∗ induces an isomorphism between g/k and k⊥, we can identify
the tangent bundle T (G/K) ∼= G ×K g/k with the homogeneous vector
bundle G ×K k⊥. This isomorphism also gives us a canonical choice of
Riemannian metric on G/K: ŋ is positive-definite on k⊥, so for X,Y ∈
TgK(G/K), we can define a Riemannian metric pr∗ŋ by

pr∗ŋ(X,Y ) := ŋ(pr∗(Lg−1∗X),pr∗(Lg−1∗ Y )).

By construction, this is invariant under the canonical left-action of G, so it
is a geometric object for the model.

Of course, for Riemannian manifolds, we get an associated notion of
geodesic. As we did before with Euclidean geometry and hyperbolic ge-
ometry, though, we’ll define geodesics in terms of motion rather than the
Riemannian metric. Specifically, we can think of k⊥ as being analogous to
the subspace of translations in Euclidean geometry, and we define geodesics
as (projections of) left-translates of one-parameter subgroups generated by
elements of k⊥.

Definition 9.2. A geodesic for the model geometry (G,K) is a curve γ :
R → G/K of the form t 7→ qK (g exp(tX)) for some g ∈ G and X ∈ k⊥.

As before, this corresponds to starting at some configuration g ∈ G,
picking a velocity X ∈ k⊥, and at each point in time moving with the
velocity that the Maurer-Cartan form identifies with X, so that we move
with “constant velocity”; by construction, every left-translate of a geodesic
is again a geodesic, so geodesics are geometric for (G,K). In this case,
geodesics in our sense coincide with geodesics in the Riemannian sense.

This is, of course, not a very thorough introduction to the topic of Rie-
mannian symmetric spaces of noncompact type. For such an introduction,
we highly recommend [3].

9.2. Asymptotic behavior of geodesics

Another concept that makes sense for Riemannian manifolds is the dis-
tance between two points. Indeed, if we know the projection map pr :
G → exp(k⊥), then distance is fairly straightforward to find in this case:
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Figure 2. Geodesic motion corresponds to starting at some configura-
tion in G, then moving with ωG -constant velocity in k⊥

for elements g0, g1 ∈ G, there is a unique X ∈ k⊥ such that exp(X) =
pr(g−1

0 g1), and the distance dist(qK (g0), qK (g1)) from qK (g0) to qK (g1) is

just
√

ŋ(X,X).

For us, the main use for this is to describe the asymptotic behavior of
geodesics, since this will lead us to parabolic subgroups.

Definition 9.3. Suppose γ1 and γ2 are unit-speed geodesics in G/K. We
say that γ1 and γ2 are asymptotic if and only if the distance dist(γ1(t), γ2(t))
is bounded for t ≥ 0.

This defines an equivalence relation on geodesics, and an equivalence
class of asymptotic geodesics is called a point at infinity.

Definition 9.4. An equivalence class of asymptotic geodesics is called a
point at infinity. For a geodesic γ, we denote its corresponding point at
infinity by γ(+∞).

Topologically, we can identify the space of all points at infinity with the
unit sphere in k⊥, since each Z ∈ k⊥ with ŋ(Z,Z) = 1 uniquely determines a
unit-speed geodesic of the form t 7→ qK (exp(tZ)), and every point at infinity
corresponds to exactly one such geodesic.
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Figure 3. Several asymptotic geodesics and their corresponding point
at infinity

9.3. Prelude to parabolic subgroups

In the trichotomy for elements of sl2R in terms of conic sections from last
time, a considerably more well-known characterization of parabolic trans-
formations is as transformations that fix a single point at infinity for the
hyperbolic plane. With this in mind, it almost wouldn’t be ridiculous to
call the stabilizer subgroup of a point at infinity, or more generally a finite-
index subgroup of such a stabilizer, a parabolic subgroup.

While this does give a mostly valid1 definition for parabolic subgroups,
it would be kind of annoying to use in practice. Imagine we found a closed
subgroup of G and we wanted to check whether it was parabolic; without
more information, we’d basically have to start checking geodesics to see
whether their asymptotic behavior was preserved by our subgroup. We’d
like a more direct definition, preferably one that comes from the structure
of the Lie algebra.

In an attempt to ascertain such a definition, let’s start with a point
γ(+∞) at infinity and try to find its stabilizer. As we mentioned above, we
may assume that our geodesic γ is of the form t 7→ qK (exp(tZ)) for some
Z ∈ k⊥.

An element g ∈ G fixes γ(+∞) if and only if gγ is asymptotic to γ.
Thus, we want to find g ∈ G such that

gγ(t) = qK (g exp(tZ)) = qK
(
exp(tZ)(exp(tZ)−1g exp(tZ))

)
is a bounded distance away from γ(t) = qK (exp(tZ)) for all t ≥ 0, which
amounts to showing that pr(exp(tZ)−1g exp(tZ)) is bounded. In particular,

1It should be noted that some larger subgroups, such as G itself, would be considered para-

bolic by most representation theorists, even though they don’t fix a point at infinity. Our algebraic
definition below accounts for this.
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for g = exp(X) for some X ∈ g, we have

exp(tZ)−1g exp(tZ) = exp(tZ)−1 exp(X) exp(tZ)

= exp(Adexp(tZ)−1(X)),

so we want to find X ∈ g such that pr∗(Adexp(tZ)−1(X)) is bounded for
t ≥ 0.

Because adZ is diagonalizable over R, we can decompose g, as a vector
space, as g− ⊕ g0 ⊕ p+, where g− is the sum of all the negative eigenspaces
for adZ , g0 is the centralizer zg(Z) of Z, and p+ is the sum of all the positive
eigenspaces for adZ . Equivalently, we could define g− as

g− :=
{
X ∈ g : Adexp(tZ)(X) → 0 as t→ +∞

}
and p+ as

p+ :=
{
X ∈ g : Adexp(tZ)−1(X) → 0 as t→ +∞

}
.

Because Adexp(tZ) is an automorphism, both g− and p+ are subalgebras,
which homogeneous dynamicists would call the contracting and expanding
horospherical subalgebras of Z, respectively. (See, for example, the excellent
book [7].)

Crucially, note that Adg(X) has the same eigenvalues in the adjoint rep-
resentation asX, so elements of the expanding and contracting horospherical
subalgebras only have 0 as an eigenvalue under the adjoint representation,
which means that elements of these subalgebras are always ad-nilpotent. In
particular, g− and p+ are always nilpotent subalgebras of g.

Writing X = X− +X0 +X+, with X− ∈ g−, X0 ∈ g0, and X+ ∈ p+, we
see that

pr∗(Adexp(tZ)−1(X)) = pr∗(Adexp(tZ)−1(X−) +X0 +Adexp(tZ)−1(X+))

is bounded for all t ≥ 0 if and only if X− = 0. Thus, the Lie subalgebra of
the stabilizer subgroup for γ(+∞) is precisely p := g0 + p+.

Before moving on, it’s well-worth trying to visualize this decomposition,
since it will be very important from here onward.

Let us once again imagine ourselves as observers in the model group
G, moving geodesically using right-translation by exp(tZ). At each con-
figuration in G, we can use the Maurer-Cartan form ωG to decompose the
tangent spaces according to the decomposition g−+g0+p+ for g. Since g−,
g0, and p+ are subalgebras, the corresponding distributions are integrable,
with integral submanifolds corresponding to the left-cosets of the connected
subgroups generated by each subalgebra.

Let us denote by G− and P+ the connected subgroups generated by g−
and p+, respectively. Then, the integral submanifold for ω−1

G
(g−) through

g ∈ G is precisely gG−, and similarly, gP+ is the integral submanifold for
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Figure 4. Using the Maurer-Cartan form ωG , we can decompose tan-
gent spaces of G as sums of the integrable distributions ω−1

G
(g−),

ω−1
G

(g0), and ω−1
G

(p+)

ω−1
G

(p+) through g. As one might imagine from the term “horospherical
subalgebra”, these left-cosets for G− and P+ project to horospheres under
the quotient map qK .

Consider a starting configuration g ∈ G and an element p ∈ P+, so
that g and gp lie on the same integral submanifold for ω−1

G
(p+). Then,

moving by exp(tZ) at both these points, g goes to g exp(tZ) and gp goes
to gp exp(tZ) = g exp(tZ)(exp(tZ)−1p exp(tZ)). Essentially by definition of
P+, exp(tZ)

−1p exp(tZ) will converge to the identity element as t→ +∞, so
g exp(tZ) and gp exp(tZ) get closer and closer together for larger and larger
t. In other words, motion by exp(tZ) contracts the leaves gP+.

Similarly, motion by exp(tZ) expands the leaves gG− of the distribution
ω−1

G
(g−). We call the foliation from the distribution ω−1

G
(p+) the stable

foliation for Rexp(tZ) and the foliation from ω−1
G

(g−) the unstable foliation
for Rexp(tZ).
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Figure 5. Moving by exp(tZ) contracts the leaves of the stable foliation
generated by ω−1

G
(p+)

We should remark that homogeneous dynamicists are typically inter-
ested in the behavior of elements of G as transformations. Since we
want to consider elements of G in terms of motions here—acting on the
right so that we preserve left-invariance—the roles of the expanding and
contracting horospherical subgroups are reversed: the left-cosets of the
“expanding” horospherical subgroup P+ are contracted by moving by
exp(tZ), and the left-cosets of the “contracting” horospherical subgroup
G− are expanded.

