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2 Introduction

Two main lines of questioning in the study of automorphism groups of pseudo-
Riemmanian manifolds are to ask which groups can act isometrically on pseudo-
Riemannian manifolds of a given topological type, and to ask which pseudo-
Riemannian manifolds admit an isometric action of a given large group. This
work addresses a modified version of the second question: which compact Lorentz
manifolds admit a positive-dimensional pseudogroup of local isometries? This
question can be loosely rephrased as, which compact Lorentz manifolds have
nontrivial local symmetry? For a real-analytic, compact, complete Lorentz man-
ifold, a positive-dimensional pseudogroup of local isometries is equivalent to a
positive-dimensional isometry group on the universal cover.

Several examples of compact Lorentz manifolds with local symmetry will be
discussed below. Given such a Lorentz manifold, one may construct a new
compact Lorentz manifold with at least as much local symmetry by forming a
warped product.

Definition 2.1 For two pseudo-Riemannian manifolds (P, λ) and (Q,µ), a
warped product P ×f Q is given by a positive function f on Q : the metric
at (p, q) is f(q)λp + µq. The factor P is called the normal factor.

If Isom(P ) = G, then G also acts isometrically on the warped product P ×f Q

for any f . More generally, let f be any function Q→M, whereM is the moduli
space of G-invariant metrics (of a fixed signature) on P , with f(q) = λ(q). Then
G acts isometrically on the generalized warped product P×fQ, where the metric
at (p, q) is λ(q)p + µq.

Results of Farb and Weinberger stated below give conditions under which a
compact Riemannian manifold is a generalized warped product P ×f Q with P
a locally symmetric space. Our main result (Theorem 2.3 below) gives conditions
under which the universal cover of a compact Lorentz manifold has this form
with P a Riemannian symmetric space or a complete Lorentz space of constant
curvature. In both cases, the conditions are that the manifold have a large
pseudogroup of local isometries.

Pseudo-Riemannian metrics are examples of rigid geometric structures of al-
gebraic type. For M a compact real-analytic manifold with such a structure,
Gromov’s Stratification Theorem (stated as Theorem 7.1 below) describes the
orbit structure of local symmetries of M . The celebrated Open-Dense Theo-
rem, which is a corollary of this stratification, states that if a point of M has
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a dense orbit under local isometries, then an open dense subset of M is locally
homogeneous. It would be interesting to find conditions on M under which ex-
istence of a dense orbit implies that M is locally homogeneous. More generally,
one might seek a fibered version: when does existence of a local isometry orbit
with positive-dimensional closure imply that M is roughly a fiber bundle with
locally homogeneous fibers? Our main theorem (2.3) can be viewed as such a
result, under some particular topological and geometric conditions on a compact
real-analytic Lorentz manifold.

2.1 Riemannian case

For M a compact Riemannian manifold, Isom(M) is compact. For example, a
compact locally symmetric space of noncompact type has finite isometry group
(see [WM2] 5.43). While such a group provides some information about M , the
isometry group of the universal cover X of M tells much more. For example, if
M is a locally symmetric space of noncompact type, then Isom(X) is a semisim-
ple group with no compact factors. A homogeneous, contractible, Riemannian
manifold with this isometry group must be a symmetric space.

Recall that an aspherical manifold is one with contractible universal cover. Farb
and Weinberger studied compact aspherical Riemannian manifolds M with uni-
versal coverX having Isom0(X) 6= 1. They proved several results characterizing
warped products with locally symmetric factors, and locally symmetric spaces
in particular. The following theorem is a weakened statement of their main
theorem. Orbibundles will be defined later below.

Theorem 2.2 (Farb and Weinberger [FW]) Let M be a compact aspheri-
cal Riemannian manifold with universal cover X. Let G = Isom(X). If G0 6= 1,
then M is a Riemannian orbibundle

Λ\G0/K →M → Q

where Λ ⊂ G0 is a cocompact lattice, K is a maximal compact subgroup of G0,
and Q is aspherical.

Further, if π1(M) contains no normal free abelian subgroup, then Z(G0) is finite,
G0 is semisimple, and a finite cover of M is isometric to

Λ\G0/K ×f Q

for f : Q→M, the moduli space of locally symmetric metrics on Λ\G0/K.
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The aspherical assumption is required. There are metrics on the sphere Sn with
a bump at one point, for example, for which the isometry group contains only
rotations fixing that point. However, [FW] contains the statement of a similar
theorem to the above, under a noncompactness assumption on the connected
isometry group, for arbitrary closed Riemannian manifolds.

Their proof relies on the theory of proper transformation groups, Lie theory,
and remarkable cohomological dimension arguments.

2.2 Lorentz case

For Lorentz manifolds, a crucial difference from the Riemannian case is that the
isometry group need not act properly; in particular, orbits may not be closed,
and the group of deck transformations may not intersect G0 in a lattice. On
the other hand, fantastic work has been done on nonproper isometric Lorentz
actions ([K1], [Ze3], [Ze4]), which implies a great deal of structure in that case.

For a compact Lorentz manifold M , the groups Isom0(M) have been classified
([Zi2], [AS1], [AS2], [Ze1], [Ze2]). There are several results on the form of a
compact Lorentz manifold admitting an isometric action of a given group ([Gr]
5.4.A, [Ze2] 1.14, [Ze2] 4.1.2, [Me] 4.9). Here we consider universal covers of
compact Lorentz manifolds with isometric actions of semisimple groups; some
techniques on compact manifolds can be extended to this setting.

The Lorentz manifolds with the most symmetry are those of constant curvature,
modelled on Minkowski space, de Sitter space, or anti-de Sitter space. Any
Lorentzian locally symmetric space has constant curvature, as was proved in
[CLPTV] and independently in [Ze5]. A Lorentzian locally symmetric space is
a Lorentz manifold such that, for any tangent vector v at any point x, there is
a local isometry fixing x and sending v to −v. The model for n-dimensional
Minkowski space, Minn, is Rn equipped with a nondegenerate inner-product of
type (1, n−1). The model for n-dimensional de Sitter space, dSn, is the +1-level
set of a quadratic form of type (1, n), with the induced metric. The model for
n-dimensional anti-de Sitter space, AdSn, is the −1-level set of a quadratic form
of type (2, n−1), with the induced metric. Each is a homogeneous space, G/H,
where H is the stabilizer of a point. The isometry group, stabilizer, curvature,
and diffeomorphism type for each are in the following table.
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Minn dSn AdSn

Isom O(1, n− 1)nRn O(1, n) O(2, n− 1)

Stab O(1, n− 1) O(1, n− 1) O(1, n− 1)

Curv 0 1 −1

Diff Rn Sn−1 ×R Rn−1 × S1

Note that AdS2 ∼= dS2 ∼= SO(1, 2)/A, where A ∼= R∗ is a maximal R-split torus.
On Minkowski space of any dimension, there are obviously discrete groups of
isometries acting properly discontinuously and cocompactly. A result of Calabi
and Markus states that no infinite subgroup of O(1, n) acts properly on dSn, so
there are no compact complete de Sitter manifolds ([CM]). Kulkarni noted that
when n is odd, lattices in SU(1, (n − 1)/2) act freely, properly discontinously,
and cocompactly on AdSn. For n even, he proved that there is no cocompact,
properly discontinuous, isometric action on AdSn ([Ku]). The group SL2(R)
with the Killing metric is isometric to AdS3.

Kowalsky, using powerful dynamical techniques, which are treated in detail in
Section 6.1 below, proved that a simple group acting nonproperly on an arbitrary
Lorentz manifold is locally isomorphic toO(1, n), n ≥ 2, orO(2, n), n ≥ 3 ([K1]).
Adams has characterized groups that admit orbit nonproper isometric actions
on arbitrary Lorentz manifolds in [A1] and [A2]; an action G×M →M is orbit
nonproper if for some x ∈M , the map g 7→ g.x from G to M is not proper.

There are several recent results on the form of arbitrary Lorentz manifolds
admitting isometric actions of certain semisimple groups. Witte Morris showed
that a homogeneous Lorentz manifold with isometry group O(1, n) or O(2, n−1)
is dSn or AdSn, respectively ([WM1]). Arouche, Deffaf, and Zeghib, using
totally geodesic, lightlike hypersurfaces, showed that if a semisimple group with
no local SL2(R)-factors has a Lorentz orbit with noncompact isotropy, then a
neighborhood of this orbit is a warped product N ×f L, where N is a complete,
constant-curvature Lorentz space, and L is a Riemannian manifold ([ADZ]).
Deffaf, Zeghib, and the author treat degenerate orbits with noncompact isotropy
in [DMZ]. We conclude that any nonproper action of a semisimple group with
finite center and no local SL2(R)-factors has an open subset isometric to a
warped product as in [ADZ], and we describe the global structure of such actions.
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The work here combines features and techniques of many of these papers, as
well as those of [FW]. As in [FW], we consider universal covers of compact
aspherical Lorentz manifolds and seek to describe those for which the identity
component of the isometry group is nontrivial. Here is the main result.

Theorem 2.3 Let M be a compact, aspherical, real-analytic, complete Lorentz
manifold with universal cover X. Let G = Isom(X), and assume G0 is semisim-
ple.

(1) Orbibundle. Then M is an orbibundle

P →M → Q

where P is aspherical and locally homogeneous, and Q is a good aspherical orb-
ifold.

(2) Splitting. Further, precisely one of the following holds:

A. G0 acts properly on X:

Then P = Λ\G0/K where Λ is a lattice in G0 and K is a maximal compact
subgroup of G0.

Further, if |Z(G0)| <∞, then a finite cover of M is isometric to

P ×f Q

for f : Q →M, the moduli space of Riemannian locally symmetric metrics on
P = Λ\G0/K. The Lorentzian manifold Q has Isom0(Q̃) = 1.

B. G0 acts nonproperly on X:

Then M is a Lorentzian orbibundle. The metric along G0-orbits is Lorentzian,
with

P = Λ\(ÃdSk ×G2/K2)

where k ≥ 3, G2 CG0 with maximal compact subgroup K2, and

Λ ⊂ Õ0(2, k − 1)×G2

acts freely, properly discontinuously, and cocompactly on ÃdS
k × G2/K2. The

good Riemannian orbifold Q has Isom0(Q̃) = 1. There is a warped product

X ∼= ÃdS
k ×h L
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for some real-analytic function h : L→ R+.

Further, if |Z(G2)| <∞, then X is isometric to

(ÃdS
k ×G2/K2)×f Q̃

where f : Q̃→M, and M∼= R2 is the moduli space of G0-invariant Lorentzian

metrics on ÃdS
k ×G2/K2.

Corollary 2.4 Let M and G0 be as above. If M has an open, dense, locally
homogeneous subset, then M is locally homogeneous.

Section 5 below contains a construction in which a noncompact, connected,
semisimple groupH0 ⊆ Isom(X); Z(H0) is infinite; H0 acts properly onX; and
the metric type on H0-orbits varies, which we believe illustrates the necessity
of the hypothesis of finite center in (2) A. In that section, we also adapt to
the Lorentz setting a construction of [FW] of essential orbibundles—that is,
orbibundles that are not finitely covered by any fiber bundle.

Proof Outline for Theorem 2.3:

• The first step involves Gromov’s stratification for isometric actions on
spaces with rigid geometric structure: there is a closed orbit in X on
which the group of deck transformations acts cocompactly (Propositions
7.4, 7.5).

The stabilizer of a point in this orbit then determines the dynamics of the
isometry group on X.

• If the stabilizer is compact, then the group generated by G0 and the
fundamental group acts properly. In this case, techniques of [FW] apply
(Section 8.1).

• When the stabilizer is noncompact, then G0 acts nonproperly on X. In
this case, we extend work of [Ze3] to show that totally geodesic lightlike
foliations exist on X (Theorem 6.4). When there are many of these foli-
ations, then results of [Ze4] give the warped product structure on X and
the orbibundle in M (Sections 8.2.1, 8.2.2). We show in Section 8.3 that
there must be sufficiently many of these foliations; the argument here in-
volves dynamical techniques of [K1], Lie algebras, and some basic facts
about locally homogeneous spaces.
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3 Notation

Throughout, M is a compact, aspherical, real-analytic, complete Lorentz man-
ifold. The universal cover of M is X, with Isom(X) = G. The group of deck
transformations is Γ ∼= π1(M). The identity component of G is a semisimple
group G0, and Γ0 = Γ ∩G0. Note G0 CG and Γ0 C Γ.

The Lie algebra of G0 is g. Let g = g1 ⊕ · · · ⊕ gl be the decomposition of g into
simple factors. Let Gi be the corresponding subgroups of G0. The projection
g → gi will be denoted πi, as will the projection G0 → Gi.

For an arbitrary group H acting on a space Y , the stabilizer of y ∈ Y will be
denoted H(y). In particular, Gi(y) = G0(y) ∩Gi, and gi(y) = g(y) ∩ gi.

4 Background and Terminology

4.1 Proper actions

Let H be a locally compact topological group and Y a locally compact Hausdorff
space.

Definition 4.1 A continuous action of H on Y is proper if, for any compact
subsets A,B ⊂ Y , the set

HA,B = {h : hA ∩B 6= ∅}

is compact in H.

Note that HA,B is automatically closed by continuity of the action. The follow-
ing equivalence is easy to show. Both characterizations of properness will be
used below.

Proposition 4.2 The action of H on Y as above is proper if and only if, for
any compact A ⊆ Y , the set

HA = {h : hA ∩A 6= ∅}

is compact in H.

Definition 4.3 A proper action of a discrete group is called properly discon-
tinuous.
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The following facts about proper actions are standard.

Proposition 4.4 If H acts properly on Y , then

1. H(y) is compact for all y ∈ Y

2. Hy is closed in Y

3. H\Y is Hausdorff in the quotient topology

4. Any closed subgroup of H also acts properly on Y

The following facts rely on the existence of slices for smooth proper actions on
manifolds. See [P] for definitions related to stratified spaces.

Proposition 4.5 Let H be a Lie group acting smoothly and properly on a con-
nected manifold Y .

1. For any compact A ⊂ H\Y , there is a compact A ⊂ Y projecting onto A.

2. In general, H\Y is a Whitney stratified space with

dim(H\Y ) = dimY − dimH + dimH(y)

where dimH(y) is minimal over y ∈ Y .

3. If the stabilizers H(y) belong to the same conjugacy class for all y ∈ Y ,
then H\Y is a smooth manifold.

Proof:

1. Let π be the projection Y → H\Y . For any y = π(y) in H\Y , the Slice
Theorem (see [P] 4.2.6) gives a neighborhood U of y and a diffeomorphism
ϕy : H ×H(y) Vy → π−1(U), where Vy is an open ball in some Rk. A disk
about 0 in Vy corresponds under ϕy to a compact Dy containing y, and
projecting to a compact neighborhood of y in H\Y . For a compact subset
A, there exist y1, . . . , yn such that int(π(Dy1)), . . . , int(π(Dyn)) cover A.
Then Dy1 ∪ · · · ∪Dyn is the desired compact A ⊂ Y .

2. The stratification is by orbit types: for each compact K ⊂ H, let

Y(K) = {y ∈ Y : gH(y)g−1 = K for some g ∈ H}
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and let YK be the fixed set of K. Then the pieces of the stratification of
H\Y are the components of the quotients

H\Y(K) = NH(K)\YK

Each piece has the structure of a smooth manifold. See [P] 4.3.11 and
4.4.6. When K = H(y) is minimal, then Y(K) is open, and the piece
H\Y(K) has maximal dimension dimY − dimH + dimH(y).

