Random dynamical systems with microstructure

Renato Feres
Washington University, St. Louis

ESI, July 2011

Acknowledgements

Different aspects of this work are joint with:

- Tim Chumley (Central limit theorems)
- Scott Cook (Random billiards with Maxwellian limits)
- Jasmine $N g$ (Spectral properties of Markov operators)
- Gregory Yablonsky (Earlier engineering work)
- Hong-Kun Zhang (Current work on most of these topics)

Plan of talk

- Billiards with random microstructure
- Billiards: Hamiltonian flows on manifolds with boundary
- Microstructure: geometric structure on the boundary
- The Markov operator
- Derived from the random microstructure
- Defines generalized billiard reflection
- Properties of the Markov operator
- Stationary distributions
- Spectral gap and moments of scattering
- The billiard Laplacian
- Conditioning
- Case studies
- CLT and Diffusion

Random billiards with microstructure

Wall and molecule subsystems

- Configuration spaces: Riemannian manifolds with corners

$$
M_{\text {wall }}, M_{\text {mol }}:=\bar{M}_{\text {mol }} \times \mathbb{R} \times \mathbb{T}^{k}
$$

and potential functions:

- $U_{\text {wall }}: M_{\text {wall }} \rightarrow \mathbb{R}$
- $U_{\text {Mol }}: \bar{M}_{\text {mol }} \rightarrow \mathbb{R}$
- The total system has configuration space M and potential

$$
U: M \rightarrow \mathbb{R} .
$$

- When subsystems sufficiently far away, $M \cong M_{\text {wall }} \times M_{\text {mol }}$ and

$$
U=U_{\text {wall }}+U_{\mathrm{mol}} .
$$

- Outside of product region $=$ interaction zone. Motion:

$$
\frac{\nabla c^{\prime}(t)}{d t}=-\operatorname{grad}_{c(t)} U
$$

with specular collisions at boundary.

Interaction region (microscopic): definitions

- $S:=\bar{M}_{\text {mol }} \times\{0\} \times \mathbb{T}^{k} \times M_{\text {wall }}$ boundary of inter. zone;
- $E(q, v):=\frac{1}{2}\|v\|_{q}^{2}+U(q)$ energy function on $N:=T M$;
- $N_{S}:=T_{S} M, N(\mathcal{E}):=E^{-1}(\mathcal{E}), N_{S}(\mathcal{E}):=N_{S} \cap N(\mathcal{E})$;
- $\theta_{v}(\xi):=\left\langle v, d \tau_{v} \xi\right\rangle$ contact form on N;
- $d \theta$ symplectic form on N;
- X^{E} Hamiltonian vector field: $\left.X^{E}\right\lrcorner d \theta=-d E$;
- $\eta:=(\operatorname{grad} E) /\|\operatorname{grad} E\|^{2}($ in Sasaki metric on $N)$;
- $\Omega:=(d \theta)^{m}$ Liouville volume form on N;
- $\left.\Omega^{E}:=\eta\right\lrcorner \Omega$ flow invariant volume on energy surfaces;
- $T: N_{S} \rightarrow N_{S}$ the return (billiard) map to S.

Geodesic flow example ($M_{\text {wal }}$ trivial)

- $M_{\text {wall }}=$ single point
- $\bar{M}_{\text {mol }}=\{0,1\}$
- $M_{\text {mol }}:=\{0,1\} \times \mathbb{R} \times \mathbb{T}^{1}$
- $S=\{0,1\} \times\{0\} \times \mathbb{T}^{1}$
- Potentials are constant

Example: a dumbbell molecule

- $M_{\text {wall }}=$ single point
- $\bar{M}_{\text {mol }}=S O(2)$
- $M_{\mathrm{mol}}:=S O(2) \times \mathbb{R} \times \mathbb{T}^{1}$
- $S=S O(2) \times\{0\} \times \mathbb{T}^{1}$
- Potentials are constant

Example with potential ($\bar{M}_{\text {mol }}$ trivial)

Coordinates: $x=\sqrt{m_{1} / m}\left(x_{1}-l / 2\right), y=\sqrt{m_{2} / m} x_{2}$.

$$
E(x, y, \dot{x}, \dot{y})=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\frac{k}{m_{1}} x^{2}\right) .
$$

Random microstructures à la Gromov

- $B:=$ billiard table: Riemannian manifold with boundary;
- $F(\partial B)$ orthonormal frame bundle with group $O(k)$;
- $N_{\text {wall }}:=T M_{\text {wall }}$ state space of wall system;
- $\mathcal{V}:=\mathcal{P}\left(O(k) \times N_{\text {wall }}\right)$ space of probability measures;
- \mathcal{V} is naturally an $O(k)$-space.