Since Z is centralized by g0, motion by exp(tZ) doesn’t affect the dis-
tribution ω−1

G
(g0): for every X ∈ g0, Rexp(tZ)∗ ω

−1
G

(X) = ω−1
G

(X). We call

the foliation generated by ω−1
G

(g0) the neutral foliation. Since Z obviously
centralizes itself, the leaf of this foliation through g ∈ G will contain the full
geodesic trajectory g exp(RZ) of g. This allows us to imagine these leaves
as “tubes” of asymptotic geodesic trajectories.

For X1 and X2 eigenvectors of adZ with respective eigenvalues λ1 and
λ2, we have

0 = ŋ(adZ(X1), X2) + ŋ(X1, adZ(X2)) = (λ1 + λ2)ŋ(X1, X2),
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Figure 6. Each leaf of the neutral foliation generated by ω−1
G

(g0) con-
sists of a tube of asymptotic geodesic trajectories of the form g exp(RZ)

so ŋ(X1, X2) = 0 unless λ1 + λ2 = 0. In particular, since p+ is the sum of
the positive eigenspaces, this tells us that p+ is ŋ-orthogonal to both itself
and g0, and similarly, g− is ŋ-orthogonal to both itself and g0. Moreover,
because ŋ is nondegenerate, this also tells us that the eigenvalues of adZ
must occur in pairs ±λ, with the eigenspace for λ dual to the eigenspace for
−λ with respect to ŋ, and ŋ must remain nondegenerate when restricted to
the 0-eigenspace g0.

To summarize the picture, we have a tube of asymptotic geodesic tra-
jectories around each configuration g ∈ G, corresponding to the leaf of the
neutral foliation through g, together with two left-cosets gP+ and gG−, cor-
responding to leaves of the stable and unstable foliation respectively, that
are ŋ-orthogonal to the tube. Under the natural quotient map qK , these
left-cosets project to horospheres, with qK (gP+) a horosphere “centered” at
the point at infinity given by following t 7→ qK (g exp(tZ)) as t → +∞ and
qK (gG−) a horosphere “centered” at the point at infinity given by following
t 7→ qK (g exp(tZ)) as t → −∞. These horospheres are tangent at qK (g),
and both are transverse to the image of the leaf of the neutral foliation.

In the semisimple case, we can get a lot of useful intuition for ŋ from
the duality between p+ and g−. For each eigenspace gλ of adZ with positive
eigenvalue λ, there is another eigenspace g−λ with negative eigenvalue −λ,
and they pair together under the Killing form. In the picture above, ω−1

G
(gλ)

is tangent to the stable foliation and ω−1
G

(g−λ) is tangent to the unstable
foliation, and they project to the same subspace of the tangent space under
the natural quotient map qK , so the pairing can sort of be seen from the
canonical Riemannian metric being positive-definite.
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For us, though, the crucial takeaway from this duality is what it tells
us about the horospherical subalgebra p+. We’ve already seen that p+ is
ŋ-orthogonal to both itself and g0. Because each element Y ∈ p+ has an
element X ∈ g− for which ŋ(X,Y ) ̸= 0, this then tells us that p⊥+ is pre-
cisely the Lie subalgebra p of the stabilizer of the point at infinity. By
nondegeneracy of ŋ, we therefore have p⊥ = p+.

We should think of the existence of these nilpotent, horospherical sub-
algebras p+ that are ŋ-orthogonal to all of p as the defining characteristic of
parabolic subalgebras. Indeed, their existence is precisely the property that
we will use to define parabolicity.2

Definition 9.5. A subalgebra p ≤ g is parabolic if and only if p⊥ is a nilpo-
tent subalgebra. A parabolic subgroup P ≤ G, then, is a closed subgroup
whose Lie subalgebra p is parabolic.

Next time, we will take this definition and attempt to build some useful
tools for working with parabolic subgroups. Additionally, we will construct
a fixed point at infinity for each (proper) parabolic subgroup.

2Since this is a somewhat less well-known definition of parabolicity, I should note that I

essentially learned this while perusing [1], which attributes it to Grothendieck and Burstall in
papers that I was unable to find.





Chapter 10

What is a Parabolic
Subgroup?

Again, rewrite this so that it looks better and fits well within the book.
Also, consider whether introducing parabolic subgroups in the previous
chapter and then just doing the structure theory here is better?

Let us first recall the definition of parabolic subgroups from last time.

Definition 10.1. For a subspace V ⊆ g, its Killing perp is the subspace

V ⊥ := {X ∈ g : ŋ(X, v) = 0 for each v ∈ V }.

Definition 10.2. A subalgebra p ≤ g is parabolic if and only if p⊥ is a nilpo-
tent subalgebra. A parabolic subgroup P ≤ G, then, is a closed subgroup
whose Lie subalgebra p is parabolic.

In the last lecture, we spent considerable effort to introduce and moti-
vate these parabolic subgroups in a directly geometric way, as (finite-index
subgroups of) stabilizers of points at infinity for a model (G,K). Toward the
end, we showed that the Lie algebras of such stabilizers satisfy the above al-
gebraic condition. This time, we will verify that these notions of parabolicity
are essentially the same. Along the way, we will introduce some incredibly
useful tools from representation theory, including:

• A filtration of a semisimple Lie algebra g canonically associated to
a parabolic subalgebra p

• An automorphism θ, called a Cartan involution, that swaps horo-
spherical subalgebras

71
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• A grading of a semisimple Lie algebra g underlying the canonical
filtration

Next time, we will see how these tools interact with the geometry of a
model (G,P ), where G is semisimple and P is parabolic. In particular, we
will be able to get a vague picture of the shape of a general parabolic model
geometry.

10.1. A few examples

For a bit of amusement, it is perhaps worth noting that O(2) < I(2) techni-
cally satisfies our definition of parabolicity, since o(2)⊥ is the abelian (hence
nilpotent) subalgebra of translations. However, while we can define par-
abolic subgroups for arbitrary Lie groups, most would consider the idea
of parabolic subgroups to be specific to semisimple Lie groups, for which
the Killing form is nondegenerate. Henceforth, we will focus on semisimple
model groups.

In SL2R, recall that we had a closed subgroup B, which we called a
Borel subgroup1, defined by

B :=

{[
a b
0 a−1

]
: a ∈ R×, b ∈ R

}
,

with Lie subalgebra

b :=

{[
a b
0 −a

]
: a, b ∈ R

}
.

Further, recall that the Killing form on sl2R is given by

ŋ
(
[ a b
c −a ], [

z y
x −z ]

)
= 8az + 4(bx+ cy).

Thus,

ŋ
(
[ a b
0 −a ], [

z y
x −z ]

)
= 8az + 4bx,

which vanishes for all [ a b
0 −a ] ∈ b if and only if x = z = 0; in other words,

b⊥ = ⟨[ 0 1
0 0 ]⟩ =: b+. Since a 1-dimensional subalgebra is necessarily abelian,

this shows that b⊥ is a nilpotent subalgebra, hence b is parabolic.

Similarly, in SL3R, we can define a Borel subgroup B as

B :=


r p q
0 s u
0 0 (rs)−1

 : r, s ∈ R×, p, q, u ∈ R

 ,

1For a real semisimple Lie group, the term “Borel subgroup” refers to either an arbitrary

minimal parabolic subgroup or a specific type of minimal parabolic subgroup that complexifies in
a particularly nice way. I used to believe that the former was the better interpretation, but I’m

reading more stuff by representation theorists working over Q and C, and now I’m not sure. Here,
the usage of the term is correct regardless of which definition we choose.
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the subgroup of upper triangular matrices, with corresponding Lie subalge-
bra

b :=


r p q
0 s u
0 0 −(r + s)

 : r, s, p, q, u ∈ R

 .

The Killing form on sl3R is given by ŋ(R,S) = 6 tr(RS), where the elements
R,S ∈ sl3R are considered as linear endomorphisms of R3 under the “usual”
representation of SL3R. Thus,

ŋ
([ r p q

0 s u
0 0 −(r+s)

]
,
[
m a b
x n c
z y −(m+n)

])
= 6

(
rm+ px+ qz + sn+ uy

+ (r + s)(m+ n)
)

= 6
(
r(2m+ n) + s(m+ 2n)

+ px+ qz + uy
)
,

which vanishes for every r, s, p, q, u ∈ R if and only if x = y = z = 0 and
2m+ n = m+ 2n = 0, which means that m = n = 0 as well. Thus,

b⊥ =


0 a b
0 0 c
0 0 0

 : a, b, c ∈ R

 ,

the nilpotent subalgebra of strictly upper triangular matrices, and b is par-
abolic.

For now, the important thing to note is that we get a b-invariant filtra-
tion2

sl3R = g−2 ⊃ g−1 ⊃ · · · ⊃ g2 ⊃ {0}
of sl3R given by

g−1 :=


m a b
x n c
0 y −(m+ n)

 : m,n, a, b, c, x, y ∈ R ∈ R

 ,

g0 := b =


m a b
0 n c
0 0 −(m+ n)

 : m,n, a, b, c ∈ R ∈ R

 ,

g1 := b⊥ =


0 a b
0 0 c
0 0 0

 : a, b, c ∈ R ∈ R

 ,

g2 := [b⊥, b⊥] =
〈[

0 0 1
0 0 0
0 0 0

]〉
.