3. If all stabilizers are conjugate to one compact subgroup K, then H\Y =
H\Y(K), which consists of a single piece, because Y is connected.

♦

Theorem 4.6 (Goresky [Go]) Stratified spaces can be triangulated such that
the interior of each simplex is contained in a piece of the stratification.

4.2 Orbifolds and orbibundles

Definition 4.7 An n-dimensional orbifold is a Hausdorff, paracompact space
with an open cover {Ui}, closed under finite intersections, with homeomorphisms

ϕi : Ũi/Λi → Ui

where Ũi is an open subset of Rn and Λi is a finite group. The atlas (Ui, ϕi)
must additionally satisfy the compatibility condition: whenever Uj ⊂ Ui, then
there is a monomorphism Λj → Λi and an equivariant embedding Ũj → Ũi

inducing a commutative diagram

Ũj → Ũi

↓ ↓
Ũj/Λj → Ũi/Λi

↓ ↓
Uj → Ui

A smooth orbifold is an orbifold for which the action of each Λi is smooth, and
the embeddings Ũj → Ũi are smooth.

Definition 4.8 A good (pseudo-Riemannian) orbifold is the quotient of a (pseudo-
Riemannian) manifold by a smooth, properly discontinuous, (isometric) action.
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It is not hard to see using proper discontinuity that a good orbifold is a smooth
orbifold.

Definition 4.9 A smooth orbibundle is a manifold M with a projection π to a
good orbifold B, written

N →M
π→ B

where N is a manifold, and the orbifold charts (Ui, ϕi) on B lift to

ψi : π−1(Ui) → N ×Λi Ũi

where Λi acts freely and smoothly on N × Ũi.

A pseudo-Riemannian orbibundle is a pseudo-Riemannian manifold M with a
projection π to a good pseudo-Riemannian orbifold B as above, such that the
maps arising from ψi

Ũi → N ×Λi Ũi → π−1(Ui)

are isometric immersions.

Note that, for a pseudo-Riemannian orbibundle M the type of the metric on M
may be different from the type of the metric on the quotient orbifold B.

4.3 Rational cohomological dimension

Definition 4.10 The integral cohomological dimension of a group Λ is

cdZΛ = sup{n : Hn(Λ, A) 6= 0, A a ΛZ-module}

The rational cohomological dimension of Λ is

cdQΛ = sup{n : Hn(Λ, A) 6= 0, A a ΛQ-module}

Proofs of the following facts about integral cohomological dimension can be
found in [Br]; exact references are given for each item.

Proposition 4.11 Let Λ be a discrete group.

1. (VIII.2.2) Let Y be a contractible space on which Λ acts freely and properly
with Λ\Y a finite CW-complex. Then

cdZΛ ≤ dimY
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2. (VIII.2.4b) Let Λ0 C Λ. Then

cdZΛ ≤ cdZΛ0 + cdZ(Λ/Λ0)

.

3. (VIII.2.5) If cdZΛ is finite, then Λ is torsion-free.

Next we collect some facts about rational cohomological dimension.

Proposition 4.12 Let Λ be a discrete group.

1. Let Y be a contractible space on which Λ acts freely and properly with Λ\Y
a finite CW-complex. Then

cdQΛ ≤ dimY

If Λ\Y is a manifold, then there is equality.

2. If Λ is finite, then cdQΛ = 0.

3. Let Λ0 C Λ. Then

cdQΛ ≤ cdQΛ0 + cdQ(Λ/Λ0)

Proof:

1. Under these hypotheses, Λ\Y is a K(Λ, 1) space. Then H∗(Λ, A) ∼=
H∗(Λ\Y,A) for any Λ-moduleA. For anyA, the cohomologyHn(Λ\Y,A) =
0 for n > dimY , yielding the desired inequality. If the quotient space is
an orientable manifold, then Hn(Λ\Y,Z) 6= 0 when n = dimY .

2. This statement follows from (1).

3. This inequality is derived from the Hochschild-Serre spectral sequence,
(see [Br] VII.6.3), which applies to group cohomology with coefficients in
arbitrary modules.

♦
Rational cohomological dimension gives information about actions that are
properly discontinuous but not necessarily free. The following fact about such
actions will be cited multiple times below.
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Proposition 4.13 Let Λ be a discrete group acting properly discontinuously
on a locally compact Hausdorff topological space Y such that the quotient Λ\Y
admits a CW decomposition compatible with the stratification by orbit types—the
interior of each cell is contained in a piece of the stratification. Then Y admits
a CW decomposition on which the Λ-action is cellular.

Proof: (compare [Sch] III.6.9.2) Denote by π the projection Y → Λ\Y . For a
finite subgroup F of Λ, denote by Y(F ) the stratum consisting of all points y for
which Λ(y) is conjugate to F . The set Y(F ) is Λ-invariant. Let Y (F ) = π(Y(F )).
The collection of Y (F ) form the stratification by orbit types of Λ\Y .

We will show that the restriction of π to any stratum in Y is a covering map. Let
x ∈ Y (F ) and y ∈ π−1(x). To find a neighborhood U of y in Y(F ) that projects
homeomorphically to its image under π, it suffices to find a neighborhood on
which π is injective, because π is continuous and open. Assume that Λ(y) = F .
By properness, there exists a neighborhood U of y in Y such that λU ∩ U = ∅
for all λ /∈ F . For any z ∈ U , the stabilizer Λ(z) ⊆ F . If π(z) = π(w)
for some z, w ∈ U , then z = λw for some λ ∈ F . Now for every z ∈ U ∩
Y(F ), we have Λ(z) = F ; therefore, π is injective on this neighborhood in Y(F ).
Let V = ∩λ∈Fλ(U ∩ Y(F )). Then π−1(π(V )) = ΛV is a disjoint collection of
neighborhoods in Y(F ), each mapping homeomorphically to its image in Y (F ).

For each 0-cell e of Λ\Y , choose a lift e1 to Y , and let eλ = λe1 be 0-cells
of Y , where λ ranges over a collection of coset representatives for Λ/Λ(e1).
Now suppose that the (k − 1)-skeleton of Y has been constructed, and that
it is the inverse image of the (k − 1)-skeleton in Λ\Y . Denote by Dk the k-
dimensional disk, and by Bk its interior. Given a k-cell e with fe : Dk → Λ\Y ,
say fe(Bk) ⊆ Y (F ). Because Bk is contractible, there is a lift fe1 : Bk → Y(F ).
This lift is a homeomorphism onto its image. The extension of fe1 to Dk is
determined by continuity. The image fe1(∂D

k) is in the (k − 1)-skeleton of Y ,
because fe1

(∂Dk) is in the (k − 1)-skeleton of Λ\Y . Then e1 = fe1(D
k) is a

k-cell in Y . For each coset in Λ/F , let λ be a representative, and let eλ be the
k-cell given by λ ◦ fe1 . Continuing in this way, we obtain a CW decomposition
of Y lifting that on Λ\Y , on which Λ acts in a cellular fashion. ♦
This key proposition about rational cohomological dimension is known, but we
did not find a reference.

Proposition 4.14 Let Λ be a discrete group acting on a contractible CW com-
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plex Y properly and cellularly. Then

cdQΛ ≤ dimY

Proof:

Let C∗ be the chain complex over Q for Y ; this complex is exact because Y is
contractible. For each dimension n, the QΛ-module Cn is a direct sum

Cn
∼=

⊕
α

Q[Λ/Λα]

where α ranges over Λ-orbits, and Λα is the stabilizer of a point in the orbit
labelled by α. Properness of the Λ-action on Y implies each Λα is finite. There
is a QΛ-homomorphism Q[Λ/Λα] → QΛ given by

[λ] 7→ 1
|Λα|

∑

σ∈[λ]

σ

where [λ] is a coset in Λ/Λα. This homomorphism is a section of the natural
projection QΛ → Q[Λ/Λα]. Now it follows that each Q[Λ/Λα] is a projective
QΛ-module and thus so is each Cn. Therefore, C∗ is a projective resolution of Q
over QΛ. For any QΛ-module A, the homology of the complex HomQΛ(C∗, A)
computes the cohomology H∗(Λ, A). Because Cn = 0 for n > dimY , the coho-
mology Hn(Λ, A) = 0 for n > dimY .

♦

4.4 Symmetric spaces

Recall that any connected Lie group G has a maximal compact subgroup K,
unique up to conjugacy. This subgroup is always connected; further, the quo-
tient G/K is contractible ([I] 6).

We collect here some facts about symmetric spaces of noncompact type, which
are homogeneous Riemannian manifolds of the formG/K, whereG is semisimple
with no compact local factors, connected, and has finite center.

Proposition 4.15 Let G be a connected semisimple Lie group with finite cen-
ter. Let K be a maximal compact subgroup of G.

1. There is an Ad(K)-invariant decomposition g = p ⊕ k. The Ad(K)-
irreducible subspaces of p correspond to the simple factors of g, and there
is no one-dimensional Ad(K)-invariant subspace of p.
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2. NG(K) = K

3. For any torsion-free lattice Γ ⊂ G, the center Z(Γ) = 1.

Proof:

1. The complement p is the −1 eigenspace of a Cartan involution s of g, and
satisfies [p, p] ⊆ k. Let B be the inner product on p pulled back from
T[K](G/K). Then (g, s, B) is an orthogonal involutive Lie algebra (see
[Wo] 8.2). Suppose p1 is an Ad(K)-invariant subspace of p. Then p⊥1 is
also Ad(K)-invariant. Lemma 8.2.1 (iii) of [Wo] says that [p1, p

⊥
1 ] = 0.

Let k1 be the centralizer in k of p⊥1 . We will show that g1 = p1 + k1 is an
ideal of g.

First, [p1, p1] ⊆ k1: the Jacobi identity plus the lemma above gives, for
any X,Y ∈ p1 and Z ∈ p⊥1 ,

[[X,Y ], Z] = −[[Z,X], Y ]− [[Y,Z], X] = 0

A similar application of the Jacobi identity shows [k, k1] ⊆ k1. Now it is
easy to verify that g1 is an ideal.

Now suppose that p1 is a one-dimensional Ad(K)-invariant subspace. Be-
cause K is compact, it has no nontrivial one-dimensional representations,
so [k, p1] = 0. Clearly [p1, p1] = 0. By the lemma above, [p, p1] = 0.
Therefore, p1 ⊆ z(g), contradicting that g is semisimple.

2. If g ∈ NG(K), then [gK] ∈ G/K is fixed by K. By [E] 1.13.14 (4), there
is a unique fixed point for K in G/K. Therefore, [gK] = [K], so g ∈ K.

3. For each z ∈ Z(Γ),

γzγ−1z−1 = 1 for all γ ∈ Γ

Because Γ is Zariski dense in G (see [Zi3] 3.2.5),

gzg−1z−1 = 1 for all g ∈ G

Therefore, Z(Γ) ⊆ Z(G). But Z(G) is finite and Γ is torsion-free.

♦
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5 Examples when Z(G0) is infinite

5.1 Varying metric type on orbits

We now construct an example of a contractible Lorentz manifold X admitting a
free, properly discontinuous, cocompact, isometric action such that Õ(2, 2k) ⊆
Isom0(X), but the metric type of Õ(2, 2k)-orbits varies. We believe that
Isom0(X) ∼= Õ(2, 2k), in which case this example illustrates the necessity of
the hypothesis |Z(G0)| < ∞ in the proper case of Theorem 2.3 in order to
conclude that G0-orbits are Riemannian.

Let K ∼= Õ(2k), the maximal compact subgroup of Õ(2, 2k). Let

o(2, 2k) = p1 ⊕ p2 ⊕ o(2)⊕ k

be an Ad(K)-invariant refinement of a Cartan decomposition, with dimpi = k

for i = 1, 2. The bracket [pi, pi] ⊂ k while [pi, pj ] ⊆ o(2) for i, j = 1, 2, i 6= j. Let
B = B1⊕B2 be a positive definite Ad(K)-invariant inner product on p1⊕p2 that
is not invariant by the full maximal compact Ad(O(2)×O(2k)) of Ad(O(2, 2k)).
Let λ be any nonzero element of o(2)∗ ∼= R∗. Then for any c ∈ R, the inner
product given by B + cλ on p1 ⊕ p2 ⊕ o(2) is Ad(K)-invariant. Denote by B̃c

the corresponding left-invariant symmetric bilinear tensor on Õ(2, 2k)/Õ(2k), a
line bundle over the Riemannian symmetric space O(2, 2k)/(O(2)×O(2k)).

Let X = (Õ(2, 2k)/Õ(2k)) × R. Denote by V the kernel of TX → TR. The
fibers V(x,t) can be identified with Tx(Õ(2, 2k)/Õ(2k)). Denote by Z the vector
field on X arising from the right action of the 1-parameter subgroup of Õ(2, 2k)
generated by o(2). This vector field is invariant by the left action of Õ(2, 2k).
Denote by P the left-invariant distribution on X that coincides with p1 ⊕ p2 at
the the coset of the identity.

Now define a Lorentz metric λ on X by

λ(z,t)

∣∣
V = B̃cos t

λ(z,t)

(
∂

∂t
,
∂

∂t

)
= − cos t

λ(z,t)

(
∂

∂t
, Z

)
= sin t

P ⊥ ∂

∂t

The metric on the fiber over t is Lorentzian, degenerate, or Riemannian, accord-
ing as cos t < 0, cos t = 0, or cos t > 0. The group Õ(2, 2k) ⊆ Isom(X). For Γ0
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a cocompact lattice in Õ(2, 2k), the product Γ0×Z acts properly discontinuously
and cocompactly on X.

5.2 Essential orbibundle

In [FW] 5.1, Farb and Weinberger construct a group Ξ that acts smoothly,
properly discontinuously, and cocompactly on Rn, for which every finite-index
subgroup contains a subgroup F ∼= Z/pZ. The action of such an F on Rn

necessarily has fixed points. The quotient good orbifold Γ\Rn is not finitely
covered by any manifold. They also find a class ξ ∈ H2(Γ,Z) that vanishes in
H2(Γ,R) and is nontrivial on some F . Then the extension

Z → Ξ̃ → Ξ

given by ξ acts properly discontinuously, freely, and cocompactly on X = R ×
Rn. It is possible to choose a Riemannian metric µ on Rn such that the product
metric dt2 + µ on X is Ξ̃-invariant and has Isom0(X) ∼= R. The quotient
M = Ξ̃\X is an orbibundle

S1 →M → Ξ\X

that is not finitely covered by any smooth fiber bundle.

It is simple to make this example Lorentzian: take the product metric −dt2 +µ.
We will next construct a contractible Lorentz manifold X covering a compact
essential orbibundle with Isom0(X) semisimple.