Random microstructure on $\partial B: O(k)$-equivariant map

$$
\mathcal{G}: F(\partial B) \rightarrow \mathcal{P}\left(O(k) \times N_{\text {wall }}\right) .
$$

Example: $\mathcal{G}=(\xi, \zeta)$ constant, where $\xi \in \mathcal{P}(O(k))$ is rotation invariant and ζ is Gibbs canonical distribution.

Gibbs canonical distribution at temperature T

An invariant volume form on $N_{\text {wall }}$ of physical significance:

$$
\zeta:=\frac{e^{-\beta E}}{Z(\beta)} \Omega_{\mathrm{wall}}^{E} \wedge d E
$$

where $\beta=1 / \kappa T$. ($\kappa=$ Boltzmann constant.) Density ρ is obtained by maximizing Boltzmann entropy:

$$
\mathcal{H}(\rho):=-\int_{N_{\text {wall }}} \rho \log \rho \Omega_{\text {wall }}
$$

under constraint $\int_{N_{\text {wall }}} E \rho \Omega_{\text {wall }}=\varepsilon_{0}$. $(\beta=$ Lagrange multiplier. $)$
Maximal uncertainty about state given mean value of E.

- $\mathbb{H}:=$ half-space in dimension $k+1$;
- $N_{\mathrm{mol}}^{+}:=T \bar{M}_{\mathrm{mol}} \times \mathbb{H}$;
- $\pi: N_{S}^{+}:=N_{\text {mol }}^{+} \times \mathbb{T}^{k} \times M_{\text {wall }} \rightarrow N_{\text {mol }}^{+}$projection to first factor;
- $\lambda \in \mathcal{P}\left(\mathbb{T}^{k}\right)$ Lebesgue;
- $\zeta \in \mathcal{P}\left(N_{\text {wall }}\right)$ a fixed probability (say, the Gibbs measure);
- $T: N_{S}^{+} \rightarrow N_{S}^{+}$the return map.

Define the map $P: \mathcal{P}\left(N_{\text {mol }}^{+}\right) \rightarrow \mathcal{P}\left(N_{\text {mol }}^{+}\right)$, by

$$
\mu \mapsto \mu P:=(\pi \circ T)_{*}(\mu \otimes \lambda \otimes \eta) .
$$

Markov chains (dynamics under partial state info)

Standard finite state Markov chains with detailed balance: M is a groupoid, V is the set of units, T is the inverse operation, $v \mapsto \eta_{v}$ are the transition probabilities, and $\mu \circ \eta$ is T-invariant.

Example of P (constant speed)

Transition probabilities operator:

$$
(P f)(\theta)=\int_{0}^{1} f\left(\Psi_{\theta}(r)\right) d r .
$$

Surface microstructure defined by a billiard table contour. The coordinate r is random (uniform between 0 and 1).

Stationary distributions

Definition: $\mu \in \mathcal{P}\left(N_{\text {mol }}^{+}\right)$is stationary if $\mu P=\mu$.

Theorem

Let $P: \mathcal{P}\left(N_{\text {mol }}^{+}\right) \rightarrow \mathcal{P}\left(N_{\text {mol }}^{+}\right)$be the Markov operator associated to the Gibbs canonical distribution on $N_{\text {wall }}$ with temperature parameter β. Then the Gibbs canonical distribution on $N_{m o l}^{+}$with the same parameter β is stationary.

Proof.

Use $e^{-\beta\left(E_{\mathrm{mol}}+E_{\text {wall }}\right)}=e^{-\beta E_{\mathrm{mol}}} e^{-\beta E_{\text {wall }}}$ and invariance of the symplectic volume form on $N_{S}(\mathcal{E})$ under the return map T.

- Equilibrium state of molecule: $d \mu(v)=C \cos \theta|v|^{2} e^{-\frac{B}{2} m_{2}|v|^{2}} d \theta d|v|$
- If no moving parts (fixed speed $|v|=1$): $d \mu(\theta)=\frac{1}{2} \cos \theta d \theta$.
- No dependence on shapes.

The operator P on functions

Define action of P on functions by $\nu(P f)=(\nu P)(f)$.

Definition

The molecule-wall system is symmetric if there are volume preserving automorphisms \widetilde{J} and \widetilde{K} of N_{S}^{+}that:

- respect the product $N_{S}^{+}=N_{\text {mol }}^{+} \times N_{\text {wall }}$;
- induce the same map J on $N_{\text {mol }}^{+}$;
- $\widetilde{J} \circ T=T^{-1} \circ \widetilde{J}$ (time reversibility)
- $\widetilde{K} \circ T=T \circ \widetilde{K}$ (symmetry).