2The weird choice of direction for these filtrations bothered me at first too; there’s a very
good reason for it, though, so just go with it.
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For each i and j, one can show that [gi, gj ] ⊆ gi+j . As it turns out, every
parabolic subalgebra has such a filtration canonically associated to it.

10.2. The canonical filtration

We can generalize our observations from b < sl3R to arbitrary parabolic
subalgebras by using the following theorem.

Theorem 10.3. For p a parabolic subalgebra of a semisimple Lie algebra g,
we get a canonical filtration

g = g−k ⊃ g−k+1 ⊃ · · · ⊃ gk ⊃ {0}

of g, defined by g0 = p, g1 = p⊥, gi = [p⊥, gi−1] for each i > 1, and
g−j = (gj+1)⊥ for all j, such that [gi, gj ] ⊆ gi+j for all i and j.

Proof. The basic idea is to first show that the subspaces gi satisfy [gi, gj ] ⊆
gi+j without showing that they give a filtration, and then use this to verify
that we get a filtration.

For j > 0, [p⊥, gj ] = gj+1 by definition, and since the Killing form
satisfies ŋ([X,Y ], Z) = ŋ(X, [Y,Z]), we get [p⊥, gj ] ⊆ gj+1 = (g−j)⊥ for
j ≤ 0 as well. Thus, by the Jacobi identity, [gi, gj ] ⊆ gi+j whenever i > 0.
Using this and the invariance of ŋ again, it follows that

[g−i, g−j ] = [(gi+1)⊥, (gj+1)⊥] ⊆ g−i−j = (gi+j+1)⊥

for i, j ≥ 0 as well, so [gi, gj ] ⊆ gi+j for all i and j.

Then, to show that gi ⊇ gi+1 for all i, note that

[g1−i, [gi+1, gj ]] ⊆ [g1−i, gi+j+1] ⊆ gj+2,

so adX ◦ adY is nilpotent for each X ∈ g1−i and Y ∈ gi+1, hence we get
gi+1 ⊆ (g1−i)⊥ = gi. □

Since [p⊥, p] ⊆ p⊥, the subalgebra p⊥ is a nilpotent ideal of p. Moreover,
since [p⊥, gj ] ⊆ gj+1, every element of p⊥ is ad-nilpotent for g. This nilpotent
ideal p⊥ is precisely the horospherical subalgebra p+ of p that we discussed
last time. To define the other horospherical subalgebra g− and the neutral
subalgebra g0, though, we’ll need to define a grading, which will require one
more tool from the symmetric space perspective.

10.3. Cartan involutions

Given a maximal compact subgroup K ≤ G, recall from last time that
we can decompose g (as a vector space) as k⊥ + k, where the Killing form
is positive-definite on k⊥ and negative-definite on k. Using this, we can
specify a remarkable linear endomorphism θ of g, called a Cartan involution,
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by defining θ|k⊥ = −idk⊥ and θ|k = idk; visually, this just corresponds to
reversing geodesic trajectories through e.

Figure 1. The Cartan involution θ reverses geodesic trajectories
through e and swaps the horospherical subalgebras associated to each
Z ∈ k⊥

The map θ has several useful properties for representation theory. Per-
haps chief among these useful properties is that θ happens to be an auto-
morphism of g, hence an isometry for ŋ. From its definition, we can also
see that θ2 = idg. Using the decomposition k⊥ + k, we can even see that the
symmetric bilinear form ŋθ given by ŋθ := ŋ(θ(X), Y ) is negative-definite
on all of g, which allows us to define things like orthogonal projections.

For now, our main interest in the Cartan involution θ associated to K
comes from its behavior on horospherical subalgebras. To see what this
behavior is, imagine that we have a point γ(+∞) at infinity, where we can
once again take γ to be of the form t 7→ qK (exp(tZ)) for some Z ∈ k⊥. For
Y an eigenvector of adZ with eigenvalue λ,

[Z, θ(Y )] = [−θ(Z), θ(Y )] = −θ([Z, Y ]) = −θ(λY ) = −λθ(Y ),

so θ(Y ) is an eigenvector of adZ with eigenvalue −λ. In particular, the
Cartan involution θ swaps the horospherical subalgebras g− and p+ that we
defined last time.

10.4. Gradings and a fixed point at infinity

With a given Cartan involution θ, we can use the canonical filtration gi to
construct an underlying grading

g = g−k + g−k+1 + · · ·+ gk

given by gi := gi ∩ θ(g−i).

Theorem 10.4. The grading
∑

i gi satisfies the following properties.

(1) For each i, θ(gi) = g−i.
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(2) For each i, gi =
∑

j≥i gj.

(3) For each i and j, [gi, gj ] ⊆ gi+j.

Proof. For (1), note that θ(gi) = θ(gi) ∩ θ2(g−i) = θ(gi) ∩ g−i = g−i.

For (2), let gk be the smallest nonzero filtration component. Then,
gk+1 = {0}, so g−k = (gk+1)⊥ = g, so gk = gk ∩ θ(g−k) = gk. Proceeding by
induction, suppose gi+1 =

∑
j≥i+1 gj ; we want to prove that

gi =
∑
j≥i

gj = gi + gi+1.

To do this, let π : gi → gi+1 be the ŋθ-orthogonal projection map. Then, we
can decompose each X ∈ gi as X = (X−π(X))+π(X), where π(X) ∈ gi+1

and X − π(X) ∈ θ(gi+1)⊥ = θ(g−i), so gi = gi + gi+1.

Finally, for (3), we know that [gi, gj ] ⊆ [gi, gj ] ⊆ gi+j , and since θ is an
automorphism,

[gi, gj ] ⊆ [θ(g−i), θ(g−j)] = θ([g−i, g−j ]) ⊆ θ(g−i−j).

Thus, [gi, gj ] ⊆ gi+j ∩ θ(g−i−j) = gi+j . □

These properties of the grading tell us several useful things. First,
[g0, g0] ⊆ g0+0 = g0, so g0 is a subalgebra of g. Indeed, this g0 coincides
with the neutral subalgebra introduced last time. Similarly, the subspaces
p+ :=

∑
i>0 gi = g1 = p⊥ and g− :=

∑
i<0 gi are subalgebras, and coincide

with the horospherical subalgebras from last time.

Delightfully, this grading can also help us find a point at infinity for the
model (G,K) fixed by our parabolic subgroup P < G, retrieving the more
directly geometric definition we mentioned in the last lecture. To do this,
we define the grading derivation δgr : g → g to be the linear endomorphism
given by δgr(X) = iX for each i and each X ∈ gi.

For X ∈ gi and Y ∈ gj ,

δgr([X,Y ]) = (i+ j)[X,Y ] = i[X,Y ] + j[X,Y ]

= [iX, Y ] + [X, jY ] = [δgr(X), Y ] + [X, δgr(Y )].

This means that δgr is a derivation on g, meaning a linear map δ : g → g such
that δ([X,Y ]) = [δ(X), Y ] + [X, δ(Y )]. The space Der(g) of all derivations
of g is a Lie algebra under the commutator bracket, and contains the image
of ad as a subalgebra. For semisimple Lie algebras, it turns out that all
derivations are of the form adX for some X ∈ g.

Lemma 10.5. For semisimple g, Der(g) = adg.

Proof. For δ ∈ Der(g) and X ∈ g, [δ, adX ] = adδ(X), so adg ⊴ Der(g).
Thus, the Killing form on Der(g) restricts to the Killing form on adg. Since
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the Killing form on adg ≈ g is nondegenerate because g is semisimple, we

get Der(g) = adg⊕ ad⊥g as a vector space. But for δ ∈ ad⊥g , this means

[δ, adX ] = adδ(X) ∈ adg ∩ ad⊥g = {0}

for all X ∈ g, so δ = 0 because z(g) = {0}. □

In particular, this tells us that the derivation δgr is of the form adEgr for
some Egr ∈ g. We call this element Egr the grading element for the grading
on g. By definition, adEgr = δgr is diagonalizable over Z < R on g and

satisfies θ ◦ adEgr = − adEgr ◦ θ, so Egr ∈ k⊥.

Figure 2. A depiction of a parabolic subgroup, decomposed into G0,
the part that centralizes Egr, and P+, the part generated by the horo-
spherical subalgebra p+

The geodesic t 7→ qK (exp(tEgr)) generated by Egr determines a point at
infinity fixed by P . This follows directly from our next theorem, which is
essentially just Theorem 3.1.3 of [2] and whose proof we consider optional
for our current endeavor.

Theorem 10.6. If P is a parabolic subgroup, then it is of the form ZP (Egr)P+,
where ZP (Egr) = {p ∈ P : Adp(Egr) = Egr} and P+ is the connected sub-

group generated by p+ = p⊥.