Let Λ be a cocompact lattice in SU(1, k), and let Λ̃ be the lift of Λ to S̃U(1, k);
it is also a cocompact lattice, containing Z ⊂ Z(S̃U(1, k)). The group Ξ̃ con-
structed above acts on the space (S̃U(1, k)/S̃U(k)) × Rn because R acts on
S̃U(1, k)/S̃U(k) by flowing along the left-S̃U(1, k)-invariant vector field Z from
the previous example. In fact, the cocycle ξ above determines an extension

Λ̃ → Γ → Ξ

that acts isometrically on X = ÃdS
2k+1 × (Rn, µ). Now Γ acts freely, properly

discontinuously, and cocompactly onX by isometries, and the quotient manifold
M = Γ\X is an orbibundle

Λ̃\ÃdS2k+1 →M → Ξ\Rn

As in Farb and Weinberger’s example, no finite cover of this orbibundle is a
fiber bundle.
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Proposition 5.1 For X as above, Isom0(X) ∼= Õ0(2, 2k)

Proof: Let P and Q be the distributions on X tangent to ÃdS
2k+1

-fibers and
Rn-fibers, respectively. Denote by σ the tensor

σ(u,v) = 〈R(u,v)u,v〉

where R is the curvature tensor of X. The sectional curvature of a nondegen-
erate plane spanned by u,v is

S(u,v) =
σ(u,v)
|u ∧ v|

where |u∧v| = 〈u,u〉·〈v,v〉−〈u,v〉2. Because ÃdS
2k+1

has constant curvature,
σ vanishes whenever u and v belong to P and span a degenerate plane (see [ON]
8.28).

Suppose that ϕt is a one-parameter group of isometries ofX. Let u,v be tangent
vectors belonging to Pp, where p is a point of X, with u null, 〈v,v〉 = 1, and
u ⊥ v. Let

ϕt
∗(u) = u′t + xt

ϕt
∗(v) = v′t + yt

with u′t,v
′
t ∈ P and xt,yt ∈ Q. Suppose span{xt,yt} is two-dimensional for

small nonzero t. Then u′t is timelike; further,

lim
t→0

|xt ∧ yt|
|u′t ∧ v′t|

= 0

Now

0 = σ(u,v)

= σ(ϕt
∗(u), ϕt

∗(v))

= σ(u′t,v
′
t) + σ(xt,yt)

Because S(u′t,v
′
t) = −1,

σ(xt,yt) = |u′t ∧ v′t|

so
S(xt,yt) =

|u′t ∧ v′t|
|xt ∧ yt|
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which is unbounded as t approaches 0. Because the metric on Rn is Riemannian,
the sectional curvatures along Q are bounded on compact sets, and we have a
contradiction. Therefore, span{xt,yt} is at most one-dimensional for all t.

Now suppose xε 6= 0 for some ε > 0. Then u′ε is timelike, and

σ(u,v) = σ(u′ε + xε,v′ε + yε) = σ(u′ε,v
′
ε)

This is impossible, because the left side is zero, while the right is not. Therefore,
all null vectors in P have image again tangent to P. Because P is spanned by
null vectors, ϕt preserves P, and therefore also Q = P⊥. Then ϕt induces an
isometry of (Rn, µ), which must be trivial because Isom(Rn, µ) is discrete. It

follows easily that ϕt belongs to Õ(2, 2k) = Isom0(ÃdS
2k+1

). ♦

Remark 5.2 It would be interesting to know whether there can be a real-analytic
example of an essential orbibundle.

6 Lorentz dynamics

6.1 Kowalsky’s argument

In [K1], Kowalsky relates the dynamics of Lorentz-isometric actions of a semisim-
ple Lie group G with the adjoint representation on Sym2(g∗).

For each x ∈ X, there are linear maps

fx : g → TxX

fx : Y 7→ ∂

∂t

∣∣∣∣
0

etY x

Differentiating getY x = getY g−1(gx) gives the relation

g∗xfx(Y ) = fgx ◦Ad(g)(Y )

Let <,>x denote the inner product on g obtained by pulling back the Lorentz
inner product on TxX by fx. Since the G0-action is isometric,

< Y,Z >gx=< Ad(g−1)Y,Ad(g−1)Z >x

In Kowalsky’s argument, the dynamics of the nonproper group action imply
that many root spaces of g belong to the same maximal isotropic subspace for
some <,>x. We adapt this argument to obtain the following result. Recall that
πi is the projection of G or g on the ith (local) factor.
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Proposition 6.1 Let G be a connected semisimple group acting isometrically
on a Lorentz manifold. Suppose that for y ∈ X, there is a sequence gn ∈ G(y)
with Ad(gn) →∞. Then g has a root system ∆ and an R-split element A such
that ⊕

α∈∆,α(A)>0

gα

is an isotropic subspace for <,>y.

Suppose further that G0 preserves an isotropic vector field S∗ along the orbit
G0y, and let S ∈ g be such that fy(S) = S∗(y). Then, with respect to <,>y,


 ⊕

α(A)>0

gα


 ⊥ S

Proof: Let gn = k̂nân l̂n be the KTK decomposition of gn, where T is a maxi-
mal R-split torus in G, and K = Ad−1(Ad(K)), for Ad(K) a maximal compact
subgroup of Ad(G). Let Ad(gn) = knanln be the corresponding decomposition
in Ad(G). The condition Ad(gn) → ∞ implies an → ∞. Let An = ln an. By
passing to a subsequence, we may assume

• An/|An| → A for some R-split A ∈ g

• kn → k

• ln → l

Let ∆ be a root system with respect to a = lnT . Let α, β ∈ ∆ be such that
α(A), β(A) > 0. Let U ∈ gα and V ∈ gβ . We have, for all n,

< U, V >ân l̂ny=< U, V >k̂−1
n y (1)

The left hand side is

< a−1
n (U), a−1

n (V ) >l̂ny = e−α(An)−β(An) < U, V >l̂ny

= e−α(An)−β(An) < l−1
n (U), l−1

n (V ) >y

The inner products < l−1
n (U), l−1

n (V ) >y converge to < l−1(U), l−1(V ) >y; in
particular, they are bounded. The factors e−α(An)−β(An) converge to 0. Then
the left side of (1) converges to 0.
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The right hand side of (1) converges to

< k(U), k(V ) >y

Therefore, the sum of root spaces
⊕

α(A)>0

k(gα)

is an isotropic subspace for <,>y. Now replace ∆ with ∆ ◦ k−1 and A with
k(A) to obtain the first assertion of the proposition.

Now let S∗ be a G0-invariant vector field along the orbit G0y. If S is such that
fy(S) = S∗(y), then fgy(Ad(g)(S)) = S∗(gy) for any g ∈ G0. Let Ad(gn) =
knanln be the KTK decomposition as above, and let A = lim(An/|An|). Now
suppose α is a root with α(A) > 0. For U ∈ gα

< knU, knanln(S) >bknban
blny=< knU, S >y

The left hand side is

< a−1
n (U), ln(S) >blny= e−α(An) < U, ln(S) >blny

This sequence converges to 0. The right hand side converges to

< k(U), S >y

Then k(gα) ⊥ S with respect to <,>y, yielding the desired result when A is
replaced with k(A) and ∆ with ∆ ◦ k−1. ♦

Remark 6.2 Note that if, for the R-split element A given by Proposition 6.1,
πi(A) 6= 0, then πi(gn) →∞.

Remark 6.3 In the proof above, if we start with a KTK decomposition with
a = lnT , then the element A given by Proposition 6.1 belongs to Ad(K)(a).

6.2 Totally geodesic codimension-one lightlike foliations

A lightlike submanifold of a Lorentz manifold is a submanifold on which the
restriction of the metric is degenerate. A foliation is lightlike if each leaf is
lightlike. In [Ze3], Zeghib shows that a compact Lorentz manifold M with a
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noncompact group G ⊂ Isom(M) has totally geodesic codimension-one lightlike
(tgl) foliations. Fix a smooth Riemannian metric σ on M giving rise to a norm
| · | and a distance d on M . Let x ∈ M and gn be a sequence in G. The
approximately stable set of gn at x is

AS(x, gn) = {v ∈ TxM : v = lim vn where vn ∈ TM and |gn∗vn| is bounded}

Zeghib proves that any unbounded gn has a subsequence for which the approxi-
mately stable set in TM forms an integrable codimension-one lightlike distribu-
tion with totally geodesic leaves. The resulting foliation F is Lipschitz, in the
sense that there exists C > 0 such that

∠(TFx, TFy) ≤ C · d(x, y)

for all sufficiently close x, y ∈ M . Provided x and y are in a common normal
neighborhood, we can define the angle above as

∠(TFx, TFy) = ∠σ(PγTxFx, TyFy)

where Pγ is parallel transport with respect to the Lorentzian connection along
the geodesic γ from x to y. In fact, there exists C that serves as a uniform
Lipschitz constant for all totally geodesic codimension-one foliations.

We extend this work to obtain tgl foliations on X associated to a sequence
gn ∈ G unbounded modulo Γ. Let | · | be a smooth norm on X that is Γ-
invariant; such a norm can be obtained by lifting an arbitrary smooth norm
from M . For x ∈ X and a sequence gn ∈ G, define

AS(x, gn) = {v ∈ TxX : v = lim vn where vn ∈ TX and |gn∗vn| is bounded}

Note that AS(x, gn) = AS(x, γngn) for any sequence γn in Γ, so this set can be
considered associated to a sequence in Γ\G. On the other hand, for g ∈ G,

AS(x, gng
−1) = g∗(AS(x, gn))

Theorem 6.4 Let gn ∈ G be unbounded modulo Γ. Then there is a subsequence
such that the set of AS(x, gn), for x ∈ X, form an integrable distribution with
totally geodesic codimension-one lightlike leaves. Moreover, the set T GL(X) of
tgl foliations is uniformly Lipschitz: there exist C, δ > 0, such that, for any
foliation F ∈ T GL(X), for any x, y ∈ X with d(x, y) < δ,

∠(Fx,Fy) ≤ C · d(x, y)
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The proof is essentially the same as that in [Ze3]. We outline that proof here
and provide the observations relevant to our generalization. For completeness,
we prove the uniformly Lipschitz property in detail in the Appendix.

We begin with a definition.

Definition 6.5 Let X be a k-dimensional manifold endowed with a smooth,
torsion-free connection ∇ and a smooth Riemannian metric σ. A radius-r
codimension-one geodesic lamination on X consists of a subset X ′ ⊂ X and
a section f : X ′ → Grk−1(TX)|X′ , satisfying

1. Lx = exp∇(f(x) ∩Bσ(0, r)) is ∇-geodesic for each x ∈ X ′

2. Lx ∩ Ly is open in both Lx and Ly for all x, y ∈ X ′

Proposition 6.6 Let X be the universal cover of a compact manifold M . Let
∇ be a smooth connection and σ a smooth Riemannian metric, both lifted from
M . For any r > 0, there exist C, δ > 0 such that any radius-r, codimension-
one geodesic lamination (X ′, f) on X is (C, δ)-Lipschitz: any x, y ∈ X ′ with
dσ(x, y) < δ are connected by a unique ∇-geodesic γ, and

∠σ(Pγf(x), f(y)) ≤ C · dσ(x, y)

The proof of this proposition is in the Appendix. We record two consequences.

Corollary 6.7 For any radius-r codimension-one geodesic lamination (X ′, f),
the function f is uniformly continuous on X ′.

Corollary 6.8 The space T GL(X) is compact.

For the remainder of this section, all metric notions, such as the distance d and
norm | · |, always refer to σ below. Affine notions, such as geodesics, parallel
transport P , and the exponential map exp, refer to ∇.

Proof: (of Theorem 6.4) All exact references are to [Ze3], unless otherwise
indicated.

The following terminology will be used below. A sequence of subspaces Hn ⊂
TX is a stable sequence for gn ∈ G if ‖ gn∗|Hn

‖ is bounded. The modulus of
stability of a stable sequence Hn is 1/(supn ‖ gn∗|Hn

‖).
For x ∈ X and gn ∈ G, the punctually approximately stable set of gn at x is

PAS(x, gn) = {v ∈ TxX : v = lim vn where vn ∈ TxX and |gn∗vn| is bounded}
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Step 1: Punctually approximately stable hyperplanes on a dense subset.

Endow Rk with the standard Lorentz inner product and the standard positive-
definite quadratic form Q. Let θ : TM → M × Rk be a measurable, almost-
everywhere smooth, bounded trivialization of TM . Bounded in this case means
there exists c > 0 such that

|v|/c ≤ Q(θ(x, v))1/2 ≤ c|v|

for any x ∈M and v ∈ TxM . Such a θ can be obtained from finitely many local
trivializations covering TM so that θ is smooth on the complement of finitely
many spheres in M .

Lift θ to a Γ-equivariant trivialization θ : TX → X×Rk, where Γ acts onX×Rk

by γ.(x,v) = (γ.x,v). This trivialization of TX is also bounded. Denote by α
the resulting cocycle

α : G×X → O(1, k − 1)

Denote by θx the restriction of θ to TxX. It is an isomorphism TxX → Rk.

Let gn be a sequence in G and x ∈ X such that α(gn, x) is defined for all n. If
‖ (gn)∗x ‖→ ∞, then An = α(gn, x) → ∞ in O(1, k − 1). Corollary 4.3 states
that any An →∞ in O(1, k − 1) has a subsequence Bn for which AS(0, Bn) is
a lightlike hyperplane H. For such a sequence Bn, the stable sequence Hn of
hyperplanes can be chosen so that the modulus of stability is 1. After passing
to the corresponding subsequence of gn, the punctually approximately stable
space is

PAS(x, gn) = (θx)−1(H) = lim(θx)−1(Hn)

Because θ is bounded, the modulus of stability is uniformly bounded for all such
sequences. Let this bound be r > 0.

Let U be the open dense subset on which θ is defined. For any sequence gn,
the intersection D = (∩ngnU) ∩ U has conull measure in X. Let X ′ ⊂ D be a
countable dense subset of X. For each x ∈ X ′, the cocycle α(gn, x) is defined
for all n. There is a subsequence such that, for all x ∈ X ′, the punctually
approximately stable sequence PAS(x, gn) is a lightlike hyperplane.

Step 2: Propagation of stability.

On M , there exists r′ > 0 such that the exponential map is defined on Br′M ⊆
TM . By Γ-invariance of σ and of the Lorentz metric, the exponential map for X
is also defined on Br′X. We may assume that our uniform modulus of stability
r ≤ r′.
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Proposition 6.1 says that if Hn is a stable sequence of linear spaces for gn,
then on the submanifolds Ln = exp(Hn ∩ BrX), the derivatives gn∗|TLn

are
uniformly bounded. The key fact is that if M is compact, then the derivatives
of

exp ◦ θ−1
: M ×Rk →M ×M

are uniformly bounded. In our case, because exp and θ are Γ-equivariant, and
Γ preserves σ, the same is true.

Proposition 6.2 says that for Hn as above, with Hn ⊆ Txn
X, for any C1-

bounded sequence of curves cn : [0, 1] → Ln with cn(0) = xn, the parallel
transports PcnHn, also form a stable sequence for gn. This proposition is local.
The proof uses the previous proposition and the fact that gn∗ commutes with
parallel transport.

Step 3: Geodesibility.

Proposition 6.3 says that if limHn = H ⊂ TxM is an approximately stable
subspace, not properly contained in any other approximately stable subspace,
then Lx = exp(H ∩ BrX) is totally geodesic. This proposition is local. The
proof uses the propositions of Step 2.

Step 4: Approximately stable subspaces have positive codimension.

Corollary 5.2 says that for a compact Lorentz manifold M , if gn ∈ Isom(M) has
AS(x, gn) = TxM for some x ∈ M , then gn is bounded. Using Proposition 6.1
of Step 2, one can see that AS(x, gn) = TxM implies there is a stable sequence
TxnM for gn. Then the derivatives (gn)∗xn are bounded, which implies gn is
equicontinuous if M is compact. In fact, for an arbitrary Lorentz manifold X,
if K ⊂ X is compact and there exist xn ∈ K such that gnxn ∈ K and (gn)∗xn

are bounded, then gn is equicontinuous.

