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Random billiards with microstructure
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Random billiards with microstructure
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Wall and molecule subsystems

Configuration spaces: Riemannian manifolds with corners

Mwall, Mmol ∶=Mmol ×R ×Tk

and potential functions:

Uwall ∶Mwall →R
UMol ∶Mmol →R

The total system has configuration space M and potential

U ∶M →R.

When subsystems sufficiently far away, M ≅Mwall ×Mmol and

U = Uwall +Umol.

Outside of product region = interaction zone. Motion:

∇c′(t)
dt

= −gradc(t)U

with specular collisions at boundary.
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Interaction region (microscopic): definitions

S ∶=Mmol × {0} ×Tk ×Mwall boundary of inter. zone;

E(q, v) ∶= 1

2
∥v∥2q +U(q) energy function on N ∶= TM ;

NS ∶= TSM , N(E) ∶= E−1(E), NS(E) ∶= NS ∩N(E);
θv(ξ) ∶= ⟨v, dτvξ⟩ contact form on N ;

dθ symplectic form on N ;

XE Hamiltonian vector field: XE ⌟ dθ = −dE;

η ∶= (grad E)/∥grad E∥2 (in Sasaki metric on N);

Ω ∶= (dθ)m Liouville volume form on N ;

ΩE ∶= η ⌟Ω flow invariant volume on energy surfaces;

T ∶NS →NS the return (billiard) map to S.
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Geodesic flow example (M
wall

trivial)

Mwall = single point

Mmol = {0,1}
Mmol ∶= {0,1} ×R ×T1

S = {0,1} × {0} ×T1

Potentials are constant
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Example: a dumbbell molecule

Mwall = single point

Mmol = SO(2)
Mmol ∶= SO(2) ×R ×T1

S = SO(2) × {0} ×T1

Potentials are constant
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Example with potential (M
mol

trivial)

Coordinates: x =√m1/m (x1 − l/2), y =√m2/mx2.

E(x, y, ẋ, ẏ) = m

2
(ẋ2 + ẏ2 + k

m1

x2) .
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Random microstructures à la Gromov

B ∶= billiard table: Riemannian manifold with boundary;

F (∂B) orthonormal frame bundle with group O(k);
Nwall ∶= TMwall state space of wall system;

V ∶= P(O(k) ×Nwall) space of probability measures;

V is naturally an O(k)-space.

Random microstructure on ∂B: O(k)-equivariant map

G ∶ F (∂B) → P(O(k) ×Nwall).
Example: G = (ξ, ζ) constant, where ξ ∈ P(O(k)) is rotation invariant
and ζ is Gibbs canonical distribution.
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Gibbs canonical distribution at temperature T

An invariant volume form on Nwall of physical significance:

ζ ∶= e−βE

Z(β)ΩE
wall
∧ dE

where β = 1/κT . (κ = Boltzmann constant.) Density ρ is obtained by
maximizing Boltzmann entropy:

H(ρ) ∶= −∫
Nwall

ρ log ρΩwall

under constraint ∫Nwall
EρΩwall = E0. (β = Lagrange multiplier.)

Maximal uncertainty about state given mean value of E.
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The Markov operator P of a microstructureH ∶= half-space in dimension k + 1;

N+
mol
∶= TMmol ×H;

π ∶ N+S ∶= N+
mol
×Tk ×Mwall → N+

mol
projection to first factor;

λ ∈ P(Tk) Lebesgue;

ζ ∈ P(Nwall) a fixed probability (say, the Gibbs measure);

T ∶N+S → N+S the return map.

Define the map P ∶ P(N+
mol
) → P(N+

mol
), by

µ ↦ µP ∶= (π ○ T )∗(µ⊗ λ⊗ η).
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Markov chains (dynamics under partial state info)

Standard finite state Markov chains with detailed balance: M is a

groupoid, V is the set of units, T is the inverse operation, v ↦ ηv are

the transition probabilities, and µ ○ η is T -invariant.

14 / 37



Example of P (constant speed)

Transition probabilities operator:

(Pf)(θ) = ∫ 1

0

f(Ψθ(r)) dr.