Proof. Suppose p ∈ P . The adjoint action Adp on g preserves the canonical
filtration, so it induces an automorphism ϕgr(p) of the graded Lie algebra
associated to the filtration, so that Adp Y −ϕgr(p) ·Y ∈ gi+1 for each Y ∈ gi.
In particular, our grading element Egr ∈ g0 satisfies AdpEgr −ϕgr(p) ·Egr ∈
g1, so Adp−1(ϕgr(p) · Egr) ∈ Egr + g1.
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Let Z1 be the g1-component of Adp−1(ϕgr(p) · Egr), so that

Adp−1(ϕgr(p) · Egr) ∈ Egr + Z1 + g2.

Then, adZ1(Egr + Z1) = −Z1 and ad2Z1
(Egr + Z1) = 0, so

Adexp(Z1) ◦Adp−1(ϕgr(p) · Egr) ∈ Egr + g2.

Recursively, we define Zi to be 1
i times the gi-component of

Adexp(Zi−1) ◦ · · · ◦Adexp(Z1) ◦Adp−1(ϕgr(p) · Egr) ∈ Egr + gi,

so that

Adexp(Zi) ◦Adexp(Zi−1) ◦ · · · ◦Adexp(Z1) ◦Adp−1(ϕgr(p) · Egr) ∈ Egr + gi+1.

Eventually, there is some k such that gk+1 = {0}, so that

Adexp(Zk) ◦ · · · ◦Adexp(Z1) ◦Adp−1(ϕgr(p) · Egr) = Egr,

hence ϕgr(p) ·Egr = Adp exp(−Z1)··· exp(−Zk)(Egr). But, recall that ϕgr(p) is an
automorphism of the graded Lie algebra, so that

[ϕgr(p) · Egr, ϕgr(p) · Y ] = ϕgr(p) · [Egr, Y ] = i ϕgr(p) · Y
for each Y ∈ gi. In particular, ϕgr(p) · Egr must agree with the grading
element because Egr is the unique element with adEgr = δgr. Thus,

ϕgr(p) · Egr = Adp exp(−Z1)··· exp(−Zk)(Egr) = Egr,

hence p exp(−Z1) · · · exp(−Zk) ∈ ZP (Egr). □

10.5. Parabolic model geometries

As one might guess, we can now define a model to be parabolic when its
model group is semisimple and its isotropy is parabolic.

Definition 10.7. We say that a model geometry (G,P ) is parabolic when
G is a semisimple Lie group and P is a parabolic subgroup.

These parabolic model geometries are the core of the study of para-
bolic geometries. With our current pacing through the course, we probably
won’t get to talk much about the general “curved” case, but this was always
meant to be more of an invitation to the topic anyway. Next time, we will
investigate what these parabolic models look like, in general.



Chapter 11

The Anatomy of a
Parabolic Geometry

Again, rewrite this so that it looks better and fits well within the book.
Specifically, rewrite the unipotent tilts part at the end to talk about nice
line bundle perspective, and clean up the cell decomposition stuff. Also,
be very clear about the curvature stuff!

Last time, we finished by defining a parabolic model geometry to be
a model (G,P ) with G semisimple and P parabolic. Now, we will begin
exploring what these parabolic models look like. This can, of course, seem
overwhelming at first, since—even topologically—these geometries are quite
a bit more involved than just frames on a plane.

However, it turns out that these model geometries aren’t that much more
complicated than frames on a plane when we separate them into manageable
pieces. In this lecture, we’ll be learning how to imagine ourselves as observers
in a parabolic model geometry with the following tools:

• A large open subset of G/P over which (G,P ) looks like a frame
bundle over a vector space

• A way of dissecting the base manifold G/P , cutting it into man-
ageable pieces

• A method for visualizing the higher-order parts of G

By the end of the lecture, we should have a decent grasp of what to
expect visually when we encounter a parabolic model geometry. This will
prepare us for the next two lectures, which will cover the specific examples
of projective geometry and conformal Riemannian geometry.
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11.1. Open cells

Previously, we saw that the semisimple Lie algebra g decomposes as g =
g− + g0 + p+ = g− + p. For sufficiently small open neighborhoods V and W
of the identity in G− and P , respectively, this tells us that exp(V ) exp(W ) is
an open neighborhood of the identity inG. In particular, for each up ∈ G−P ,
the open neighborhood u exp(V ) exp(W )p of up is also contained in G−P ,
so G−P is an open subset of G. Since qP is a submersion—hence an open
map—it follows that qP (G−) = qP (G−P ) is an open subset of G/P , and
since G− ∩ P = {e}, qP |G− is an embedding of G− into G/P .

Figure 1. The natural quotient map qP : G → G/P restricts to an
embedding on each gG−

We saw this open cell when we first encountered the parabolic model
geometry (SL2R, B); in that case, the open cell qP (G−) corresponded to a
copy of the affine line.

The horospherical subgroup G− is simply connected and nilpotent. In
particular, this tells us that the exponential map exp : g− → G− is a
diffeomorphism, so that G− is topologically equivalent to a vector space.
The subgroup G0 := ZP (Egr) acts on the subalgebra g− by the adjoint
representation, so under this topological identification between g− and G−
given by the exponential map, the conjugation action of G0 on G− is linear.
This puts us in a situation with which we should be fairly comfortable:
G−G0 has G0 as a closed subgroup acting linearly on the normal subgroup
G− ⊴ G−G0, just like how I(2) has O(2) as a closed subgroup acting linearly
on the normal subgroup R2 of translations. In short, we can think of G−G0

as a space of particular frames over G−.

Note that G−G0 is another parabolic subgroup of G. Indeed, its Lie
subalgebra g− + g0 satisfies (g− + g0)

⊥ = g−, and for θ a Cartan involution
used to obtain the grading, θ(p+) = g− and θ(g0) = g0, so g− + g0 = θ(p).
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We call it the opposite parabolic to P ; note that there might be a different
choice of opposite parabolic for a different choice of Cartan involution θ
determining the grading.

Often, the geometry of the model (G−G0, G0) is a kind of affine ana-
logue of the geometry of (G,P ). In the model (PGLm+1R, P ) for projective
geometry, for example, G− ≃ Rm and G0 ≃ GLmR, so that (G−G0, G0) is
equivalent to (Aff(m),GLmR), the model for affine geometry. We’ll see this
in a bit more detail in the next lecture.

Conveniently, the open subset G−P = q−1
P

(G−) of G is topologically
a product G− × P , since G− ∩ P = {e}. As we saw last time, P itself
is of the form G0P+, and since G0 ∩ P+ = {e}, it is also topologically a
product G0 × P+. Altogether, this tells us that G−P = q−1

P
(G−) looks like

G−G0×P+, so over qP (G−), the geometry looks like a kind of frame bundle
G−G0 over G−, together with some “higher-order frames” from P+ on top.
We’ll give some insight into what these “higher-order frames” look like later
in this lecture.

For each configuration g ∈ G over G/P , we get a copy of G− as the
left-coset gG−. Since these are just left-translations of G− by g, meaning
they are images of G− under the transformation given by g, the geometry
looks the same on gG− as it does on G−. In other words, wherever we are at
in G, we can give ourselves a convenient open subset on which the geometry
looks like a “higher-order frame bundle” over a copy of G−.

Of course, all of this makes G− a prime candidate for an analogue of the
translation subgroup in I(2), so we can get a notion of geodesic inside our
current copy of G− by using one-parameter subgroups generated by elements
of g−. In the case of projective geometry, these will just be affine geodesics
inside the current affine patch. These types of distinguished curves generally
aren’t as consistent in the base manifold as the other types of geodesics
we’ve dealt with so far; we’ll see this most prominently when we talk about
conformal geometry. However, this type of motion is always available and
meaningful from our observer perspective in the model group G.

11.2. Filling in the rest of G/P

As we saw above, the horospherical subgroup G− essentially lets us reduce
the local picture of (G,P ) to that of frames on a vector space. However,
we’d still like to have an idea of what G/P looks like globally.

Thankfully, the open cell qP (G−) often takes up a large portion of G/P .
We saw this in the case of (SL2R, B), for example, where the affine line
took up all of SL2R/B except for a “point at infinity”. Unlike in the case of
symmetric spaces, we do not need to describe this point at infinity in terms
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of asymptotic boundedness; it is literally the limit of an affine line embedded
into SL2R/B.

Figure 2. The open subset qP (G−) often fills up a large portion of G/P

We’d like to have a way of breaking G/P into smaller, topologically
simple pieces, similar to the case of (SL2R, B). It turns out that we can do
this, through a generalization of something called the Bruhat decomposition.

Inside of our parabolic subgroup P , let us choose a minimal parabolic
subgroup B ≤ P . Since B is parabolic, we get a corresponding filtration
subordinate to the filtration from P , and by using the same Cartan invo-
lution θ, we get a grading of g subordinate to the grading from P . Let us
denote by Z the grading element for this new grading.

As before, we can decompose g into the centralizer b0 := zg(Z) and two
horospherical subalgebras

b− := {X ∈ g : Adexp(tZ)(X) → 0 as t→ +∞}
and

b+ := b⊥ = {X ∈ g : Adexp(tZ)(X) → 0 as t→ −∞},
so that g = b−+b0+b+ and b = b0+b+. Let B− be the connected subgroup
generated by b−.