Now let X be the universal cover of a compact Lorentz manifold M = Γ\X.
Suppose gn is a sequence with AS(x, gn) = TxX for some x, so there is a stable
sequence TxnX for gn. Let K be a compact fundamental domain for Γ with
xn, x ∈ K, passing to a subsequence if necessary. Let γn ∈ Γ be such that
γngnxn ∈ K. Then AS(x, γngn) = AS(x, gn), so γngn is bounded. We conclude
that, if gn is unbounded modulo Γ, then, for all x ∈ X, the approximately stable
set AS(x, gn) is a proper subset of TxX.

Step 5: Totally geodesic codimension-one laminations.

Fact 6.4 says that if gn does not admit a codimension-zero approximately
stable subspace and H ⊆ TxX is an approximately stable hyperplane, then
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AS(x, gn) = H. The proof is local and uses Proposition 6.1 of Step 2. From
Steps 1 and 4, we have that if gn is unbounded modulo Γ, then there is a sub-
sequence gn for which PAS(x, gn) = AS(x, gn) is a lightlike hyperplane. In
fact, for a countable dense subset X ′ ⊂ X, there is a subsequence gn such that
PAS(x, gn) = AS(x, gn) is a lightlike hyperplane for all x ∈ X ′. From Proposi-
tion 6.3 of Step 3, Lx = exp(AS(x, gn)∩BrX) is a totally geodesic hypersurface
for all x ∈ X ′.

Corollary 6.5 says that, for any y ∈ Lx, the hyperplane TyLx = AS(y, gn).
Corollary 6.6 says that if Lx and Ly are two totally geodesic hypersurfaces
arising in this way, then Lx ∩ Ly is open in both Lx and Ly. Both follow from
Proposition 6.1 of Step 2 and Step 4.

Now for any gn unbounded modulo Γ, there is a subsequence gn such that
(X ′, f), where f(x) = PAS(x, gn), is a radius-r codimension-one totally geodesic
lamination.

Step 6: Totally geodesic codimension-one lightlike foliations.

From our Corollary 6.7 above, the map f : x 7→ PAS(x, gn) is uniformly con-
tinuous on X ′. Given x ∈ X, let xm ∈ X ′ be a sequence converging to x. The
limit H = limm→∞ PAS(xm, gn) exists and is a lightlike hyperplane. Because
the modulus of stability for the stable sequence converging to PAS(xm, gn) is
uniform over m, the limit H is approximately stable for gn. Then Fact 6.4 of
Step 5 gives that H = AS(x, gn). Therefore, the lamination (X ′, f) extends to
a totally geodesic codimension-one lightlike foliation F with Fx = AS(x, gn) for
all x ∈ X. ♦

7 A closed orbit

In this section, we consider a slightly more general setting. Let M be a compact,
connected, real-analytic manifold with a real-analytic rigid geometric structure
of algebraic type defining a connection. Assume that this connection is com-
plete—that is, that the exponential map is defined on all of TM . An example of
a rigid geometric structure of algebraic type defining a connection is a pseudo-
Riemannian metric. We will make use of Gromov’s stratification theorem and
its consequences for real-analytic rigid geometric structures of algebraic type.
Let G be the group of automorphisms of the lifted structure on the universal
cover X; it is a finite-dimensional Lie group ([Gr] 1.6.H). As usual, let G0 be
the identity component of G; let Γ ⊂ G be the group of deck transformations
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of X; and let Γ0 = Γ ∩G0.

Let J be the pseudogroup of germs of local automorphisms of M . For x ∈ M ,
let Jx be the pseudogroup of germs at x of local isometries. Call the J-orbit of
x ∈M the equivalence class of x under the relation x ∼ y when jx = y for some
j ∈ Jx. Gromov’s stratification theorem says the following:

Theorem 7.1 ([Gr] 3.4) There is a J-invariant stratification

∅ = M−1 ⊂M0 ⊂ · · · ⊂Mk = M

such that, for each i, 0 ≤ i ≤ k, the complement Mi\Mi−1 is an analytic subset
of Mi. Further, each Mi\Mi−1 is foliated by J-orbits, and the J-orbits are
properly embedded in Mi\Mi−1.

Corollary 7.2 ([Gr] 3.4.B, compare [DAG] 3.2.A (iii)) There exists a closed
J-orbit in M .

The stratification above is obtained from similar stratifications invariant by in-
finitesimal isometries of order k, for arbitrary sufficiently large k. It is shown in
[Gr] 1.7.B that orbits of infinitesimal isometries of increasing order eventually
stabilize to J-orbits. For any x ∈M , the infinitesimal isometries of order k fix-
ing x form an algebraic subgroup of GL(TxM), because the given H-structure
is of algebraic type. Then stabilization of infinitesimal isometries to local isome-
tries implies that the group J(x) of germs in Jx fixing x has algebraic isotropy
representation on TxM (see [DAG] 3.5, [Gr] 3.4.A); in particular, J(x) has
finitely-many components.

The aim of this section is to establish that the properties of J-orbits discussed
above apply also to images in M of G0-orbits on X. The main reason for this
correspondence is the fact, proved by Nomizu [N], Amores [Am], and, in full
generality, Gromov [Gr], that local Killing fields on X can be uniquely extended
to global Killing fields. Because the connection on X is complete, any global
Killing field integrates to a one-parameter subgroup of G (see [KN] VI.2.4).
Thus there is a correspondence between local Killing fields near any point of M
and elements of g.

Proposition 7.3 The isotropy representation of G(y) is algebraic for any y ∈
X; the same is true for G0(y).

Proof: Denote by π the covering map from X to M . There is an obvious
homomorphism ϕ : G(y) → J(z), where z = π(y). A tangent vector at the
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identity to J(z) corresponds to the germ of a local Killing field at z. Local
Killing fields near z can be lifted to X, extended, and integrated, giving a linear
homomorphism Te(J(z)) → g inverse to Deϕ. Then ϕ is a local diffeomorphism
near the identity, and so it is a local isomorphism G(y) → J(z). By rigidity,
any g ∈ G(y) with trivial germ at y is trivial, so ϕ is an isomorphism onto its
image. The image is a union of components of J(z), so G(y) is algebraic. The
restriction of ϕ to G0(y) is also an isomorphism onto its image. ♦

Proposition 7.4 There is an orbit G0y in X with closed image in M .

Proof: Let z ∈ M have closed J-orbit, and choose any y ∈ X with π(y) = z.
The image π(G0y) is a connected submanifold of Jz, though it is not a priori
closed. Denote by J0z the component of z in Jz. This is the orbit of z under
local Killing fields on M—that is, all points of M that can be reached from z by
flowing along a finite sequence of local Killing fields. Because each local Killing
field on M corresponds to a 1-parameter subgroup of G0, this component J0z

is contained in π(G0y). They are therefore equal, and closed in M , because Jz
has finitely-many components and is closed in M . ♦

Proposition 7.5 Let y be as in the previous proposition, so G0y has closed im-
age in M . The subgroup Γ0 = G0∩Γ ⊂ G0 acts freely, properly discontinuously,
and cocompactly on G0/G0(y).

Proof: Let Gy be the subgroup of G leaving invariant the orbit G0y, and
Γy = Gy ∩ Γ; note that Γy acts cocompactly on G0y. Because G0y is a closed
submanifold of X, the orbit map G0/G0(y) → G0y is a homeomorphism onto
its image. It therefore suffices to show that Γ0 has finite index in Γy.

Now G0y = Gyy is also the homeomorphic image of Gy/G(y), which is then
connected. As in Proposition 7.3, G(y) has finitely-many components; then
so does Gy. Thus G0 is a finite-index subgroup of Gy, so Γ0 is a finite-index
subgroup of Γy, as desired. ♦

Corollary 7.6 If G0 has no compact orbits on X, then Γ0 is an infinite normal
subgroup of Γ.

8 Proof of main theorem

Let Y = G0y be the orbit given by Proposition 7.4 with closed projection to M .
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8.1 Proper case

If G0(y) is compact, then G0 acts properly; in fact, so does the group G′ gener-
ated by G0 and Γ.

Proposition 8.1 Let G′ be the closed subgroup of G generated by G0 and Γ. If
G0(y) is compact, then G′ acts properly on X.

Proof: IfG0(y) is compact, then Γ0 is a cocompact lattice inG0 by Proposition
7.5. Let F be a compact fundamental domain for Γ0 containing the identity in
G0; note F is also a compact fundamental domain for Γ in G′. Let A be a
compact subset of X, and G′A the set of all g in G′ with gA ∩ A 6= ∅. Any
g ∈ G′A is a product γf where f ∈ F and γ ∈ ΓFA. Since FA is compact,
ΓFA is a finite set {γ1, . . . , γl}. Then G′A is a closed subset of the compact set
γ1F ∪ · · · ∪ γlF , so it is compact. ♦
The first statement in the proper case of Theorem 2.3 is that M is an orbibundle

Λ\G0/K0 →M → Q

We prove this statement, with Λ = Γ0, in three steps.

Step 1: Γ/Γ0 proper on G0\X.

Let A be a compact subset of G0\X, and let

(Γ/Γ0)A = {[γ] ∈ Γ/Γ0 : [γ]A ∩A 6= ∅}

The aim is to show this set is finite. There is a compact subset A of X projecting
onto A by Proposition 4.5 (1). Let

ΓA,G0A = {γ ∈ Γ : γA ∩G0A 6= ∅}

Note that ΓA,G0A is invariant under right multiplication by Γ0, and

(Γ/Γ0)A = ΓA,G0A/Γ0

Let F be a compact fundamental domain for Γ0 in G0. Since FA is compact
and Γ acts properly, the set ΓA,FA is finite. Then (ΓA,FA ·Γ0)/Γ0 = ΓA,G0A/Γ0

is finite, as well.

Let K0 be a maximal compact subgroup of G0.
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Step 2: G0(x) ∼= K0 for all x ∈ X.

Any stabilizer G0(x) is compact, so conjugate to a subgroup of K0. Since K0 is
connected, it suffices to show that dimK0 ≤ dimG0(x). We follow the cohomo-
logical dimension arguments of Farb and Weinberger ([FW]). By Proposition
4.12 (2),

cdQΓ = dimX and cdQΓ0 = dim(G0/K0)

By the extension of [FW] (2.2) of the Conner conjecture ([O]), the quotient
space G0\X is contractible because G0 acts properly and X is contractible. For
any x ∈ X,

dimX − dim(G0/G0(x)) ≥ dim(G0\X)

by 4.5 (2). The quotient (Γ/Γ0)\(G0\X) = G′\X is a Whitney stratified space
because G′ acts properly (4.5 (2)), so it is triangulable by 4.6. By Proposition
4.13, there is a CW decomposition of G0\X preserved by the (Γ/Γ0)-action, so
4.14 gives

cdQ(Γ/Γ0) ≤ dim(G0\X)

Now the inequality 4.12 (3) gives

dimX ≤ dim(G0/K0) + dim(G0\X)

≤ −dimK0 + dimX + dimG0(x)

for any x ∈ X, as desired.

Step 3: Orbibundle.

Now G0\X is a manifold (4.5 (3)) on which Γ/Γ0 acts properly discontinuously.
The foliation of X by G0-orbits descends to M , and all leaves in M are closed.
The leaf space is Q = (Γ/Γ0)\(G0\X), a smooth orbifold. Given U open in Q,
lift it to a connected Ũ in G0\X. For U sufficiently small, the fibers of M over
U are

Ũ ×Λ eU Γ0\G0/K0

where ΛeU = {[γ] ∈ Γ/Γ0 : [γ]Ũ ∩ Ũ 6= ∅} is a finite group. We have an
orbibundle

Γ0\G0/K0 →M → Q

Now it remains to prove the second part of the theorem in the proper case,
giving the metric on M , assuming Z(G0) is finite.
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Step 4: Splitting of X.

Let

ρ : X → G0/K0

ρ(x) = [g] where gK0g
−1 = G0(x)

This map is well-defined and injective along each orbit because N(K0) = K0

(4.15 (2)). Each fiber ρ−1([g]) = Fix (gK0g
−1). Each orbit is mapped surjec-

tively onto G0/K0. Let L = ρ−1([e]) = Fix(K0), a totally geodesic submanifold
of X. Under the quotient, L maps diffeomorphically to G0\X, so L is connected.
The map

G0/K0 × L→ X ([g], l) → gl

is a well-defined diffeomorphism.

The restriction of the metric to each G0-orbit must be Riemannian. Indeed,
let x ∈ L and consider the isotropy representation of K0. The map fx : g →
TxX gives a K0-equivariant isomorphism g/k → Tx(G0x). If the inner-product
on Tx(G0x) is degenerate, then K0 is trivial on the kernel subspace. If it is
Lorentzian, then K0 preserves a norm, so it fixes a minimal length timelike
vector. Either way, the isotropy representation of K0 has a fixed vector. But
Ad(K0) has no one-dimensional invariant subspace in p ∼= g/k (4.15 (1)), a
contradiction.

For the same reason, L is orthogonal to each G0-orbit. Let x ∈ L. The subspaces
Tx(G0x)⊥ and TxL are both K0-invariant complements to Tx(G0x) in TxX. If
they are unequal, then there are nonzero vectors v ∈ Tx(G0x) and w ∈ TxL

such that v − w ∈ Tx(G0x)⊥. Then

k(v − w) = kv − w ∈ Tx(G0x)⊥

⇒ kv − v ∈ Tx(G0x)⊥

⇒ kv = v

again contradicting thatK0 has no one-dimensional invariant subspace in Tx(G0x).

Step 5: Splitting of Γ.

The argument here is the same as in [FW]. The extension

Γ0 → Γ → Γ/Γ0

is a subextension of
G0 → G′ → Γ/Γ0
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so the action Γ/Γ0 → Out(Γ0) is the restriction of Γ/Γ0 → Out(G0). Since G0

is semisimple, Out(G0) is finite. Thus there is a finite-index subgroup Γ′ of Γ
containing Γ0 such that conjugation by any γ ∈ Γ′ is an inner automorphism of
Γ0. The extension

Γ0 → Γ′ → Γ′/Γ0

also determines a cocycle in H2(Γ′/Γ0, Z(Γ0)). But Z(Γ0) is trivial (4.15 (3)).
This extension is therefore a product

Γ′ ∼= Γ0 × Γ′/Γ0

Since Γ′ is torsion-free (4.11 (3)), so is Γ′/Γ0. Then Γ′/Γ0 acts freely on G0\X,
and the quotient, which is a finite cover of Q, is a manifold Q′. The finite cover
M ′ = Γ′\X is diffeomorphic to Γ0\G0/K0 × Q′. The metric descends from X

to M ′ and has the form claimed in the theorem.

8.2 Nonproper case: if G0 has infinite orbit in T GL(X)

Now suppose that G0(y) is noncompact, so G0 acts nonproperly; further, Γ\G
is noncompact. By Theorem 6.4, there are tgl foliations on X. The set T GL(X)
of all these foliations forms a G-space. Pick any F ∈ T GL(X) and let O be
the G0-orbit of F . Because G0 is connected, this orbit either equals {F} or is
infinite. We first deduce the conclusion of the main theorem in case O is infinite.