Surface microstructure defined by a billiard table contour. The

coordinate r is random (uniform between 0 and 1).
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Stationary distributions

Definition: µ ∈ P(N+
mol
) is stationary if µP = µ.

Theorem

Let P ∶ P(N+
mol
) → P(N+

mol
) be the Markov operator associated to the

Gibbs canonical distribution on Nwall with temperature parameter β.
Then the Gibbs canonical distribution on N+

mol
with the same

parameter β is stationary.

Proof.

Use e−β(Emol+Ewall) = e−βEmole−βEwall and invariance of the symplectic
volume form on NS(E) under the return map T .
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Example: Let Ce−β

2
m1w

2

dw ds be fixed state of wall

Equilibrium state of molecule: dµ(v) = C cosθ∣v∣2e−β

2
m2∣v∣

2

dθ d∣v∣
If no moving parts (fixed speed ∣v∣ = 1): dµ(θ) = 1

2
cos θ dθ.

No dependence on shapes.
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The operator P on functions

Define action of P on functions by ν(Pf) = (νP )(f).
Definition

The molecule-wall system is symmetric if there are volume preserving
automorphisms J̃ and K̃ of N+S that:

respect the product N+S = N+
mol
×Nwall;

induce the same map J on N+
mol

;

J̃ ○ T = T −1 ○ J̃ (time reversibility)

K̃ ○ T = T ○ K̃ (symmetry).

Let µ be the stationary measure and H ∶= L2(N+
mol

, µ).
Theorem

If system is symmetric, P is a self-adjoint operator on H of norm 1.

The symmetry condition essentially always holds. Typically, we
find in the examples that P is a Hilbert-Schmidt operator.
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Problem: relate structural features and spectrum of P

For example, in purely geometric settings (no moving parts on the
wall, no potentials) want to relate shape and spectrum.

Of special interest: spectral gap.
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Case studies (analytical and numerical)

A simple two masses system;

Adding a quadratic potential;

Billiard systems with no energy exchange;

The method of conditioning;

Moments of scattering and spectral gap;

Systems with weak scattering and the billiard Laplacian.
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A simple two-masses system - I

Main system parameter: γ ∶= √m2

m1

= tanα.
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A simple two-masses system - II

Define: x = √m1

m
x1, w ∶= √m1

m
v1, dζ(w) ∶= C exp (− 1

2
w2/σ2)dw dx;

Theorem

P has a unique stationary distribution µ on (0,∞), given by

dµ(v) = σ−2v exp(− v2

2σ2
)dv.

P is a Hilbert-Schmidt operator on L2((0,∞), µ) of norm 1;

ηPn → µ exponentially inTV-norm for all initial η.

If φ is C3 on (0,∞), then

(Lφ)(z) ∶= lim
γ→0

(Pγϕ) (z) − ϕ(z)
2γ2

= (1
z
− z)ϕ′(z) + ϕ′′(z)

holds for all z > 0.
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A simple two-masses system - III
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Evolution of an initial probability measure, µ0, having a step function

density. The graph in dashed line is the limit density v exp(−v2/2)
and the other graphs, from right to left, are the densities of µ0P

n at

steps n = 1,10,50,100. Here m1/m2 = 100.
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A simple two-masses system - IV
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Comparison of the second eigendensity of P (numerical) and the

second eigendensity of the billiard Laplacian L: (1 − z2/2)ρ(z). Used

γ = 0.1; the numerical value for the second eigenvalue of P was found

to be 0.9606, to be compared with 1 + 2γ2(−2) = 0.9600 derived from

eigenvalue −2 of L.
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A simple two-masses system - V
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Asymptotics of the spectral gap of P for small values of the

mass-ratio parameter γ. The discrete points are the values of the gap

obtained numerically. The solid curve is the graph of f(γ) = 4γ2,

suggested by comparison with L.
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The bumps family - I (parameter K = l/R > 0)

dµ(θ) = 1

2
sin θ dθ and H = L2 ([0, π] , µ);

PK = the Markov operator for bumps with curvature K.