Let μ be the stationary measure and $H:=L^{2}\left(N_{\text {mol }}^{+}, \mu\right)$.

Theorem

If system is symmetric, P is a self-adjoint operator on H of norm 1.
The symmetry condition essentially always holds. Typically, we find in the examples that P is a Hilbert-Schmidt operator.

Problem: relate structural features and spectrum of P

For example, in purely geometric settings (no moving parts on the wall, no potentials) want to relate shape and spectrum.

tip angles, walls

variable curvature

Of special interest: spectral gap.

Case studies (analytical and numerical)

- A simple two masses system;
- Adding a quadratic potential;
- Billiard systems with no energy exchange;
- The method of conditioning;
- Moments of scattering and spectral gap;
- Systems with weak scattering and the billiard Laplacian.

A simple two-masses system - I

Main system parameter: $\gamma:=\sqrt{\frac{m_{2}}{m_{1}}}=\tan \alpha$.

A simple two-masses system - II

Define: $x=\sqrt{\frac{m_{1}}{m}} x_{1}, w:=\sqrt{\frac{m_{1}}{m}} v_{1}, d \zeta(w):=C \exp \left(-\frac{1}{2} w^{2} / \sigma^{2}\right) d w d x$;

Theorem

- P has a unique stationary distribution μ on $(0, \infty)$, given by

$$
d \mu(v)=\sigma^{-2} v \exp \left(-\frac{v^{2}}{2 \sigma^{2}}\right) d v
$$

- P is a Hilbert-Schmidt operator on $L^{2}((0, \infty), \mu)$ of norm 1 ;
- $\eta P^{n} \rightarrow \mu$ exponentially inTV-norm for all initial η.
- If ϕ is C^{3} on $(0, \infty)$, then

$$
(\mathcal{L} \phi)(z):=\lim _{\gamma \rightarrow 0} \frac{\left(P_{\gamma} \varphi\right)(z)-\varphi(z)}{2 \gamma^{2}}=\left(\frac{1}{z}-z\right) \varphi^{\prime}(z)+\varphi^{\prime \prime}(z)
$$

holds for all $z>0$.

A simple two-masses system - III

Evolution of an initial probability measure, μ_{0}, having a step function density. The graph in dashed line is the limit density $v \exp \left(-v^{2} / 2\right)$ and the other graphs, from right to left, are the densities of $\mu_{0} P^{n}$ at steps $n=1,10,50,100$. Here $m_{1} / m_{2}=100$.

A simple two-masses system - IV

Comparison of the second eigendensity of P (numerical) and the second eigendensity of the billiard Laplacian $\mathcal{L}:\left(1-z^{2} / 2\right) \rho(z)$. Used $\gamma=0.1$; the numerical value for the second eigenvalue of P was found to be 0.9606 , to be compared with $1+2 \gamma^{2}(-2)=0.9600$ derived from eigenvalue -2 of \mathcal{L}.

A simple two-masses system - V

Asymptotics of the spectral gap of P for small values of the mass-ratio parameter γ. The discrete points are the values of the gap obtained numerically. The solid curve is the graph of $f(\gamma)=4 \gamma^{2}$, suggested by comparison with \mathcal{L}.

- $d \mu(\theta)=\frac{1}{2} \sin \theta d \theta$ and $H=L^{2}([0, \pi], \mu)$;
- $P_{K}=$ the Markov operator for bumps with curvature K.

Theorem

- P_{K} is a self-adjoint, compact operator on H of norm 1;
- For small K, the spectral gap of P_{K} is $g(K)=\frac{1}{3} K^{2}+O\left(K^{3}\right)$;

$\left(P_{K} f\right)(\theta)=\frac{1}{l} \int_{0}^{l} f\left(\Psi_{\theta}(x)\right) d x$

The billiard Laplacian

The (reduced) billiard map is an area-preserving map

$$
T: S^{2} \rightarrow S^{2} .
$$

Regard P_{K} as defined on $L^{2}\left(S^{2}, A\right)$. Let Δ be the spherical Laplacian.

Theorem

Let Φ be a compactly supported smooth function on $S^{2} \backslash\{N, S\}$ invariant under rotations about the z-axis in \mathbb{R}^{3}. Then

$$
P_{K} \Phi-\Phi=\frac{K^{2}}{6} \Delta \Phi+\mathcal{O}\left(K^{3}\right) .
$$

Moments of scattering for bumps family

- Define the j th moment of scattering

$$
\varepsilon_{j}(\theta)=E_{\theta}\left[(\Theta-\theta)^{j}\right]
$$

where Θ is the random post-collision angle given θ.