Since b ≤ p, we must have p⊥ = p+ ≤ b+ = b⊥, and similarly, θ(p+) =
g− ≤ b− = θ(b+). In other words, because B is smaller than P , the horo-
spherical part of B must be larger than the horospherical part of P . More-
over, since b+ ≤ b ≤ p, we must also have that θ(b+) = b− ≤ g−+g0 = θ(p).
Thus, G− ≤ B− ≤ G−G0, and in particular, qP (G−) = qP (B−).

Of course, every element of G/P lies in some orbit of B−, but it turns out
that there are often only finitely many B−-orbits (when G/P is compact).

Theorem 11.1. Given a parabolic model (G,P ), G/P decomposes as a
disjoint union of cells

G/P =
⊔

σ∈WP

B−qP (σ),
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where WP = NG(b0)/NG0(b0). Moreover, if G/P is compact, then WP is
finite.

Figure 3. The cell decomposition for a parabolic geometry, correspond-
ing to a decomposition into stable manifolds for the action of the grading
element of a minimal parabolic subgroup

In the classical, algebraic case over C, WB = NG(b0)/B0 is a finite group
called the Weyl group.

The proof, which will hopefully be part of an upcoming joint work be-
tween Rachel and me, requires quite a few technical results from representa-
tion theory. However, the idea of the proof is fairly straightforward: consider
the left-action of exp(tZ) on G/P . The fixed points of this flow will corre-
spond to the points of WP , and the stable manifolds for these fixed points
will be their B−-orbits.

This decomposition is, geometrically, a bit fragile. In the general
“curved” case, it often doesn’t work. If, however, the holonomy hap-
pens to be unipotent, and one happens to have a way of describ-
ing “curved” cosets... Well, more on that later.

Ultimately, what this usually looks like is a big cell coming from the
open subset qP (G−) = qP (B−) together with some collections of “points at
infinity” that compactify it.

11.3. How do we see P+?

Above, we showed that the open cell lets us reduce to the open set G−P =
(G−G0)P+ to get the local picture of (G,P ). We already have a fairly good
picture of G−G0, as a particular frame bundle over G−, so all that really
remains is to figure out the P+ part. There are three perspectives that I
find useful for this purpose; all three are useful in different situations, and
together they give a fairly satisfying picture of what’s going on.
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Figure 4. In (SL2 R, B), G− acts by translations on the affine line
through ( 1

0 ), while B+ acts by translations on the affine line through

( 0
1 )

First, we can think of P+ as a kind of “dual” translation subgroup to
G−. Just like in the case of G−, the left-action of the horospherical subgroup
P+ determines an open cell1 on G/P . We saw this in the case of (SL2R, B),
where the subgroup G− acted by translations along one affine line, and B+

acted by translations along another affine line through the point at infinity
of the first. On the open cell determined by P+, it acts as G− does on its
own open cell through qP (e). This is, of course, quite useful for seeing P+

as a group of transformations of G/P , but the global nature of it kind of
defeats the purpose of restricting to the local picture in the first place.

The second way of seeing P+ comes from using the Killing form ŋ. Recall
that p = p⊥+. Because ŋ is nondegenerate, this gives us a duality between

g/p = g/p⊥+ and p+. In particular, the dual space (g/p)∨ is isomorphic to p+
as a P -representation, and hence the cotangent bundle T∨(G/P ) satisfies

T∨(G/P ) ∼= G×P (g/p)∨ ∼= G×P p+.

Since g− ≈ (g− + g0 + p+)/(g0 + p+) = g/p as G0-representations, this
recovers the duality between g− and p+ that we’ve mentioned before: each
element α ∈ g∨− corresponds to a unique element αŋ ∈ p+ such that α(X) =

ŋ(αŋ, X) for every X ∈ g−. This again lets us think of p+ as a subalgebra
of “dual” translations to g−. Algebraically, this is a convenient perspective,
though it is a bit difficult to give a visual depiction of it.

The third way to see P+ generalizes the “unipotent tilt” perspective that
we described when we discussed (SL2R, B). As we mentioned above, we
have a copy gG− of G− through each g ∈ G, which allows us to give a local

1Specifically, it is of the form P+qP (σ) for a particular element of WP of “maximal length”,

though we don’t really need to know what that means right now.
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Figure 5. The right-action of P+ is by “unipotent tilts” of the copies of G−

picture of (G,P ) as a kind of “higher-order frame bundle” g(G−G0)P+ over
gG−. Visually, when we right-translate by some p ∈ P+ and then consider
the corresponding copy gpG− of G−, the result is a kind of “tilting” of gG−.
Since this is difficult to describe abstractly, we’ll return to this in the next
two lectures when we talk about explicit examples.

Figure 6. Right-translating [u v] ∈ SL2 R by a unipotent tilt takes the
affine line determined by v and tilts it along the line determined by u
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11.4. Curvature?



Chapter 12

Projective Geometry

Again, rewrite this so that it looks better and fits well within the book.

Have you ever wondered what it is like to move around inside a painting?
It’s a fun and evocative exercise in the imagination, and it was something
I remember thinking about often as a child. However, as a child, I was
ill-equipped to understand the geometry of the situation, or even what ge-
ometry means in this case.

In today’s lecture, we’ll be exploring this two-dimensional projective ge-
ometry and its higher-dimensional analogues. In outline, our plan is the
following:

• Explain what geometry means for a painting

• Verify that the geometry is parabolic

• Describe how to move around within projective geometry

• Discuss what geodesics in the geometry look like

By the end of the lecture, we should have a decent idea of what it’s like
to move around inside the geometry of a painting. In particular, we’ll have a
better picture of what parabolic model geometries look like; we will further
supplement this picture next time, when we talk about conformal geometry.

12.1. The geometry of a painting

Let’s imagine a landscape painting: there is a pond with a small pine tree
next to it, and behind these is a majestic mountain range, beyond which is
a setting sun.

87
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Figure 1. A two-dimensional image depicting a three-dimensional
scene, with a pond and pine tree next to each other and a mountain
range in the background, behind which is a setting sun

Our use of the words “behind” and “beyond” here suggests that, while
the painting itself is two-dimensional, we think of the scene depicted as
occurring in three dimensions. How do we get the two-dimensional image
from the three-dimensional scene?

Figure 2. Each point of the canvas corresponds to a sight-line between
the eye of the painter and a point in the scene

Let’s suppose that the landscape occurs inside of R3, and that the painter
observes the scene through their eye, which we place at the origin in R3. For
each point x ∈ R3 in the scene, there is a unique line ⟨x⟩ = Rx through the
origin that also contains this point; we call this line the sight-line through
x. When the painter commits this scene to their canvas, they are identi-
fying each point of their canvas with a corresponding sight-line, effectively
projecting the three-dimensional scene down to a two-dimensional image.

Since the geometry comes from these sight-lines, its symmetries will be
those that preserve them. A transformation that preserves lines in R3 and
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preserves the origin (where the eye is) is going to be an element of GL3R.
However, since the sight-lines are what we’re really interested in and the
center Z(GL3R) = R×1 sends each line through 0 to itself, we want to
ignore these central elements. Thus, the model group of this geometry is
GL3R/R×1 = PGL3R.

The model group PGL3R acts transitively on the projective plane RP2,
also known as the space of sight-lines in R3. Thus, defining P to be the stabi-

lizer of the sight-line through [ 1 0 0 ]⊤, we get a bijection between PGL3R/P
and RP2. In short, our model for 2-dimensional projective geometry is
(PGL3R, P ).

More generally, we can consider m-dimensional projective geometry,
which corresponds to the geometry of sight-lines inside of Rm+1. In that
case, our model is (PGLm+1R, P ), where

P :=

{(
a α
0 A

)
∈ PGLm+1R : a ∈ R×, α⊤ ∈ Rm, A ∈ GLmR

}
is, again, the stabilizer of the sight-line through [ 1 0 ··· 0 ]⊤.

12.2. Parabolicity of projective geometry

The Killing form on pglm+1R := glm+1R/R1, where by definition elements
of pglm+1R are equivalent if and only if they differ by a scalar multiple of
the identity matrix, is given by

ŋ
((

−tr(R) α
v R

)
,
(

−tr(S) β
w S

))
= 2(m+ 1)

(
tr(R)tr(S) + tr(RS)

+ α(w) + β(v)
)
,

so

ŋ
((

−tr(R) α
0 R

)
,
(

−tr(S) β
w S

))
= 2(m+ 1)

(
tr(R)tr(S) + tr(RS) + α(w)

)
,

which vanishes for all
(

−tr(R) α
0 R

)
∈ p precisely when S = 0 and w = 0.

Thus, p⊥ is the abelian subalgebra {( 0 α
0 0 ) : α

⊤ ∈ Rm}, hence p is parabolic.

Choosing our Cartan involution θ to be given by X 7→ −X⊤, so that

θ
(
( r α
v R )

)
=

(
−r −v⊤

−α⊤ −R⊤

)
,

we get a grading of pglm+1R given by

g−1 = g− :=
{
( 0 0
v 0 ) ∈ pglm+1R : v ∈ Rm

}
,

g0 :=
{(

r 0
0 R

)
∈ pglm+1R : r ∈ R, R ∈ glmR

}
=

{(
−tr(S) 0

0 S

)
∈ pglm+1R : S ∈ glmR

}
,
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and

g1 = p+ :=
{
( 0 α
0 0 ) ∈ pglm+1R : α⊤ ∈ Rm

}
.