8.2.1 Warped product

Consider the continuous map

ϕ : T GL(X)×X → P(TX)

ϕ : (F , x) 7→ (x, (TFx)⊥)

For each x ∈ X, the image ϕ(O × {x}) is connected, so it is either infinite or
just one point. The set D of all x for which |ϕ(O × {x})| = 1 is closed. The
complement Dc 6= ∅ because O is infinite. For x ∈ X, let Cx be the set of
lightlike lines in TxX normal to leaves through x of codimension-one, totally
goedesic, lightlike hypersurfaces. For all x ∈ Dc, the set Cx is infinite.

Now Theorem 1.1 of [Ze4] applies to give an open set U ⊆ Dc locally isometric
to a warped product N ×h L, where N is Lorentzian of constant curvature, and
L is Riemannian. For each x ∈ U , the subspace generated by Cx equals TxNx,
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where Nx is the N -fiber through x (see the intermediate result [Ze4] 3.3). Since
X is the universal cover of a compact, real-analytic manifold, Theorem 1.2 of
[Ze4] implies that X is a global warped product N ×h L, and both N and L are
complete.

Because G0 preserves the cone field x 7→ Cx, it also preserves the N -foliation.
Then G1 = Isom0(N) C G0, so it is semisimple. Since X is contractible, N

and L are, as well. Then N must be isometric to ÃdS
k

for some k, and G1
∼=

Õ0(2, k − 1). The assumption that Cx ⊂ TxN is infinite implies k ≥ 3.

8.2.2 Orbibundle

Now it remains to show that X → G0\X is a fiber bundle, and that M is an
orbibundle. Let G2 be the kernel of the homomorphism G0 → Isom0(N); it is
semisimple, and G0 ∼= G1×G2 ⊆ Isom(N)×Isom(L). The orbit Y is isometric
to N × L2 for a Riemannian submanifold L2 of L, and G2 is isomorphic to a
subgroup of Isom(L2). Clearly, G2(x) is compact for all x ∈ X. We will show,
using cohomological dimension, that G2(x) ∼= K2 for all x ∈ X, where K2 is a
maximal compact subgroup of G2.

Since Γ0 acts properly discontinuously and cocompactly on Y ∼= N ×G2/G2(y),
it is also properly discontinuous and cocompact on N × G2/K2. This latter
space is contractible, so by Proposition 4.12 (2),

cdQΓ0 = k + dim(G2/K2)

Next, the quotient G2\L can be identified with G0\X. Since L is contractible
and G2 acts properly on it, either quotient is contractible by [FW] 2.2. We want
to show that Γ/Γ0 acts properly discontinuously on this quotient. Suppose that
a compact C ⊂ G2\L is given. The goal is to show that

(Γ/Γ0)C = {[γ] ∈ Γ/Γ0 : [γ]C ∩ C 6= ∅}

is finite.

There is a compact C ⊂ Ly ⊂ X projecting onto C by 4.5 (1). Let LX be
the bundle of Lorentz frames on X. We may assume C is small enough that
LX ∼= C × O(1, n − 1). Let A be the image of a continuous section of LX
split along the product X = N × L—that is, each frame in A has the first k
vectors tangent to the N -foliation, and the succeeding vectors tangent to the
L-foliation. Let B be the saturation A · (Z2 × Z2 × O(m)), where m = dimL,
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and Z2 ×Z2 ⊆ O(1, k− 1) acts transitively on orientation and time orientation
of Lorentz frames along N ; now B is still compact. Since G acts properly on
LX (see [Gr] 1.5.B or [Ko] 3.2), the set GA,B is compact in G. Because N has
constant curvature, G1

∼= Isom0(N) is transitive on Lorentz frames along N ,
up to orienation and time orientation. Then it is not hard to see

GC,G0C = G0 ·GA,B = GA,B ·G0

Then GC,G0C consists of finitely many components of G. Now

(Γ/Γ0)C = (ΓC,G0C · Γ0)/Γ0

Distinct Γ0-cosets in Γ occupy distinct components of G. Then ΓC,G0C consists
of finitely many cosets of Γ0, and (Γ/Γ0)C is finite, as desired.

Now, as in Step 2 of Section 8.1,

cdQ(Γ/Γ0) ≤ dim(G0\X) = dim(G2\L)

The inequality 4.12 (3) gives

k + dimL ≤ k + dim(G2/K2) + dim(G2\L)

so dimG2(x) = dimK2, and G2(x) is conjugate in G2 to K2 for all x. Then
the quotient Q̃ = G0\X is a contractible manifold by 4.5 (2). Since Γ/Γ0 acts
properly discontinuously here, M is an orbibundle

Γ0\G0/H0 →M → Q

The homogeneous space G0/H0
∼= ÃdS

k ×G2/K2.

8.2.3 Splitting

From section 8.2.1, we have

X ∼= ÃdS
k ×h L

where the warping function h on L is G2-invariant. The function h descends to a
function h1 on Q̃. From the previous section, all G2-orbits in L are equivariantly
diffeomorphic to G2/K2. As in the proper case, if Z(G2) is finite, we can define

ρ : X → G2/K2

ρ(x) = [g] where gK2g
−1 = G2(x)
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This map factors through the projection to L. As in the proper case, we can
show that L ∼= G2/K2 ×h2 Q̃ for some h2 : Q̃ → M, the moduli space of
G2-invariant Riemannian metrics on G2/K2. Now h = (h1, h2) can be viewed
as a function from Q̃ to the moduli space of G0-invariant Lorentz metrics on

ÃdS
k ×G2/K2.

8.3 Nonproper case: no fixed point in T GL(X)

Now suppose, as above, that G0(y) is noncompact, so T GL(X) 6= ∅, but every
G0-orbit in T GL(X) is a fixed point. Then G0 preserves a tgl foliation on X,
so it preserves a lightlike line field on X. We will show that this is impossible.

First, we may assume that this lightlike line field along Y is tangent to Y .
Suppose that Y is either a fixed point or Riemannian. Then the kernel of the
restriction of G0 to Y contains a noncompact semisimple local factor G1. Recall
that Cy is the set of lightlike lines in TyX normal to codimension-one, totally
geodesic, lightlike hypersurfaces through y. Now G1 acts on Cy via the isotropy
representation, and by assumption, it preserves an isotropic line in Cy, but
this is impossible if G1 is semisimple and noncompact. Therefore, the orbit Y
is either Lorentzian or degenerate—TyY

⊥ ∩ TyY 6= 0 for all y ∈ Y . If Y is
degenerate, then G0 preserves the lightlike line field TyY

⊥ along Y . Suppose
Y is Lorentzian. Now G0 preserves the projections of the isotropic line field
y 7→ Cy onto TY and (TY )⊥. If the second projection is nonzero, then the
first is necessarily timelike. But if G0(y) preserves a timelike vector in TyY ,
then G0(y) must be compact, a contradiction. Therefore, we may assume G0

preserves a lightlike line field tangent to Y .

We first collect some facts about the isotropy representation. We will show
that it is either reductive or unimodular, in each case with a rather specific
form. Then we give standard examples of homogeneous spaces with each of
these isotropy representations—the de Sitter space dS2 and the light cone in
Minkowski space—and show that they have no compact quotients. Finally, we
show that, in both the reductive and unimodular cases, the orbit Y must essen-
tially be one of these homogeneous spaces, contradicting that Γ0\Y is compact.

8.3.1 Properties of the isotropy respresentation

Fix an isometric isomorphism of TyX with R1,n−1, determining an isomorphism
O(TyX) ∼= O(1, n − 1). Let V be the image of TyY under this isomorphism,
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and let k = dimV . Let Φ : G0(y) → O(1, n − 1) be the resulting isotropy
representation. There is a filtration on V preserved by Φ. The notation U⊂iV

means U is a subspace of V with dim(V/U) = i. The invariant filtration is

0⊂1V0⊂k−1−iV1⊂iV

where i = 0 or 1 depending on whether V is degenerate or Lorentz. The
subspaces V0 and V1 are degenerate. The quotient representation V1/V0 is or-
thogonal. Because Φ preserves the isotropic line V0 it descends to a quotient
representation on V1/V0, which is orthogonal. The image of Φ is conjugate in
O(1, n− 1) to the minimal parabolic

P = (M ×A)n U

where U ∼= Rn−2 is unipotent, A ∼= R∗, and M ∼= O(n−2), with the conjugation
action of M × A on U equivalent to the standard conformal representation of
O(n− 2)×R∗ on Rn−2. Denote by p the Lie algebra of P , and by m, a, u, the
subalgebras corresponding to M , A, and U .

Because G0 acts properly and freely on the bundle of Lorentz frames of X, the
isotropy representation is an injective, proper map. By Corollary 7.3, the image
Φ(G0(y)) is algebraic. Therefore, it decomposes

im(Φ) ∼= R′ n U ′

where R′ is reductive and U ′ is unipotent ([Mo2]). Any unipotent subgroup of
P lies in U , so U ′ ⊂ U . The reductive complement R′ is contained in a maximal
reductive subgroup, which is then conjugate into A ×M . Let r′ n u′ be the
corresponding Lie algebra decomposition.

Note that TyY can be identified with g/g(y) by the map fy as in Section 6.1,
and there is the relation

g∗y ◦ fy(B) = fy ◦Ad(g)(B)

for B ∈ g and g ∈ G0(y). In other words, Φ restricted to V is equivalent to the
representation Ad of G0(y) on g/g(y) arising from the adjoint representation.
Let ϕ : g(y) → o(1, n − 1) be the Lie algebra representation tangent to Φ and
ad be the representation tangent to Ad.

Proposition 8.2 There is a filtration of g invariant by the adjoint of g(y):

0 ⊂ g(y) ⊂1 s(y) ⊂k−1−i t(y) ⊂i g
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where i = 0 or 1 depending on whether Y is degenerate or Lorentz. The subspace
s(y) is a subalgebra. The quotient representation for ad on t(y)/s(y) is skew-
symmetric.

Proof: The ϕ-invariant filtration 0 ⊂ V0 ⊂ V1 ⊂ V of V corresponds to an
ad-invariant filtration of g/g(y). Lifting to g gives the desired ad(g(y))-invariant
filtration. That s(y) is a subalgebra follows from the facts that [g(y), s(y)] ⊂
s(y) and dim(s(y)/g(y)) = 1. Orthogonality of Φ on V1/V0 implies ϕ is skew-
symmetric on V1/V0; skew-symmetry of ad on t(y)/s(y) follows. ♦
Now we show that the image of Φ is either contained in A×M or M n U .

Lemma 8.3 The image of ϕ is either reductive or consists of endomorphisms
with no nonzero real eigenvalues.

Proof: Suppose there is B ∈ g(y) such that ϕ(B) has nonzero eigenvalue λ
for some eigenvector v ∈ TyX. The vector v is necessarily isotropic, and we
may assume that v ∈ V0. Otherwise, for any nonzero w ∈ V0, the inner product
< v,w >6= 0, which implies that ϕ(B) has nonzero real eigenvalue on w, as
well.

Assume λ > 0; the case λ < 0 is similar. We may assume B ∈ r′. The trace of
ϕ(B)|V is nonnegative and equals 0 if and only if V is Lorentz. Correspondingly,
the trace of ad(B) on g/g(y) is nonnegative.

If ϕ(B) ∈ p has eigenvalue λ > 0, then the adjoint ad(ϕ(B)) has no negative
eigenvalues on p. To simplify the argument, we will use that ϕ(B) = B1 + B2,
where 0 6= B1 ∈ a and B2 ∈ m. It is easy to see that ad(B1) has only real
nonnegative eigenvalues on p. All eigenvalues of ad(B2) are purely imaginary.
Since ad(B1) and ad(B2) are simultaneously diagonalizable, their sum ad(ϕ(B))
cannot have a negative eigenvalue.

Now suppose that im(ϕ) is not reductive, so u′ 6= 0. Let m = dim(u′). It is
easy to compute that the trace of ad(ϕ(B)) on u′ is mλ. Since ad(ϕ(B)) has no
negative eigenvalues, the trace of ad(ϕ(B)) on im(ϕ) ⊆ p is positive. Then the
trace of ad(B) on g(y) is positive.

Finally, the trace of ad(B) on g is positive, which is impossible because g is
unimodular. ♦
Now we have that im(Φ) is either a reductive subgroup of A ×M or has the
form M ′ n U ′, where M ′ ⊂M and U ′ ⊂ U .
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8.3.2 Two examples with no compact quotient

Two-dimensional de Sitter space.

The 2-dimensional de Sitter space dS2 has isometry group O(1, 2) and isotropy
O(1, 1), which has an index-two subgroup isomorphic to R∗. It is a well-known
result of Calabi and Markus that no infinite subgroup of O(1, 2) acts properly
on dS2, so it has no compact quotient ([CM]). More generally, if Y = dS2 × L

for some Riemannian manifold L, then no subgroup of the product O(1, 2) ×
Isom(L) acts properly discontinuously and cocompactly on Y ; this is proved in
[Ze3] §15.1.

We will need an analogous result that also applies to the universal cover d̃S
2
.

Proposition 8.4 Let G ∼= Õ0(1, 2), and H be a connected Lie group. There
is no subgroup Γ ⊂ G ×H acting properly discontinuously and cocompactly on
d̃S

2 ×H.

Proof: Let K = Ad−1(SO(2)), where SO(2) is a maximal compact subgroup
of Ad(G) ∼= O0(1, 2). Let Z ∼= Z be the torsion-free factor of the center Z(G).
Let K be a compact fundamental domain in K for the Z-action with K =
K
−1

; for example, identifying SO(2) with S1 and K with R, we can take K =
[−1/2, 1/2]. Let A be a maximal R-split torus in G. We have G = KAK = ZG,
where G = KAK. For any g ∈ G,

gK ∩KA 6= ∅

In other words, any g in G takes the image [K] of K, which is compact, in
d̃S2 = G/A to meet itself.

There is an isomorphism G ∼= S̃L2(R), so G acts on the real line, with Z acting
by integral translations. The translation number

τ : G→ Z ∼= Z

τ : g 7→ lim
gn(0)
n

is a continuous quasi-morphism (see [Gh]): there exists D > 0 such that

|τ(gg′)− τ(g)− τ(g′)| < D for all g, g′ ∈ G

Note τ(K) = [−1/2, 1/2], and τ(A) = 0. Therefore if g ∈ G, then |τ(g)| ≤
2D + 1. Also note that for n ∈ Z ∼= Z and g ∈ G, then τ(ng) = n+ τ(g).
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Now suppose that C ⊂ d̃S
2×H is a compact fundamental domain for Γ. Denote

by ρ1 and ρ2 the projections onto d̃S
2

and H, respectively. We may assume
that the identity of H is in ρ2(C) = U . For n ∈ Z, let

Sn = {(g, h) ∈ Γ : g ∈ nG, hU ∩ U 6= ∅}

For a subset L ⊆ G, denote by [L] its image in d̃S2. Note that, for any γ ∈ Sn,
the intersection

γ([K]× U) ∩ ([nK]× U) 6= ∅

Therefore, if Γ acts properly discontinuously, then |Sn| <∞ for each n ∈ Z.

On the other hand, we have [G]× U ⊂ Γ · C. Let C be a compact lift of ρ1(C)
to G. Then we have

G× U ⊂ Γ · (CA× U)

The restriction of |τ | to GCA is bounded, so, for |n| sufficiently large,

nGCA ∩G = ∅

It follows that G× U is contained in the union of finitely many Sn · (CA× U),
which is a union of finitely many translates γ · (CA × U), which is impossible,
because the image [G]× U is not compact. ♦
The Minkowski light cone.