- and $P \Phi-\Phi=\sum_{j=1}^{n} \frac{\Phi^{(n)}}{n!} \mathcal{E}_{j}+\mathcal{O}\left(\mathcal{E}_{n+1}\right)$ if Φ smooth.

Proposition

If $\sin \theta>3 K / 2$ (middle range of angles), the moments satisfy:

- If n is odd, $\mathcal{E}_{n}(\theta)=\frac{K^{n+1}}{2(n+2)} \cot \theta+\mathcal{O}\left(K^{n+3}\right)$;
- If n is even, $\mathcal{E}_{n}(\theta)=\frac{K^{n}}{n+1}+\mathcal{O}\left(K^{n+2}\right)$.

It follows that

$$
\frac{P_{K} \Phi-\Phi}{\frac{1}{3} K^{2}}=\frac{1}{2 \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Phi}{d \theta}\right)+\mathcal{O}(K)
$$

$\mathcal{E}_{2}(\theta) / \gamma_{K}$ for $K=2 / 3,1 / 3,1 / 6$

$E\left(\Theta_{K}-\theta\right)^{2} /($ spectral gap) $\rightarrow 1$ (constant function)

This gives an asymptotic interpretation of the spectral gap as the mean square deviation from specularity.

General bumps family, big K

Theorem

For the general bumps family P is quasi-compact.

The solid line is the graph of $2 / K$ and the values marked with an asterisk are numerically obtained.

The technique of conditioning

Wall does not affect J-even eigenvalues, but brings J-odd eigenvalues closer to 0 .

More complicated shapes

Two billiard cells with the same Markov operator:

Gas transport in channels - 3 levels of description

- Microscopic model (deterministic motion)

- Random flight in channel (Markov process on set of directions)

- Diffusion limit: gas concentration $u(x, t)$ along \mathbb{R} should satisfy

$$
\frac{\partial u}{\partial t}=\mathcal{D} \frac{\partial^{2} u}{\partial x^{2}}
$$

Relate: (1) microstructure, (2) spectrum of P, (3) diffusion constant.

Consider the following experiment. Let

- $r=$ radius of channel;
- $v=$ constant particle speed;
- $L=$ half channel length;

Release the particle from middle point with distribution ν. Measure the expected exit time, $\tau(a L, r, v)$ as $a \rightarrow \infty$.

Proposition

Suppose P on $L^{2}([0, \pi], \mu)$ has positive spectral gap and μ is ergodic for P. Then

$$
\tau(a L, r, v) \sim \frac{1}{\mathcal{D}} \frac{a^{2}}{\ln a}
$$

where $\mathcal{D}=\frac{4 r v}{\pi} \xi(P)$.
We wish to understand how \mathcal{D} depends on P.

\mathcal{D} and the spectrum of P

Let Π be the (projection-valued) spectral measure of P on $[-1,1]$:

$$
P=\int_{-1}^{1} \lambda d \Pi(\lambda)
$$

Fix $\beta>1$ and let $\left.\left.Z\right|_{a}=Z \chi_{\{|Z| \leq a / \ln \beta} a\right\}$.

Spectral measure of Z on $[-1,1]: \Pi_{Z}(\cdot)=\lim _{a \rightarrow \infty} \frac{1}{\ln a}\left\langle\left. Z\right|_{a},\left.\Pi(\cdot) Z\right|_{a}\right\rangle$.

Theorem

$\mathcal{D}_{0}:=$ diffusion const. for i.i.d. process with angle distribution μ. Then

$$
\mathcal{D}=\mathcal{D}_{0} \int_{-1}^{1} \frac{1+\lambda}{1-\lambda} d \Pi_{Z}(\lambda) .
$$

If P has discrete spectrum, $\Pi_{Z}\left(\lambda_{i}\right):=\lim _{a \rightarrow \infty} \frac{1}{\ln a}\left|\left\langle\left. Z\right|_{a}, \phi_{i}\right\rangle\right|^{2}$.

An elementary example

$\theta=$ initial angle, define integer $k, s \in[0,1)$, and probability p :

$$
\frac{2 h}{b \tan \theta}=k+s, \quad p= \begin{cases}s & \text { if } k \text { is odd } \\ 1-s & \text { if } k \text { is even }\end{cases}
$$

Special case: $\theta=\pi / 4, b>2 h$. Then $k=0, s=2 h / b$. For a long channel of diameter $2 r$ and particle speed v, the random flight tends to Brownian motion with

$$
\sigma^{2}=\sqrt{2} r v\left(\frac{b}{2 h}-1\right) .
$$

An application of the central limit theorem for Markov chains.