It is worth drawing attention to the fact that g− and p+ are abelian in this
case, so that we only have three grading components. The horospherical
subgroups

G− := {( 1 0
v 1 ) ∈ PGLm+1R : v ∈ Rm}

and

P+ :=
{
( 1 α
0 1 ) ∈ PGLm+1R : α⊤ ∈ Rm

}
are, in particular, also abelian.

The grading element for this grading is given by

Egr :=
1

m+1(
m 0
0 −1 ) =

1
m+1(

m 0
0 −1 ) +

1
m+1(

1 0
0 1 ) = ( 1 0

0 0 ),

where again, elements of pglm+1R are equivalent whenever they differ by a
scalar multiple of the identity matrix. From this, we can see that

G0 := ZP (Egr) =
{(

a 0
0 A

)
∈ PGLm+1R : a ∈ R×, A ∈ GLmR

}
=

{(
1

det(S)
0

0 S

)
∈ PGLm+1R : S ∈ GLmR

}
is the neutral subgroup.

Momentarily, we will also be interested in a specific normal subgroup
Gss

0 ⊴ G0, the semisimple part of G0, given by

Gss
0 :=

{(
1 0
0 A

)
∈ PGLm+1R : A ∈ SL±

mR
}
,

where SL±
mR is the Lie group of linear transformations of Rm with deter-

minant either +1 or −1. This subgroup Gss
0 is normal in G0, and moreover,

G0 decomposes as G0 = exp(REgr)G
ss
0 , where exp(REgr) is the image of

the one-parameter subgroup generated by Egr. In particular, G0/G
ss
0 ≃

P/(Gss
0 P+) ≃ exp(REgr).

12.3. The pedestrian perspective

As before, we’d like to think of our model group PGLm+1R as the space
of configurations for ourselves as pedestrians1 inside of the geometry of our
model. To do this, let’s return to the idea of walking around inside a paint-
ing.

Paintings don’t typically depict what is going on both in front and behind
the painter, so it makes sense to assume the scene in Rm+1 depicted in anm-
dimensional painting takes place in some half-space {x ∈ Rm+1 : α(x) > 0}

1Note that I’m returning to the term “pedestrian” rather than “observer” here, since the

“observer perspective” could easily be confused with the perspective of the eye viewing the sight-
lines.
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Figure 3. We can reconstruct the (m+ 1)-dimensional scene in an m-
dimensional painting by undoing the identification of each sight-line with
a point; the result is an embedding of the (m+1)-dimensional scene into
the principal exp(REgr)-bundle PGLm+1 R/Gss

0 P+ over PGLm+1 R/P ∼=
RPm

for some α ∈ (Rm+1)∨. Every sight-line for the scene intersects this half-
space in a ray, so if we wanted to recreate the (m+1)-dimensional scene, then
we could just imagine it as occurring in the R+-bundle over PGLm+1R/P ∼=
RPm given by undoing the identification of the ray with a point. This R+-
bundle corresponds to the quotient by {±1} of the canonical R×-bundle
Rm+1 \ {0} over RPm = (Rm+1 \ {0})/R×; since half-spaces embed into this
R+-bundle by inclusion into Rm+1 \ {0}, we lose nothing by assuming the
scene happens in this bundle.

Again, PGLm+1R acts transitively on the space of sight-lines. The
subgroup of GLm+1R fixing the sight-line through [ 1 0 ··· 0 ]⊤ pointwise is{[

1 α
0 A

]
: α⊤ ∈ Rm, A ∈ GLmR

}
, and under the quotient by R×1, the im-

age of this subgroup in PGLm+1R is precisely Gss
0 P+. Thus, the R+-bundle

over RPm given by undoing the identification of sight-lines with points on
the canvas is precisely the principal exp(REgr)-bundle PGLm+1R/Gss

0 P+

over PGLm+1R/P ∼= RPm.

In other words, we imagine the (m + 1)-dimensional scene depicted in
an m-dimensional painting as occurring within the space of the principal
exp(REgr)-bundle PGLm+1R/Gss

0 P+, with right-translation by exp(tEgr)
corresponds to moving closer to the eye if t < 0 and farther away if t > 0.
Note that, from the perspective of the eye, we look smaller when we move
farther away and bigger when we move closer.

By knowing the position of the canvas, we can also describe a family of
affine hyperplanes in PGLm+1R/Gss

0 P+ that we imagine to be parallel to the
canvas (and, in particular, transverse to the sight-line through each point
of the scene). Through each point of the scene is one of these affine hyper-
planes, and thinking of ourselves as pedestrians within the scene, we can con-
figure ourselves along the affine hyperplane through our point. The choice
of configuration gives an element of the principal Gss

0 -bundle PGLm+1R/P+
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Figure 4. Knowing the positioning of the canvas gives us a family of
affine hyperplanes in PGLm+1 R/Gss

0 P+, and our configuration along
one of these hyperplanes corresponds to an element of the principal G0-
bundle PGLm+1 R/P+ over PGLm+1 R/P

over PGLm+1R/Gss
0 P+, the space where the scene takes place; this space

PGLm+1R/P+ is then also a principal G0-bundle over PGLm+1R/P .

Figure 5. Right-translating by an element of P+ in PGLm+1 R amounts
to tilting the choice of affine hyperplane through a point in the scene

Finally, different ways of positioning the canvas result in different fam-
ilies of affine hyperplanes. Given an initial choice of hyperplane through a
given point, though, all of the other choices of hyperplane can be obtained
by “tilting” the initial one. The “unipotent tilts” p ∈ P+ run through all
of the different choices of hyperplane transverse to the sight-line, so the
space of choices of hyperplane is the principal P+-bundle PGLm+1R over
PGLm+1R/P+.

Thus, we have arrived at the principal P -bundle PGLm+1R over PGLm+1R/P .
Having built it up from these smaller bundles, we have a fairly good picture
of what a configuration within PGLm+1R looks like, and from this, it’s not
hard to see how motion works in this case.
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Figure 6. Right-translating by elements of G− amounts to translation
within the affine hyperplane through the point in the scene, while right-
translating by an element of exp(REgr) amounts to moving along the
sight-line

An element g ∈ PGLm+1R determines a choice of affine hyperplane
within the (m + 1)-dimensional scene of an m-dimensional painting, and
as we might guess from last time, translation along this affine hyperplane
amounts to right-translation by elements of G−. Then, right-translating
by elements of Gss

0 corresponds to changing our frame within this affine
hyperplane, while right-translating by an element of exp(REgr) amounts
to moving along the sight-line through our point in the scene; from the
perspective of the eye, right-translation by an element of exp(REgr) also
corresponds to rescaling the affine hyperplane. Finally, right-translating by
an element of P+ tilts our choice of affine hyperplane.

12.4. Geodesics

The choice of affine hyperplane described above corresponds to a choice of
affine patch in projective space. Inside of a given affine patch are affine
geodesics, corresponding to the images t 7→ qP (g exp(tv)) for v ∈ g−. How-
ever, the images of these aren’t going to be full copies of geodesics on RPm

in the sense we’d usually mean, since they are restricted to an affine patch.

A full (unparametrized) geodesic in RPm corresponds to a choice of
(two-dimensional) plane through the origin inside of Rm+1. More specifi-
cally, thinking of RPm as the space of one-dimensional subspaces of Rm+1,
a geodesic is the set of all one-dimensional subspaces lying in a given two-
dimensional subspace. This is analogous, and in fact related, to the situation
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in spherical geometry, where we defined great circles to be intersections of
the unit sphere with two-dimensional subspaces.

Note, as we did with spherical geometry, that such a definition is geo-
metric for the model: elements of R×1 preserve every subspace of Rm+1,
and elements of GLm+1R, being invertible linear transformations, send two-
dimensional subspaces to two-dimensional subspaces, so PGLm+1R sends
two-dimensional subspaces to two-dimensional subspaces.

Conveniently, the affine geodesics inside a given affine patch are the
intersections of full geodesics with that affine patch. Indeed, identifying
PGLm+1R/P with RPm,

qP

(
g exp (t( 0 0

v 0 ))
)
= g · qP

(
( 1 0
tv 1 )

)
∈ ⟨g · ( 10 ), g · ( 0v )⟩ .

This situation is noteworthy; in other parabolic model geometries, the
geodesics corresponding to one-parameter subgroups generated by elements
of g− might not correspond to particularly meaningful curves in the base
manifold at all. The corresponding motion in the model group will always be
geometrically meaningful though, so it is still worthwhile if we view things
from our observer perspective.
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Conformal Geometry
and Tanaka
Prolongation

Again, rewrite this so that it looks better and fits well within the book.
Also, consider whether moving the general Tanaka prolongation proce-
dure to the next chapter is better, since it is more relevant there?

Last time, we briefly explored projective geometry, which we thought
of as the geometry of sight-lines. As we shall soon see, there are many
similarities between the models for projective and conformal geometry, many
of which can be found in all parabolic model geometries.

However, there are some key differences as well. Perhaps foremost among
these differences is that the model for conformal geometry is significantly
less obvious than in projective geometry. Recall that a conformal structure
on a manifoldM is an equivalence class [g], corresponding to all Riemannian
metrics of the form fg for some (smooth) function f : M → R+. Deciding
what should count as the stabilizer of this structure is a bit trickier than
just preserving sight-lines, especially if we don’t necessarily know what the
base manifold should be either.