A component of the light cone minus the origin in Minkowski space R1,k−1 is a
degenerate orbit of O0(1, k− 1), which we will momentarily denote by G0. The
stabilizer of an isotropic vector is isomorphic to M nU , where M,U ⊂ P are as
above. We will show that no subgroup of G0 acts properly discontinuously and
cocompactly on this orbit.

Suppose that y is a point in the light cone and Γ ⊂ G0 is a discrete subgroup
such that Γ\G0/G0(y) is a compact manifold. Then Γ\G0/U is also compact;
we may assume it is orientable. Because U is unimodular, the homogeneous
space G0/U has a G0-invariant volume form (see [R] I.1.4). This form descends
to Γ\G0/U , where it has finite total volume. The subgroup A ∼= R∗ of P
normalizes U , with generator a acting by Ad(a)(Y ) = e2Y for all Y ∈ u. Then
a acts on Γ\G0/U and scales the volume form by 1/e2(k−2) at every point, which
is impossible for a diffeomorphism of a compact manifold.

In the next section, we will show that, if im(Φ) is reductive, then Ỹ is related,

by proper G̃0-equivariant maps, to d̃S
2×H, where H is a connected Lie group.
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In case im(Φ) is unimodular, we will show that there is a proper G0-equivariant
map (O(1, k−1)/U)×G2 → Y , where U is the unipotent radical of the minimal
parabolic of O(1, k − 1), and G2 is a local factor of G0. In both cases, no
subgroup of G0 can act properly discontinuously and cocompactly on Y . Both
cases involve studying the representation Φ and applying dynamical results from
Section 6.1.

An element B of g is called nilpotent if ad(B) is nilpotent. An element B
is semisimple if ad(B) is diagonalizable over C, and B is R-split if ad(B) is
diagonalizable over R.

8.3.3 Reductive case

In this case, im(Φ) ⊂ A ×M . Because G0(y) is noncompact and Φ is proper,
im(Φ) is not contained inM . The image is fully reducible on TyX; it decomposes
as a product A′ ×M ′, where M ′ is compact, A′ is one-dimensional, and A′ has
nontrivial character on V0. Let Â × M̂ be the corresponding decomposition of
G0(y). Properness of Φ implies M̂ is compact. Continuity implies Ad(an) →∞
for all nontrivial a ∈ Â0: if Ad(an) were bounded, then Ad(an) would be
bounded, so Φ(an) would be bounded on V , a contradiction.

Proposition 8.5

1. The restriction of the metric to Y is Lorentzian, so V1 6= V .

2. There is an ad-invariant decomposition

s0(y)⊕ s1(y)⊕ s2(y)

of g/g(y) corresponding to the filtration in Proposition 8.2.

3. The stabilizer subalgebra g(y) contains no elements nilpotent in g; in par-
ticular, there are no root vectors of g in g(y).

Proof:

1. Let B ∈ â, and let λ be the nonzero eigenvalue of ϕ(B) on V0, which we
assume is positive. If V is degenerate, then the trace of ϕ(B) on V1 = V is
positive, so the trace of ad(B) on g/g(y) is positive. Now B ∈ z(g(y)), so
the trace of ad(B) on g(y) is 0. Then the trace of ad(B) on g is positive,
contradicting unimodularity of g.
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2. Let s(y) ⊂ t(y) ⊂ g be the g(y)-invariant subpaces in Proposition 8.2. Let
s0(y) be the projection of s(y) to g = g/g(y). Let t(y) be the projection of
t(y). Because ad(g(y)) is fully reducible, there is an invariant complement
s1(y) to s0(y) in t(y). Let s2(y) be an invariant complement to t(y) in g.

3. Suppose that X ∈ g(y) is nilpotent. Then ad(X) is nilpotent, so ϕ(X)
restricted to V is nilpotent. Because im(ϕ) contains no nilpotent elements,
ϕ(X) is trivial on V . By (1), the inner product on V ⊥ ⊂ R1,n−1 is positive
definite, so ϕ(X) is skew-symmetric and generates a precompact subgroup
of O(1, n − 1). Because Φ is proper, X should generate a precompact
subgroup of G0, a contradiction unless X = 0.

♦
Now let b ∈ Â0, so Ad(bn) → ∞. By Proposition 6.1, there exists an R-split
element B of g and a root system such that

⊕

α(B)>0

gα

is isotropic for the pullback inner product <,>y on g. By Proposition 8.5 (3),
this sum of root spaces does not meet g(y). Therefore,

dim


 ⊕

α(B)>0

gα


 = 1

and some factor, say g1, of g is isomorphic to sl2(R).

Denote by L the null cone in g/g(y) ∼= V . For b ∈ Â0, the sequence Ad(bn)
has unique attracting and repelling fixed points, p+ and p−, respectively, in the
projectivization P(L); these correspond to the nontrivial eigenvectors of Ad(b).
For i = 1, . . . , l, denote by gi the image of gi modulo g(y); each such subspace
is Ad(G(y))-invariant. Similarly for X ∈ g, denote by X its image in g/g(y).

Let Xα be a generator of the isotropic root space gα above, so Xα ∈ L ∩ g1.
Then either the projectivization [Xα] = p−, or [Ad(bn)(Xα)] → p+. In either
case, one of p−, p+ is in [g1], and Ad(b) has an eigenvector with nontrivial real
eigenvalue in g1.

The fact that g(y) contains no nilpotent elements (8.5 (3)) implies that the
Killing form κ1 of g1

∼= sl2(R) is definite when restricted to g1(y). The or-
thogonal is a G0(y)-invariant complement l1 that projects Ad-equivariantly and
isomorphically onto g1. The element of l1 projecting to Xα is an eigenvector
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for Ad(b). Because g1
∼= sl2(R), it follows that π1(b) is R-split. The other

nontrivial eigenvector for Ad(b) in l1 projects to a different isotropic vector in
g/g(y) that is an eigenvector for Ad(b). Then both p+ and p− belong to [g1],
and they are the images of nilpotent elements of g1.

Now let Y be any nilpotent in gi for i > 1. By 8.5 (3), Y 6= 0. If Y /∈ s1(y),
then [Ad(bn)(Y )] converges in P(V ) to p+. Then p+ would be the image of a
nilpotent element from g1 and another from gi. In the span of these two would
be a nilpotent element of g(y), a contradiction. Therefore, gi ⊆ s1(y), and
Ad(bn) is bounded on gi for all i > 1.

Since π1(b) 6= 1, the intersection Gi ∩ Â0 = 1 for all i > 1. It follows that
gi(y) ⊆ m′, so it is definite for the restriction of the Killing form κi of gi,
and Ad(G0(y)) is bounded on gi(y). As above, the orthogonal of gi(y) is an
Ad(G0(y))-invariant complement in gi, which projects equivariantly and iso-
morphically to gi. Now for all i > 1, the adjoint Ad(G0(y)) is bounded on gi,
which implies that Ad(πi(G0(y))) is precompact.

Because G0 preserves a Lorentz metric on Y ∼= G0/G0(y), any element of
Z(G0) ∩ G0(y) would have trivial derivative along Y at y, and would there-
fore be trivial on Y . For the contradiction we are about to obtain, we may
assume that G0 acts faithfully on Y , so we may assume that Z(G0)∩G0(y) = 1.
Therefore, πi(G0(y)) is precompact; let Ki denote the compact closure. Let
K = K2 × · · · ×Kl.

We have already established that the projection π1(Â) contains a nontrivial R-
split element. Because any other element of π1(G0(y)) must centralize this one,
we conclude that π1(G0(y)) is isogenous to the maximal R-split subgroup A1

of G1.

Therefore, G0(y) ⊆ A1 ×K, and there is a G0-equivariant proper map

Y ∼= G0/G0(y) → G0/(A1 ×K)

so Γ0 acts properly and cocompactly on both spaces. Then Γ0 acts properly
and cocompactly on G/A1×H, where H ∼= G2× · · ·×Gl. Taking the preimage
of Γ0 in G̃0 if necessary, we obtain a subgroup of Õ0(1, 2)× H̃ acting properly

and cocompactly on d̃S
2 × H̃, contradicting Proposition 8.4.
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8.3.4 Unimodular case

Now assume im(Φ) = M ′ n U ′ with M ′ compact and U ′ unipotent. First we
collect some algebraic facts for this case.

Proposition 8.6 Let B ∈ g(y).

1. B is not R-split.

2. If ϕ(B) is nilpotent, then B is nilpotent.

3. If B is nilpotent, then on the filtration in Proposition 8.2, ad(B) carries
each subspace to the next. In other words, ad(B) is trivial on each factor
of the associated graded space.

4. If ϕ(B) is nilpotent and g 6= t(y), then ad(B) has nilpotence order 3.

Proof:

1. Suppose B is R-split. Let α be a root with α(B) 6= 0 and Xα, X−α gen-
erators of the corresponding root spaces. The elements Xα, X−α generate
a subalgebra of g isomorphic to sl2(R). Because ϕ(B) can have no eigen-
vectors with nonzero real eigenvalue, Xα and X−α are both contained
in g(y). Then g(y) ⊂ p contains a subalgebra isomorphic to sl2(R), a
contradiction.

2. If ϕ(B) is nilpotent, then ϕ(B) ∈ u′. Then ad(B) is nilpotent and ad(B)
is nilpotent on g(y), which implies nilpotence of B.

3. If B is nilpotent, then ad(B) is trivial on both g/t(y) and s(y)/g(y), be-
cause they are both at most one-dimensional. Because ad(B) is skew-
symmetric on t(y)/s(y), this representation is also trivial.

4. If ϕ(B) is nilpotent and g 6= t(y), then V is Lorentzian and the inner
product on V ⊥ is positive definite, so ϕ(B) is trivial on V ⊥. By injectivity
of ϕ, the restriction of ϕ(B) to V is nontrivial, so ad(B) is nontrivial. By
item (3), ad(B) has nilpotence order at most 3. Let W ∈ g\t(y). We will
show that ad2(B)(W ) /∈ g(y).

Denote by <,> the pullback of the inner product from TyX to g. For any
W,Z ∈ g

< ad(B)(W ), Z > + < W, ad(B)(Z) >= 0
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First we will show that ad(B)(W ) /∈ s(y). Suppose it is. For any Z ∈
s(y)\g(y), the inner product < W,Z > 6= 0. The identity

< ad(B)(W ),W > + < W, ad(B)(W ) >= 2 < ad(B)(W ),W >= 0

implies ad(B)(W ) ∈ g(y). Now ad(B)(t(y)) ⊆ g(y) would imply ad(B) is
trivial, which cannot be. Then there must be some Z ∈ t(y) such that
ad(B)(Z) ∈ s(y)\g(y). Then

< ad(B)(W ), Z >= − < W, ad(B)(Z) > 6= 0

contradicting that ad(B)(W ) ∈ s(y).

Now ad(B)(W ) must be in t(y)\s(y), so

< ad(B)2(W ),W >= − < ad(B)(W ), ad(B)(W ) >6= 0

which implies ad(B)2(W ) /∈ g(y), as desired.

♦
Let M̂ n Û be the decomposition of G0(y) corresponding to im(Φ) = M ′ n U ′.
Again, because Φ is proper, M̂ is compact. Let m̂ and û be the corresponding
subalgebras of g. From item (2) above, û consists of nilpotent elements. Let J
be the set of i such that πi(û) 6= 0.

We can show by induction that there exists X ∈ û such that πi(X) 6= 0 if
and only if i ∈ J . Let i1, . . . , ik be some order on the elements of J . Clearly,
there is some X1 ∈ û such that πi1(X1) 6= 0. Suppose Xm ∈ û is such that
πij (Xm) 6= 0 for all j ≤ m. There exists Ym ∈ û such that πim+1(Ym) 6= 0. For
some real number c, the element Xm+1 = Xm + cYm will have πij (Xm+1) 6= 0
for all j ≤ m + 1. Write this element X =

∑
i∈J Xi with Xi ∈ gi. Note that

nilpotence of X implies nilpotence of each Xi.

The Jacobson-Morozov theorem (see [H] IX.7.4) yields, for each i ∈ J , an R-split
element Ai ∈ gi and a nilpotent element Yi ∈ gi such that

[Ai, Xi] = 2Xi, [Ai, Yi] = −2Yi, and [Xi, Yi] = Ai

Then the elements A =
∑

iAi and Y =
∑

i Yi satisfy

[A,X] = 2X, [A, Y ] = −2Y, and [X,Y ] = A

The subalgebra generated by X,A, and Y is isomorphic to sl2. Let L be the
corresponding subgroup of G0. The adjoint of g(y) is trivial on s(y)/g(y) by 8.6
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(3), so G0 preserves a vector field tangent to the invariant isotropic line field
along Y . Now Proposition 6.1 and Remark 6.3 for gn = enX give some k ∈ L

such that, for A′ = Ad(k)(A),
⊕

α(A′)>0

gα ⊂ s(y)

Let X ′ = Ad(k)(X) ∈ s(y). We may assume k ∈ PSL2(R). For

k =

(
cos θ − sin θ
sin θ cos θ

)

and

X =

(
0 1
0 0

)

the bracket

[X,X ′] =

(
− sin2 θ 2 cos θ sin θ

0 sin2 θ

)

This bracket belongs to g(y), which contains no R-split elements (8.6 (3) and
(1)). Then sin θ must be 0, so Ad(k) is trivial, and

⊕

α(A)>0

gα ⊂ s(y)

Now we will show that this sum of root spaces is in fact contained in g(y). For
Y the negative root vector as above, ad2(X)(Y ) ∈ g(y), so ad(X) has order less
than 3 on the corresponding element of g/g(y). Then Y ∈ t(y) by Proposition
8.6 (4). Then [X,Y ] = A ∈ s(y) by 8.6 (3), but A cannot be in g(y) by 8.6 (1),
so

s(y) = RA+ g(y)

Now suppose α(A) > 0 and let X ′ be an arbitrary element of gα ⊆ s(y).
Since [s(y), s(y)] ⊆ g(y), the bracket [A,X ′] = α(A)X ′ ∈ g(y). Therefore,
⊕α(A)>0gα ⊆ g(y), as desired; in particular, Xi ∈ g(y) for all i ∈ J .

Next we will show that |J | = 1. As above, Proposition 8.6 implies Yi ∈ t(y) and
Ai ∈ s(y) for all i ∈ J . If |J | > 1, then, for one i ∈ J and some nonzero c ∈ R,
the difference cA− Ai is a nontrivial R-split element of g(y), contradicting 8.6
(1).
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Now G0(y) has precompact projection on all local factors but one, say G1.
By Kowalsky’s Theorem ([K1]), g1

∼= o(2, k), for some k ≥ 3, or o(1, k), for
some k ≥ 2. We will deduce that g1 must be the latter, and that G1(y) is
as in the Minkowski light cone. The subspaces s1(y) and t1(y) will denote the
intersections g1 ∩ s(y) and g1 ∩ t(y), respectively, below.

Step 1: g1
∼= o(1, 2) implies G1y degenerate.

If g1
∼= o(1, 2), then it is generated by X,A, and Y from above. Recall X ∈

g1(y);A ∈ s1(y); and Y ∈ t1(y). Then g1/g1(y) is 2-dimensional and degenerate
with respect to the inner product pulled back from TyX; therefore, the orbit
G1y is also degenerate.

Step 2: G1y is degenerate in general.