Theorem

PK is a self-adjoint, compact operator on H of norm 1;

For small K, the spectral gap of PK is g(K) = 1

3
K2 +O(K3);
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The billiard Laplacian

The (reduced) billiard map is an area-preserving map

T ∶ S2 → S2.

Regard PK as defined on L2(S2,A). Let ∆ be the spherical Laplacian.

Theorem

Let Φ be a compactly supported smooth function on S2 ∖ {N,S}
invariant under rotations about the z-axis in R

3. Then

PKΦ −Φ = K2

6
∆Φ +O(K3).
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Moments of scattering for bumps family

Define the jth moment of scattering

Ej(θ) = Eθ [(Θ − θ)j]
where Θ is the random post-collision angle given θ.

and PΦ −Φ = ∑n
j=1

Φ
(n)

n!
Ej +O(En+1) if Φ smooth.

Proposition

If sin θ > 3K/2 (middle range of angles), the moments satisfy:

If n is odd, En(θ) = Kn+1

2(n+2)
cot θ +O(Kn+3);

If n is even, En(θ) = Kn

n+1
+O(Kn+2).

It follows that

PKΦ −Φ
1

3
K2

= 1

2 sin θ

d

dθ
(sin θ

dΦ

dθ
) +O(K)
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E2(θ)/γK for K = 2/3,1/3,1/6

E(ΘK − θ)2/(spectral gap) → 1 (constant function)
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This gives an asymptotic interpretation of the spectral gap as the

mean square deviation from specularity.
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General bumps family, big K

Theorem

For the general bumps family P is quasi-compact.
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The solid line is the graph of 2/K and the values marked with an

asterisk are numerically obtained.
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The technique of conditioning

Wall does not affect J-even eigenvalues, but brings J-odd eigenvalues

closer to 0.
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More complicated shapes
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P does not specify shape (up to homothety)

Two billiard cells with the same Markov operator:
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Gas transport in channels - 3 levels of description

Microscopic model (deterministic motion)

Random flight in channel (Markov process on set of directions)

Diffusion limit: gas concentration u(x, t) along R should satisfy

∂u

∂t
=D

∂2u

∂x2

Relate: (1) microstructure, (2) spectrum of P , (3) diffusion constant.

34 / 37



Transition to diffusion—the Central Limit Theorem

Consider the following experiment. Let

r = radius of channel;

v = constant particle speed;

L = half channel length;

Release the particle from middle point with distribution ν. Measure
the expected exit time, τ(aL, r, v) as a→∞.

Proposition

Suppose P on L2([0, π], µ) has positive spectral gap and µ is ergodic
for P . Then

τ(aL, r, v) ∼ 1

D

a2

lna

where D = 4rv
π

ξ(P ).
We wish to understand how D depends on P .

35 / 37



D and the spectrum of P

Let Π be the (projection-valued) spectral measure of P on [−1,1]:
P = ∫ 1

−1
λ dΠ(λ).

Fix β > 1 and let Z ∣a = Zχ{∣Z∣≤a/ lnβ a}.

Spectral measure of Z on [−1,1]: ΠZ(⋅) = lima→∞
1

lna
⟨Z ∣a,Π(⋅)Z ∣a⟩.

Theorem

D0 ∶= diffusion const. for i.i.d. process with angle distribution µ. Then

D =D0∫ 1

−1

1 + λ

1 − λ
dΠZ(λ).

If P has discrete spectrum, ΠZ(λi) ∶= lima→∞
1

lna
∣⟨Z ∣a, φi⟩∣2.
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An elementary example

θ = initial angle, define integer k, s ∈ [0,1), and probability p:

2h

b tan θ
= k + s, p = ⎧⎪⎪⎨⎪⎪⎩

s if k is odd

1 − s if k is even

h

b

θ π−θ pp

1-p

1-p

θ

Special case: θ = π/4, b > 2h. Then k = 0, s = 2h/b. For a long
channel of diameter 2r and particle speed v, the random flight tends
to Brownian motion with

σ2 =√2rv ( b

2h
− 1) .

An application of the central limit theorem for Markov chains.
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