Fortunately, this difficulty also gives us a convenient opportunity to
showcase a useful algebraic construction called Tanaka prolongation, which
happens to solve this issue. As such, our plan for the lecture is as follows:

• Motivate what Tanaka prolongation does geometrically

• Explain the construction in the case of conformal geometry

95
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• Describe conformal motion from an observer perspective

• (Appendix) Sketch how Tanaka prolongation works in general

By the end of this lecture, we should have a good idea of what the model
for conformal geometry looks like. While there are additional nuances to
more general parabolic models, many of the main ideas are similar, so the
reader will hopefully be prepared to encounter other parabolic geometries on
their own. In the next lecture, we will finally see what a Cartan connection
is, and why they’re so easy to work with.

13.1. From similarity to conformality

Let us imagine that we don’t already know what our model (G,P ) for con-
formal geometry should be. Where’s a good place to start exploring what
this model could be?

We’re looking for a Lie group G corresponding to symmetries that pre-
serve a Riemannian metric up to scale. As such, a good initial
candidate would be the Lie group of similarity transformations of Rm. A
similarity transformation of Rm is an affine transformation that preserves
the underlying Euclidean metric up to scale. The Lie group of such trans-
formations is isomorphic to Rm ⋊ R+O(m), where R+O(m) is the group
of linear transformations that are positive scalar multiples of orthogonal
transformations; for (u,A) ∈ Rm ⋊ R+O(m), as with Euclidean geometry,
the action on Rm is just (u,A) · v = u + A(v). The geometry of the model
(Rm ⋊R+O(m),R+O(m)) is called similarity geometry.

This geometry looks a lot like Euclidean geometry from an observer per-
spective. Thinking of Rm⋊R+O(m) ≃ I(m)⋊R+ as a bundle of perspectives
for ourselves as observers within the geometry, it’s essentially the same as
the Euclidean case except that we can now also right-translate by elements
of the subgroup R+1 to rescale ourselves.

Let us suggestively denote by G− the subgroup of translations Rm, and
by G0 the subgroup R+O(m), so that the model for similarity geometry is
(G−G0, G0).

Inside the Lie subalgebra g0, we can preemptively denote by Egr the
element with one-parameter subgroup exp(tEgr) = e−t1; note that adEgr

restricts to multiplication by −1 on g− and vanishes on g0. We can also
define a homomorphism λ : G0 → R+ given by rA 7→ |r| for A ∈ O(m)
and r ∈ R×. The kernel of this homomorphism is just O(m), and we can
decompose G0 as exp(REgr) ker(λ) = R+O(m).

Fixing an inner product g0 on T0Rm, corresponding to the “usual” one
for Euclidean geometry, we can determine a new inner product φ · g0 on
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Figure 1. As with Euclidean geometry, we can think of Rm⋊R+ O(m)
as a bundle of perspectives for ourselves as observers inside similarity

geometry

Tφ(0)Rm = Tq
G0

(φ)(G−G0/G0) for each φ ∈ G−G0 by

φ · g0(v, w) := g0(φ
−1
∗ (v), φ−1

∗ (w)).

In particular, the “usual” Riemannian metric for Euclidean geometry is
given by gx := x · g0 for each x ∈ Rm = G−.

Since G− is a normal subgroup of G−G0 and G− ∩ G0 = {e}, we have
a natural quotient homomorphism πG− : G−G0 → G0. When used together
with the homomorphism λ : G0 → R+, this gives us a convenient way of
describing the inner product φ · g0 for arbitrary φ ∈ G−G0: the subgroup
G− ker(λ) = I(m) acts by isometries, so

φ · g0 = λ(πG−(φ))
−2gφ(0).

Because a Riemannian metric g̃ conformal to g is, by definition, of the
form g̃ = fg for some (smooth) function f : Rm → R+, we can identify
a choice of metric conformal to the Euclidean one with a choice of section
σf : G−G0/G0 → G−G0/ ker(λ). Explicitly, for each x ∈ G−, we define

σf (x) := x(λ−1(
√
f(x)))−1, so that

σf (x) · g0 = λ(λ−1(
√
f(x))−1)−2gx = f(x)gx = g̃x.

In other words, similar to what we saw with projective geometry last time,
we can think of the conformal structure on the base manifold G−G0/G0

as something that “lives” in the principal exp(REgr)-bundle G−G0/ ker(λ)
over G−G0/G0.

Intuitively, this means that the fibers of G−G0/ ker(λ) over the base
manifold G−G0/G0 are like the sight-lines from projective geometry. Indeed,
the key invariant of conformal geometry is the choice of metric up to scale,
and by the above, these fibers essentially correspond to the space of all
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Figure 2. Different elements of G−G0/ ker(λ) over a given point in
G−G0/G0 correspond to different choices of inner product over that
point, depicted here as the unit disks determined by these inner products

such choices over a given point, so it makes sense that these are what the
geometry wants to keep preserved.

Now, we want to give ourselves a notion of “conformal frame”, so that
we can meaningfully place ourselves inside of this geometry. As with projec-
tive geometry, it is convenient to build up these frames in steps. To start,
we consider the principal exp(REgr)-bundle G−G0/ ker(λ) over G−G0/G0,
which we think of as the space where the conformal structure actually lives
and whose elements correspond to choices of scale for the Euclidean metric
at the underlying point on the base manifold. From here, we can naturally
include the orthonormal frames for the metric at each choice of scale; this
amounts to moving up to the principal ker(λ)-bundle G−G0 over the space
G−G0/ ker(λ), which
(unsurprisingly) makes G−G0 into a principal G0-bundle over the base man-
ifold G−G0/G0. Here, ker(λ) accounts for stabilizer motion that preserves
the metric and scale, and exp(REgr) lets us rescale directly; neither of these
changes the fact that motion from G− preserves the scale. Thus, the final
step is to include “higher-order frames” corresponding to changes of per-
spective where motion from G− can alter the scale.

This leads to an obvious question: what can such “higher-order frames”
be?

13.2. Tanaka prolongation in the conformal case

Recall that, given a parabolic model (G,P ), we can often think of the geom-
etry of (G−G0, G0) as a kind of affine analogue of the geometry of (G,P ).
Tanaka prolongation gives a way to reverse this analogy, so that given the
“affine version”, we can (usually) build the corresponding parabolic struc-
ture.
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Back in the conformal case, let’s work at the level of Lie algebras. We
already have a Lie algebra g−+g0, where g− is the subalgebra of translations
Rm and g0 is the subalgebra R1+ o(m). Writing g−1 := g− and g−ℓ := {0}
for all ℓ > 1, this gives a (somewhat boring) graded Lie algebra structure
on g− + g0: for all i, j ≤ 0, we have [gi, gj ] ⊆ gi+j . Algebraically, the
goal of Tanaka prolongation is to extend this to a new graded Lie algebra
g := g−1 + g0 + g1 + · · · . From the above, we know that the subalgebra∑

ℓ>0 gℓ, which we will preemptively call p+, should correspond to changes
of perspective that allow motion from g− to change the scale.

To build this new Lie algebra, let us start by considering what g1 must
do to g−: to maintain the graded structure, we need to have [g1, g−1] ⊆ g0.
Moreover, because we want the end result to be a Lie algebra, it should
satisfy the Jacobi identity, so for v, w ∈ g−1 and α ∈ g1, we should have

0 = [α, [v, w]] = [[α, v], w] + [v, [α,w]].

Deciding1 that α ∈ g1 should be uniquely determined by the action of adα
on g−, we can therefore identify all of the possible choices for elements of g1
with the space of linear maps α ∈ g∨− ⊗ g0 such that [α(v), w] + [v, α(w)] =
α(v)w − α(w)v = 0 for all v, w ∈ g−.

For context, let us give some algebraic definitions. Given an arbitrary
Lie algebra h and h-representation V , define

∂ : h∨ ⊗ V → Λ2h∨ ⊗ V

by ∂α(X ∧Y ) := X ·α(Y )−Y ·α(X)−α([X,Y ]). With this, we can further
define the space Der(h;V ) := {α ∈ h∨⊗V : ∂(α) = 0} of derivations from h
to V . In our case, we are identifying g1 with the subspace of Der(g−; g−+g0)
with images contained in g0.

The space of all linear maps α : g− → g0 satisfying

α(v)w − α(w)v = 0

for all v, w ∈ g− is determined by the dim(g∨−) dim(Λ2g−) independent linear
equations

g0(ek, α(ei)ej − α(ej)ei) = 0.

In other words, we can identify the component g1 with a subspace of g∨−⊗g0
of dimension

dim(g1) = dim(g∨− ⊗ g0)− dim(g∨−) dim(Λ2g−)

= dim(g∨−)(dim(g0)− dim(Λ2g−))

= dim(g∨−).

1Adding in central elements isn’t interesting in this case; if [α, g−1] = {0}, then it isn’t doing
anything.
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Indeed, it turns out there is a convenient identification between g∨− and g1:
for α ∈ g∨−, the corresponding map adα |g− is given by

v 7→ −α(v)1− α⊗ v + g0(v, ·)⊗ α♯,

where α♯ ∈ g− is the unique element such that g0(α
♯, ·) = α. In other words,

adα(v)w = −α(v)w − α(w)v + g0(v, w)α
♯.