Assume that g1 is not isomorphic to o(1, 2), and suppose that the orbit G1y ⊆ Y

is of Lorentzian type. Then Theorem 1.5 of [ADZ] gives thatG1y is equivariantly
homothetic, up to covers, to dSk or AdSk for some k ≥ 3; in either case, g1(y)
would be semisimple, a contradiction.

Step 3: Case g1
∼= o(2, k).

Now suppose g1
∼= o(2, k) for some k ≥ 3. Let ∆ be a root system of g as above.

Let A ∈ s(y) be as above. Let α ∈ ∆ be such that α(A) = 2. Let X ∈ gα∩g(y).
The root system of o(2, k) is generated by two simple roots, β and γ. The root
spaces for β and γ are each (k − 2)-dimensional. The other positive roots are
β − γ and β + γ, with one-dimensional root spaces.

First suppose α = β, so X ∈ gβ ⊂ g(y). Let L be a generator of g−β−γ . For any
such X and L, the adjoint ad2(X)(L) 6= 0. Since the orbit G1y is degenerate,
L ∈ t(y), and ad(X)(L) ∈ s(y). Let W = ad(X)(L) ∈ g−γ . Any nilpotent
subalgebra of g1(y) is abelian, so W ∈ s(y)\g(y). Then cW − A ∈ g1(y) for
some nonzero c ∈ R. But now L ∈ t(y)\s(y) would be an eigenvector for this
element with nonzero real eigenvalue, contradicting that g1(y)(L) ⊆ s(y).

We conclude that X cannot be in gβ . The same argument shows X cannot be
in gγ ; in fact, g1(y) ∩ gω must be 0 for ω = ±β,±γ.
Now suppose that α = β± γ, so either (β+ γ)(A) or (β− γ)(A) equals 2. Then
one of β(A) or γ(A) is nonzero, which again implies that one of g±β , g±γ is in
g(y), a contradiction.

G1y is the Minkowski light cone

Now we have that g1
∼= o(1, k) for some k ≥ 2. Let α be the positive root of g1

with α(A) = 2. From above, gα ⊂ û. Since this root space is a maximal abelian
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subalgebra of nilpotent elements in g1, this containment is equality by 8.6 (2).

Now eA = a normalizes Û . There is a proper equivariant map

G0/Û → G0/(M̂ n Û) ∼= Y

so no subgroup of G0 acts properly discontinuously and cocompactly on Y , as
in Section 8.3.2.

9 Appendix: Uniformly Lipschitz foliations

The purpose of this section is to provide the proof of Proposition 6.6:

Let X be the universal cover of a compact manifold M . Let ∇ be a smooth
connection and σ a smooth Riemannian metric, both lifted from M . For any
r > 0, there exist C, δ > 0 such that any radius-r, codimension-one geodesic
lamination (X ′, f) on X is (C, δ)-Lipschitz: any x, y ∈ X ′ with dσ(x, y) < δ are
connected by a unique ∇-geodesic γ, and

∠σ(Pγf(x), f(y)) ≤ C · dσ(x, y)

Refer to Definition 6.5 for codimension-one geodesic lamination.

Notation: Let dimX = k. Since X is orientable, the unit normal N(H) of
an oriented hyperplane H ⊂ TxX is well-defined. For the remainder of this
section, all metric notions, such as the distance d, norm | · |, length l, unit
normal N , and angle ∠, always refer to σ below. In any metric space below,
B(x, δ) and D(x, δ) denote the ball and the disk, respectively, of radius δ around
x. For a Riemannian manifold X, the ball bundle BδX is the union of the δ-
balls about 0 in each tangent space; DδX is the analogous disk bundle. The
bundle of spheres of radius δ will be denoted T δX. Affine notions below, such
as geodesics, parallel transport P , and the exponential map exp, refer to ∇,
unless indicated otherwise. For a smooth curve γ, parallel transport along γ for
time t will be denoted P t

γ . If γ is a continuous, piecewise smooth curve with
explicit compact domain, the Pγ is parallel transport along γ from the initial to
terminal point.

For two subspaces W and W ′ of a finite-dimensional vector space V with
positive-definite inner product, the angle between W and W ′ will mean

∠(W,W ′) = dH(W ∩ S(0, 1),W ′ ∩ S(0, 1))
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where S(0, 1) is the unit sphere in V , and dH is the Hausdorff distance. We first
establish several lemmas that will be needed for the proof of the proposition.

Definition 9.1 A neighborhood B of a point x ∈ X is hypersurface foliated
based at x if, for any oriented hyperplane H ⊂ TxX, there is a neighborhood
WH,x of (0, 0) in H ×R such that

ϕH,x : (p, t) 7→ expγH(t)(P t
γH

p)

where γH(t) = expx(tN(H)), is a diffeomorphism from WH,x onto B.

An open set B ⊂ X is hypersurface foliated if it is hypersurface foliated based
at each x ∈ B.

Lemma 9.2 There exists δ > 0 such that for every x ∈ X, the ball B(x, δ) is
hypersurface foliated.

Proof: Because σ and ∇ are lifted from M , it suffices to find δ such that
each B(x, δ) in the compact quotient M is hypersurface foliated, assuming we
choose δ sufficiently small that each B(x, δ) in X projects diffeomorphically to
its image in M . We may assume M is oriented.

Let Ω = SO(k), and let A ⊂M be an open subset equipped with a trivialization
τ : A × Ω → OA, where OA is the bundle of positively-oriented orthonormal
frames (with respect to σ) on A. Given x ∈ A and ω ∈ Ω, write

τ(x, ω) = (τ1(x, ω), . . . , τk(x, ω))

for the elements of the basis of TxX given by τ .

Given x ∈ A and ω ∈ Ω, there is a neighborhood Yω,x of (0, 0) in Rk−1 ×R on
which the map

ϕω,x : (p, t) 7→ expγω(t)(P t
γω

(
k−1∑

i=1

piτi(x, ω))) ∈M

where γω(t) = expx(tτk(x, ω)), is defined. Note that for

H = span{τ1(x, ω), . . . , τk−1(x, ω)}

the vector τk(x, ω) = N(H), and ϕω,x = ϕH,x as in the definition of hypersurface
foliated, under the isomorphism of Rk−1 with H given by τ(x, ω). Now consider
the smooth map, defined on

Y = ∪ω∈Ω,x∈A({ω} × {x} × Yω,x) ⊆ Ω×A×Rk−1 ×R
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given by
Φ : (ω, x,p, t) 7→ (ω, x, ϕω,x(p, t)) ∈ Ω×A×M

The restriction of Φ to any {ω} × {x} × Yω,x agrees with ϕω,x. For each ω

and x, the differential D(0,0)ϕω,x is an isomorphism. Therefore, at any (ω, x) ∈
Ω × A, the differential D(ω,x,0,0)Φ is an isomorphism. The inverse function
theorem yields a neighborhood U of (ω, x, x) such that Φ is a diffeomorphism
from Φ−1(U) onto U . There exist δω,x > 0 and a neighborhood Vω,x of ω such
that Vω,x × B(x, δω,x) × B(x, δω,x) ⊂ U . Therefore, for every ω′ ∈ Vω,x and
y ∈ B(x, δω,x), the map ϕω′,y is a diffeomorphism from some neighborhood of
(0, 0) in Rk−1 ×R onto B(x, δω,x).

For each x ∈ M , the collection of all Vω,x is a cover of Ω. Let Vω1,x, . . . , VωN ,x

be a finite subcover. Let δx = min{δω1,x, . . . , δωN ,x}. The balls B(x, δx) are all
hypersurface foliated and form a cover of M . Let δ be the Lebesgue number of
this cover. Then for all x ∈M , the ball B(x, δ) is hypersurface foliated. ♦

Definition 9.3 A neighborhood B of a point x ∈ X is normally foliated based
at x if, for any oriented hyperplane H ⊂ TxX, there is a neighborhood WH,x of
(0, 0) in H ×R such that

ϕH,x : (p, t) 7→ expγp(1)(tN(P 1
γp
H))

where γp(t) = expx(tp), is a diffeomorphism from WH,x onto B.

Lemma 9.4 There exists δ > 0 such that, for any x ∈ X, the ball B(x, δ) is
normally foliated based at x. Further, for any η > 0, it is possible to choose δ
such that, for all H,x, the inverse image ϕ−1

H,x(B(x, δ)) ⊆ B(0, η).

Proof: Let Ω and A be as in the proof of 9.2. For ω ∈ Ω and x ∈ A, there is
a neighborhood Yω,x of (0, 0) in Rk−1 ×R on which

ϕω,x : (p, t) 7→ expγp(1)(tN(P 1
γp
span{τ1(x, ω), . . . , τk−1(ω, x)})) ∈M

where γp(t) = expx(tp), is defined. We require that Yω,x ⊆ B(0, η) for all ω, x.

On the union

Y = ∪ω∈Ω,x∈A({ω} × {x} × Yω,x) ⊆ Ω×A×B(0, η) ⊂ Ω×A×Rk−1 ×R

define
Φ : (ω, x,p, t) 7→ (ω, x, ϕω,x(p, t)) ∈ Ω×A×M
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Now following the proof of 9.2, we can actually find δ > 0 such that for all x ∈ X,
the ball B(x, δ) is normally foliated based at each y ∈ B(x, δ); in particular,
B(x, δ) is normally foliated based at x. Since the domain Y is contained in
Ω×A×B(0, η), the second claim of the lemma is satisfied. ♦
The following three lemmas establish bounds or Lipschitz relations between the
metric σ and the connection ∇. Let ε be such that, for every x ∈ M , the
ball B(x, 2ε) is a normal neighborhood of each of its points for both ∇ and
the Levi-Civita connection for σ. Then each B(x, 2ε), x ∈ X, has the same
property.

Lemma 9.5 There exists C > 0 such that, for any x, y ∈ X with d(x, y) < ε,

l(γ) ≤ C · d(x, y)

where γ is the ∇-geodesic connecting x to y.

Lemma 9.6 For any 0 < θ ≤ π, there exists 0 < δ ≤ ε such that, for all
x, y ∈ X with d(x, y) < δ,

|∠(γ′σ(0), γ′∇(0))| ≤ θ

where γσ and γ∇ are the σ- and ∇-geodesics, respectively, between x and y.

Lemma 9.7 There exists C > 0 such that, for any ∇-geodesic triangle T =
∆(xyz) with max{d(x, y), d(y, z), d(z, x)} < ε, and any u ∈ TxX,

|∠(u, PT u)| ≤ C ·max{d(x, y), d(y, z), d(z, x)}

Because∇ and σ are lifted fromM , it suffices to prove each lemma onM . Either
connection on M gives rise to horizontal spaces in the tangent bundle TM and
the frame bundle FM . Then one may endow these bundles with Riemannian
metrics such that the projections to M are Riemannian submersions. We fix
one such metric on TM and one on FM , and we denote the resulting norm and
distance by | · | and d, as on M .

We first define some objects that will be referred to in the proofs of each of the
three lemmas. Consider expσ as a map from a neighborhood of the zero section
in TM to M ×M :

expσ : (x, p) → (x, expσ
x(p))
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Then the image expσ(BεM) consists of all pairs (x, y) ∈M×M with d(x, y) < ε.
Consider exp∇ the same way, and let

V = (exp∇)−1(expσ(B2εM)) ⊂ TM

U = (exp∇)−1(expσ(BεM)) ⊂ TM

The map

f : V → B2εM

f : (x, p) 7→ (x, (expσ
x)−1 ◦ exp∇x (p))

is a diffeomorphism because B(x, 2ε) is a normal neighborhood for all x. Because
U ⊂ U ⊂ V , and U is compact, there exist C1, C2 > 0 such that

d(p, q) ≤ C1 · d(f(p), f(q)) for all p, q ∈ U
|f∗(u)| ≤ C2|u| for all u ∈ TU

For x ∈M , let

fx = (expσ
x)−1 ◦ exp∇x

the restriction of f to the fiber over x.

Proof: (of 9.5)

The map

expσ : B2εM →M ×M

is a diffeomorphism onto its image. There exists C3 > 0 such that

|(expσ
x)∗(u)| ≤ C3|u|

for all x ∈M and u tangent to B(0, ε) ⊂ TxM .

Let C = C1C2C3. Suppose x, y ∈M with d(x, y) < ε. We now work in U∩TxM .
Let p = 0 and q = (exp∇x )−1(y). Let α : [0, 1] → TxM be the line from p to q.
Then

|α′(0)| = d(p, q) ≤ C1 · d(0, fx(q)) = C1 · d(x, y)

Let β be the image curve fx ◦ α. Then for any t ∈ [0, 1],

|β′(t)| ≤ C2 · |α′(t)| = C2 · |α′(0)| ≤ C2C1d(x, y)
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The ∇-geodesic γ from x to y is the image expσ
x ◦ β. The lemma is now proved

with

l(γ) ≤ supt|(expσ
x)∗(β′(t))| ≤ C3 · supt|β′(t)| ≤ C · d(x, y)

♦

Proof: (of 9.6)

Define

V̂ = {(x,p, t) : (x,p) ∈ T 1M, t ∈ R, and (x, tp) ∈ V }

Define Û and Û similarly. The function

Q(x,p, t) =
|fx(tp)− tp|

t2

is obviously continuous on V̂ \(T 1M × {0}). For each x ∈ M , the map fx is
twice differentiable at 0; moreover, fx(0) = 0 and (fx)∗0 = Id. Therefore, for
any (x,p) ∈ T 1M , the following limit exists:

lim
t→0

|fx(tp)− tp|
t2

= lim
t→0

Q(x,p, t) =
∣∣D2fx(p,p)

∣∣

Since f is smooth, Q extends to a continuous function on V̂ . Let C be the
maximum value of Q on Û . Then, for every (x,p) ∈ U ,

|f(p)− p| ≤ C · |p|2

Let u,v be vectors in Rk equipped with the standard Euclidean inner product.
Then

∠(u,v) ≤ π ·
∣∣∣∣
u
|u| −

v
|v|

∣∣∣∣

Indeed, consider two points u, v on the unit sphere. Let α be the distance
between them on the unit sphere and d their distance in Rk. When 0 ≤ α ≤ π/2,
then sinα ≤ d, so α/d ≤ α/ sinα. When π/2 ≤ α ≤ π, then 1 − cosα ≤ d, so
α/d ≤ α/(1− cosα). It is not hard to show that

α/ sinα ≤ π 0 ≤ α ≤ π/2

and

α/(1− cosα) ≤ π π/2 ≤ α ≤ π
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Because each TxM equipped with the inner-product σx is isometric to Rk, the
angle between any p,q ∈ TxM satisfies

|∠(p,q)| ≤ π ·
∣∣∣∣
p
|p| −

q
|q|

∣∣∣∣

Let x, y ∈ M with d(x, y) < 2ε. Let fx be as above, and let q = (exp∇x )−1(y).
Then we have

|∠(γ′∇(0), γ′σ(0))| ≤ π ·
∣∣∣∣
q
|q| −

fx(q)
|fx(q)|

∣∣∣∣

Now let δ ≤ ε be such that exp∇(BdM ∩ U) contains a δ-neighborhood of the
diagonal of M ×M , where d = θ/2πC.

Given x, y ∈ M , with d(x, y) < δ, let q = (exp∇x )−1(y). Note that (x,q) ∈ U ,
and |q| < θ/2πC. Then

|∠(γ′∇(0), γ′σ(0))| ≤ π ·
∣∣∣∣
q
|q| −

fx(q)
|fx(q)|

∣∣∣∣

= π ·

∣∣∣q− |q|
|fx(q)| · fx(q)

∣∣∣
|q|

≤ π · |q− fx(q)|
|q| + π ·

∣∣∣fx(q)− |q|
|fx(q)| · fx(q)

∣∣∣
|q|

≤ 2π · |fx(q)− q|
|q|

≤ 2πC · |q|
< θ

♦

Proof: (of 9.7)

For any x, y ∈M with d(x, y) < ε, let t ∈ R and q ∈ T 1
xM be such that

exp∇x (tq) = y

Note that (x, tq) ∈ U . Let C1 be as above, so

t = d(0, tq) ≤ C1 · d(0, f(tq)) = C1 · d(x, y)

Next we will define a bundle with a flow that expresses parallel transport along
geodesics. Let π : FM → M be the natural projection. Parallel transport acts
on frames τ ∈ FM by (P t

γτ)(u) = P t
γ(τ(u)). For any subset K ⊂ FM , let

IK = {(τ,v) : τ ∈ K,v ∈ Tπ(τ)M ∩ T 1M}
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The fibers of IK → K are compact, so IK is compact if K is.

For v ∈ T 1M , denote by γv the geodesic with initial vector v. Now define

P : R+ × IFM → FM
P : (t, (τ,v)) 7→ P t

γv
τ

This map is smooth. Let K0 = OM . There exists D1 > 0 such that

d(P(0, (τ,v)),P(t, (τ,v)) = d(τ, P t
γv
τ) ≤ D1 · t

for all (τ,v) ∈ IK0 and t ≤ C1ε. Let K1 = P([0, C1ε] × IK0). It is compact.
There exists D2 > 0 such that

d(P(0, (τ,v)),P(t, (τ,v)) = d(τ, P t
γv
τ) ≤ D2 · t

for all (τ,v) ∈ IK1 and t ≤ C1ε. Let K2 = P([0, C1ε] × IK1). There exists
D3 > 0 such that

d(P(0, (τ,v)),P(t, (τ,v)) = d(τ, P t
γv
τ) ≤ D3 · t

for all (τ,v) ∈ IK2 and t ≤ C1ε. Let K3 = P([0, C1ε]× IK2).

Next we identify fibers of K3 with subsets of GL(k) and bound the distortion
of this identification. Let π∗K3 → K3 be the pullback bundle for π : K3 →M ;
elements are (τ0, τ1), where τ0, τ1 ∈ K3 and π(τ0) = π(τ1). Define

θ : π∗K3 → GL(k)

θ : (τ0, τ1) 7→ g where τ1 = τ0 ◦ g−1

Fix any metric on GL(k) giving rise to a distance d. There exists A1 > 0 such
that for all τ0 ∈ K3,

d(θ(τ0, τ1), θ(τ0, τ2)) ≤ A1 · d(τ1, τ2)

for all τ1, τ2 ∈ π−1(π(τ0)) ∩ K3. The image of θ is compact, so there exists
A2 > 0 such that for all g ∈ im(θ) and x ∈ Rk,

∠(gx,x) ≤ A2 · d(e, g)

Let C = C1A1A2(D1 +D2 +D3). Let T = ∆(xyz) be a ∇-geodesic triangle and
−T the same triangle with the reverse parametrization. Note that P−1

T = P−T .
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Let the sides of −T be

γu(0) = x γu(t1) = z

γv(0) = z γv(t2) = y

γw(0) = y γw(t3) = x

where |u| = |v| = |w| = 1. Let d = max{d(x, y), d(y, z), d(z, x)}. The parame-
ters

t1, t2, t3 ≤ C1 · d < C1ε

Pick any τ0 ∈ π−1(x) ∩K0. Let

τ1 = P t1
γu
τ0

τ2 = P t2
γv
τ1

τ3 = P t3
γw
τ2

The frames τi belong to Ki for i = 0, 1, 2, 3. Note that τ3 = P−T τ0 = P−1
T τ0.

We have

d(τ0, P−1
T τ0) = d(τ0, τ3)

≤ d(τ0, τ1) + d(τ1, τ2) + d(τ2, τ3)

≤ D1t1 +D2t2 +D3t3

≤ C1(D1 +D2 +D3)d

Finally, for u ∈ TxM

∠σ(u, PT (u)) = ∠(τ−1
0 (u), τ−1

0 (PT u))

= ∠(τ−1
0 (u), τ−1

3 (u))

= ∠(τ−1
0 (u), θ(τ0, τ3) · τ−1

0 (u))

≤ A2 · d(e, θ(τ0, τ3))
≤ A1A2 · d(τ0, τ3)
≤ C1A1A2(D1 +D2 +D3)d

♦
For any triangle in Rk with sides of length a, b, and c, let θ be the angle opposite
the side of length c. Assume a ≥ b. Then

c2 = a2 + b2 − 2ab cos θ

≥ a2 + b2 − 2a2 cos θ

≥ a2 + (c− a)2 − 2a2 cos θ
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from which we obtain
a ≤ c/(1− cos θ)

Then the proof of this lemma is straightforward using the exponential map for
σ.

Lemma 9.8 Let ε > 0 be as above, so that every B(x, 2ε) is a normal neigh-
borhood of each of its points. There exists C > 0 such that, in any σ-geodesic
triangle αβγ = ∆(xyz) in X with

max{d(x, y), d(y, z), d(z, x)} < ε

with θ the angle opposite γ.

max{l(α), l(β)} ≤ C · l(γ)
1− cos θ

We now proceed to the proof of the proposition, following the idea of [Ze6]
Lemma 14.

Proof: As above, we will fix a Riemannian metric on TM such that π : TM →
M is a Riemannian submersion with respect to σ. We can lift this metric to a
Γ-invariant metric on TX. The resulting distance will in all cases be denoted
by d.

Let r > 0 be given. There exists η > 0 such that B(x, η) ⊂ expx(B(0, r)) for
all x ∈ X. Let 0 < ε < η/3. Then ε has the property

∀ p ∈ X, ∀ x ∈ B(p, 3ε/2) : exp−1
x (D(p, 3ε/2)) ⊂ B(0, r) ⊂ TxX (2)

We may assume that ε > 0 has the following further properties:

∀ p ∈ X : B(p, 2ε) is a σ- and ∇-normal neighborhood of each point (3)

∀ p ∈ X : B(p, 2ε) is hypersurface foliated (4)

where ε with property (4) is given by Lemma 9.2.

Last, for any x, y ∈ X with d(x, y) < ε,

|∠(γ′(0), γ′σ(0))| ≤ π/8 (5)

where γ and γσ are the ∇- and σ-geodesics, respectively, from x to y. Such an
ε > 0 exists by Lemma 9.6.
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By property (3), the exponential map is a diffeomorphism from a neighborhood
of any (p,0) onto B(p, 2ε)×B(p, 2ε), so there exists

ψp : B(p, 3ε/2)×B(p, 2ε) → TX

such that exp ◦ ψp is the identity on B(p, 3ε/2)×B(p, 2ε). Since ψp is smooth,
there exists Cp such that

d(ψp(x,w), ψp(y, w)) ≤ Cp · d(x, y) (6)

for all x, y ∈ D(p, ε) and w ∈ D(p, 3ε/2).

The image ψp(D(p, ε)× ∂D(p, 3ε/2)) is a compact subset of TD(p, ε)\Z, where
Z is the zero section of TD(p, ε). Here we have the smooth map

ϕp : TD(p, ε)\Z → T 1D(p, ε)

ϕp : (p,u) 7→ (p,u/|u|)

There exists Dp > 0 such that

d(ϕp(x,u), ϕp(y,v) ≤ Dp · d((x,u), (y,v)) (7)

for all (x,u), (y,v) ∈ ψp(D(p, ε)× ∂D(p, 3ε/2)).

Let p1, . . . , pN be such that B(p1, ε), . . . , B(pN , ε) is a finite cover of M . For
any lifts p1, . . . , pN of these points to X, these ε-balls lift to balls B(pi, ε)
whose translates B(γpi, ε) cover X. Let Ci be the Lipschitz constant for ψpi on
D(pi, ε) × D(pi, 3ε/2), for i = 1, . . . , N , and let C0 be the maximum of these.
Let Di be the Lipschitz constant for ϕpi

on ψpi
(D(pi, ε) × D(pi, 3ε/2)), for

i = 1, . . . , N , and let D0 be the maximum of these. For any p = γpi, the map ψp

has the Lipschitz property (6) with Lipschitz constant C0 onD(p, ε)×D(p, 3ε/2),
and ϕp has property (7) with Lipschitz constant D0 on ψp(D(p, ε)×D(p, 3ε/2)).
We assume δ0 < ε/2. Let δ0 be the Lebesgue number of the covering by the
balls B(γpi, ε) of X.

Let η > 0 be such that exp is defined on BηX and exp(BηX) is contained in the
δ0-neighborhood of the diagonal in X ×X. By Lemma 9.4, there exists δ1 > 0
such that

∀ x ∈ X : B(x, δ1) is normally foliated based at x (8)

∀ x ∈ X,H ⊂ TxX : ϕ−1
H,x(B(x, δ1)) ⊆ B(0, η) ⊆ H ×R (9)
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Finally, take δ2 such that,

∀y, z ∈ B(x, δ2), the σ-geodesic from y to z is contained in B(x, 2ε) (10)

Now let δ = min{δ0, δ1, δ2}.
Let C1, C2 > 0 be the constants given by Lemmas 9.7 and 9.8, respectively, with
the ε we have chosen above. By property (3), this ε satisfies the hypotheses of
the lemmas.

Let (X ′, f) be any radius-r codimension-one geodesic lamination on X. Let
x, y ∈ X ′ with d(x, y) < δ. We may assume Lx ∩ Ly = ∅. This intersection is
open in each plaque (see Definition 6.5); if it were nonempty, then the geodesic γ
from x to y would be contained in Lx∩Ly, and Pγf(x) = f(y). Let p = γpi ∈ X
be such that B(x, δ) ⊂ B(p, ε).

Now ψp satisfies

d(ψp(z, w), ψp(y, w)) ≤ C0 · d(z, y)

for all z ∈ D(p, ε) and w ∈ D(p, 3ε/2). By properties (2) and (3) of ε, the inter-
section Lx∩D(p, 3ε/2) is contained in the convex hull of Sx = Lx∩∂D(p, 3ε/2).
For any z ∈ B(p, ε), let

R(z) = ϕp ◦ ψp({z} × Sx)

The set R(x) = f(x) ∩ T 1
xX. The set R(y) consists of all u in T 1

yX such
that expy(tu) ∈ Sx for some positive t. The assumption that y /∈ Lx implies
−R(y) ∩R(y) = ∅.
By property (8) of δ, the ball B(x, δ) is normally foliated based at x. Choose
an orientation of f(x). There exist q ∈ f(x) and t > 0 such that

y = expγq(1)(tN(P 1
γq
f(x)))

Let z = γq(1) = expx(q). By property (9) of δ, the vector q ∈ B(0, η), so
z ∈ Lx ∩B(x, δ0) ⊂ Lx ∩B(p, ε). Let β be the geodesic from z to x. Denote by
f(z) the hypersurface P−βf(x) = TzLx. Let α be the geodesic from z to y with
α′(0) = N(f(z)).

Let γ be the geodesic from x to y, and let T be the geodesic triangle αβγ, where
α is traversed from y to z. Then

Pγf(x) = PTPαf(z)
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Because x, y, z ∈ B(x, δ0) and δ0 < ε/2, each of the distances d(x, y), d(y, z), d(z, x) <
ε. By Lemma 9.7, for any u ∈ Pαf(z),

|∠(u, PT u)| ≤ C1 ·max{d(x, y), d(y, z), d(z, x)}

Let ασ be the σ-geodesic from z to y, βσ the σ-geodesic from z to x, and γσ

the σ-geodesic from x to y. By property (3) of ε, the length l(γσ) = d(x, y). By
property (5) of ε, the angles

|∠(α′(0), α′σ(0))|, |∠(β′(0), β′σ(0))| ≤ π/8

Therefore,

π/4 = |∠(α′(0), β′(0))|−π/4 ≤ |∠(α′σ(0), β′σ(0)| ≤ |∠(α′(0), β′(0))|+π/4 = 3π/4

Because max{d(x, y), d(y, z), d(z, x)} < ε, Lemma 9.8 applies to the triangle
ασβσγσ, and there exists C2 > 0 such that

l(ασ), l(βσ) ≤ 2C2 · l(γσ)
2−√2

=
2C2 · d(x, y)

2−√2
< 4C2 · d(x, y)

so max{d(x, y), d(y, z), d(z, x)} ≤ 4C2 · d(x, y). Then we have, for any u ∈
Pαf(z),

|∠(u, PT u)| ≤ 4C1C2 · d(x, y)

Therefore,

|∠(Pαf(z), Pγf(x))| ≤ 4C1C2 · d(x, y)

By property (4) of ε, the ball B(p, 2ε) is hypersurface foliated based at z, so
expy(Pαf(z)) does not intersect Lx∩D(x, 3ε/2). In particular, Pαf(z)∩T 1

yX is
contained in the annulus with boundary −R(y)∪R(y). The condition Lx∩Ly =
∅ implies that f(y) ∩ T 1

yX is also contained in this annulus.

We will show this annulus is narrow using the Lipschitz properties (6) and (7).
Let dH be the Hausdorff distance on compact sets in TX.

dH(−R(y), R(y)) ≤ dH(−R(y), R(x)) + dH(R(x), R(y))

= dH(−R(y),−R(x)) + dH(R(x), R(y))

≤ 2D0 · dH(ψp({x} × Sx), ψp({y} × Sx))

≤ 2D0C0 · d(x, y)
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Then

|∠(Pαf(z), f(y))| ≤ π · dH(Pαf(z) ∩ T 1
yX, f(y) ∩ T 1

yX)

≤ 2π · dH(−R(y), R(y))

≤ 4πD0C0 · d(x, y)

Finally

|∠(Pγf(x), f(y))| ≤ |∠(Pγf(x), Pαf(z))|+ |∠(Pαf(z), f(y))|
≤ 4(C1C2 + πC0D0) · d(x, y)

♦
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schrift 551-576, Coventry: Geom. Topol. Publ., 1998.

[Ze2] A. Zeghib: The identity component of the isometry group of a compact

Lorentz manifold, Duke Math. J. 92 1998 no. 2, 321-333.

63



[Ze3] A. Zeghib: Isometry groups and geodesic foliations of Lorentz manifolds

I: Foundations of Lorentz dynamics, Geom. Funct. Anal. 9 1999, no. 4,

775-822.

[Ze4] A. Zeghib: Isometry groups and geodesic foliations of Lorentz manifolds

II: Geometry of analytic Lorentz manifolds with large isometry groups,

Geom. Funct. Anal. 9 1999, no. 4, 823-854.

[Ze5] A. Zeghib: Remarks on Lorentz symmetric spaces, Comp. Math. 140

2004, 1675-1678.

[Ze6] A. Zeghib: Geodesic foliations in Lorentz 3-manifolds, Comm. Math.

Helv. 74 1999, 1-21.

[Zi1] R.J. Zimmer: Automorphism groups and fundamental groups of geo-

metric manifolds, Proc. Symp. Pure Math. 54 1993 part 3, 693-710.

[Zi2] R.J. Zimmer: On the automorphism group of a compact Lorentz man-

ifold and other geometric manifolds, Invent. Math. 83 1986 no. 3, 411-

424.

[Zi3] R.J. Zimmer: Ergodic theory and semisimple groups, Basel: Birkhäuser,
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