Now that we have g1, we can try the same thing with g2. We want
elements β ∈ g2 to satisfy 0 = β([v, w]) = [β(v), w] + [v, β(w)], with
β(v), β(w) ∈ g1 ≈ g∨− to preserve the graded structure. From here, the
computations get a bit heinous, but the key thing to note is that, when
dim(g−) > 2, we must have g2 = {0}, so the construction stops with
g−1 + g0 + g1. Thinking of α ∈ g1 as a linear map from g− to g0, we
define

[α,R] = α ◦R− adR ◦α
for each R ∈ g0 and define g1 to be abelian. This gives g = g−1 + g0 + g1 a
graded Lie algebra structure, and a faithful representation of g is given by

(v, r1+R,α) 7→

−r (α♯)⊤ 0
v R −α♯

0 −v⊤ r

 .
Letting G be the Lie group with Lie algebra g such that G−G0 ≤ G and
G/G0 is connected, we can define P := G0P+ for P+ the connected subgroup
generated by p+ = g1, and our model for conformal geometry becomes
(G,P ). It is not too difficult to check that G is isomorphic to PO(1,m+1),
with corresponding quadratic form Q on Rm+2 given by

Q

 x0
x

xm+1

 = −2x0xm+1 +
m∑
i=1

x2i .

What about when dim(g−) = m = 2? Well, in that case, g2, and
more generally each gℓ with ℓ > 1, is not trivial, so the g we construct is
infinite-dimensional. This is one of the issues with Tanaka prolongation:
sometimes, the information you put into it isn’t sufficient to return a finite-
dimensional Lie algebra. We could probably have expected some sort of
problem here, though; in dimension two, all holomorphic maps are conformal
wherever their derivatives don’t vanish, so we were never going to construct
a finite-dimensional model symmetry algebra for two-dimensional conformal
geometry.

13.3. Moving around in the conformal sphere

Thinking of G as the Lie group of PO(Rm+2, Q), with Q as in the previous
section, we can see that G acts transitively on the projectivized null-cone
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{⟨x⟩ ∈ RPm+1 : Q(x) = 0}, and that

StabG

1
0
0

 =


a p −p(p⊤)/2
0 A −p⊤
0 0 a−1

 : a ∈ R×, p⊤ ∈ Rm, A ∈ O(m)


corresponds to the closed subgroup P , so we can identify G/P with the
projectivized null-cone.

Topologically, this projectivized null-cone is a sphere. To see this, let
x ∈ Q−1(0) \ {0}. We’re trying to understand the projectivized null-cone,
so we only care about x up to scale. In particular, we can rescale x so that
x0 + xm+1 =

√
2. Under this rescaling, we can define y := x0−xm+1√

2
, so that

1 + y =
(x0 + xm+1) + (x0 − xm+1)√

2
=

√
2x0

and

1− y =
(x0 + xm+1)− (x0 − xm+1)√

2
=

√
2xm+1.

Thus, 1− y2 = (1 + y)(1− y) = 2x0xm+1, so

Q(x) = −2x0xm+1 +
m∑
i=1

x2i = −1 + y2 +
m∑
i=1

x2i = 0,

hence we can identify the projectivized null-cone with the space with y2 +∑m
i=1 x

2
i = 1, namely the m-sphere. Because of this, we call G/P the con-

formal sphere.

Alternatively, we can think of G/P as the one-point compactification of
G−G0/G0

∼= Rm. The subgroup G− takes the form
 1 0 0

v 1 0
−v⊤v/2 −v⊤ 1

 : v ∈ Rm

 ,

so

G−

1
0
0

 =


 1

v
−v⊤v/2

 : v ∈ Rm


gives us our open cell. The complement of this open cell inside the projec-

tivized null-cone is the single point
(

0
0
1

)
, which we can think of as the “point

at infinity” for the copy of Euclidean space given by the open cell.

As for movement within G, things are much the same as with projective
geometry. At each configuration g ∈ G, we determine a copy qP (gG−) of
Euclidean space corresponding to motion from G−. Using exp(REgr), we can
control the scale of that copy of Euclidean space, and with ker(λ), we can
move amongst the different orthonormal frames for that point in Euclidean
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space. Finally, the subgroup P+ gives us “unipotent tilts”, which let us tilt
between different copies of Euclidean space through our underlying point
qP (g) ∈ G/P .

Figure 3. In conformal geometry, the trajectories of motion from one-
parameter subgroups in G− are not uniquely determined by an initial
velocity in the base manifold

Perhaps the main difference here is that motion from G− no longer
determines consistent curves on the base manifold up to reparametrization.
However, again, the motion is consistent and meaningful inside of G.

Appendix: Tanaka prolongation in general

Both conformal and projective geometry are |1|-graded, meaning that the
grading of g determined by a Cartan involution θ and the parabolic p is
of the form g−1 + g0 + g1. This makes many algebraic aspects of these
geometries fairly simplistic compared to the general case. In particular,
Tanaka prolongation is a bit more involved when there are multiple negative
grading components.

Let’s imagine we have a graded nilpotent Lie algebra

g− = g−k + · · ·+ g−1,

with [g−i, g−j ] ⊆ g−i−j , together with another Lie algebra g0 that both acts
on g− by derivations—so R · [v, w] = [R · v, w] + [v,R ·w] for all R ∈ g0 and
v, w ∈ g−—and preserves the grading—so R ·g−i ⊆ g−i for every R ∈ g0 and
each i ≥ 1. We consider the semidirect sum g− B g0, which we will write as
just g− + g0; what is the corresponding Tanaka prolongation?
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In essence, we follow the same idea as before: build up positive grading
components piece by piece. To start, we want g1, consisting of elements
that act as derivations that send each g−i to g−i+1. In other words, we are
looking for

g1 := {α ∈ Der(g−; g− + g0) : α(g−i) ⊆ g−i+1 for each i > 0}.

Naturally, g−+ g0+ g1 is a representation of g−+ g0: given α ∈ g1, we have
v · α = −α(v) for v ∈ g− and R · α = adR ◦α− α ◦ adR for R ∈ g0.

Next, we want to build a grading component g2 of degree 2, so that its
elements act as derivations sending each g−i to g−i+2. Symbolically, this
means

g2 := {β ∈ Der(g−; g− + g0 + g1) : β(g−i) ⊆ g−i+2 for each i > 0}.

Again, g−+g0+g1+g2 is a representation of g−+g0: for β ∈ g2, v·β = −β(v)
and R · β = adR ◦β − β ◦ adR as before.

We continue this process, recursively defining

gℓ :=

ζ ∈ Der

g−;
∑
j<ℓ

gj

 : ζ(g−i) ⊆ g−i+ℓ for each i > 0


for each ℓ > 0. Letting g be the representation of g− + g0 given by the sum

g := g− + g0 +
∑
ℓ>0

gℓ

of all of these grading components, we imbue it with a Lie algebra structure
as follows. First, the bracket agrees with the bracket of g− + g0 when
restricted there, and for each α ∈

∑
ℓ>0 gℓ and X ∈ g−+ g0, [X,α] := X ·α,

where · denotes the representation action of g−+g0 on g. From here, we want
to continue defining the bracket in a way that satisfies the Jacobi identity,
so that

[α, β](v) = [[α, β], v] = [[α, v], β] + [α, [β, v]] = [α(v), β] + [α, β(v)]

for α, β ∈
∑

ℓ>0 gℓ and v ∈ g−. Conveniently, this gives us a way to construct
the bracket recursively as well: for α, α′ ∈ g1, we define [α, α′] ∈ g2 ⊆
Der(g−; g− + g0 + g1) to be the unique element of the form

[α, α′](v) = [α(v), α′] + [α, α′(v)]

for each v ∈ g−. Since α(v), α′(v) ∈ g− + g0, we already know that
[α(v), α′] = α(v) · α′ and [α, α′(v)] = −α′(v) · α, so this bracket is well-
defined. Then, for arbitrary β ∈ gi and ζ ∈ gj , we can recursively define
[β, ζ] ∈ gi+j to be the unique element such that

[β, ζ](v) = [β(v), ζ] + [β, ζ(v)]
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for each v ∈ g−. Since β(v) ∈
∑

ℓ<i gℓ and ζ(v) ∈
∑

ℓ<j gℓ, if we know how
to form brackets with elements in grading components of lesser degree, then
these brackets are well-defined as well.

Thus, we get a Lie algebra g. If gℓ = {0} for every ℓ greater than some
k, then g is finite-dimensional and p+ :=

∑
ℓ>0 gℓ is a nilpotent subalgebra.

Because [gi, [gj , gℓ]] ⊆ gi+j+ℓ, we must have ŋ(gi, gj) = {0} unless i+ j = 0,
so if g is semisimple, then g− and p+ must be ŋ-dual. In particular, if g
is semisimple, then p := g0 + p+ must satisfy p⊥ = p+, hence p must be
parabolic.



Chapter 14

Strictly Pseudoconvex
CR Geometry
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Appendix A

Locally Homogeneous
Geometric Structures

[Explain how to convert between flat Cartan geometries and locally homo-
geneous geometric structures]
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