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Abstract

We study the long time behavior (at times of order exp(λ/ε2)) of solutions to
quasi-linear parabolic equations with a small parameter ε2 at the diffusion term.
The solution to a PDE can be expressed in terms of diffusion processes, whose
coefficients, in turn, depend on the unknown solution. The notion of a hierarchy of
cycles for diffusion processes was introduced by Freidlin and Wentzell and applied
to the study of the corresponding linear equations. In the quasi-linear case, it is not
a single hierarchy that corresponds to an equation, but rather a family of hierarchies
that depend on the time scale λ. We describe the evolution of the hierarchies with
respect to λ in order to gain information on the limiting behavior of the solution of
the PDE.
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1 Introduction

Consider the Cauchy problem for the quasi-linear equation with a small parameter at the
second order term

∂uε(t, x)

∂t
=
ε2

2

d∑
i,j=1

aij(x, u
ε)
∂2uε(t, x)

∂xi∂xj
+ b(x) · ∇xu

ε(t, x), x ∈ Rd, t > 0, (1)

uε(0, x) = g(x), x ∈ Rd. (2)

Equations with diffusion coefficients that depend on particle concentration uε arise
naturally in many applications, in particular in population genetics. Note that b is as-
sumed not to depend on uε here. Any dependence of b on uε leads to additional levels of
complexity, and will be a subject of our future work.
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We assume that the coefficients of equation (1) are Lipschitz continuous and bounded;
the matrix (aij(x, u)) is assumed to be uniformly positive definite. Under these conditions,
problem (1)-(2) has a unique solution for any continuous bounded g(x) (see, for instance,
[8]).

We’ll be interested in the asymptotics of the solution uε to the problem (1)-(2) at times
of order exp(λ/ε2) for λ > 0 and ε ↓ 0. Before we study the quasi-linear equation, it is
helpful to discuss the linear case, i.e., when aij do not depend on uε. Then the Cauchy
problem takes the form

∂uε(t, x)

∂t
=
ε2

2

d∑
i,j=1

aij(x)
∂2uε(t, x)

∂xi∂xj
+ b(x) · ∇xu

ε(t, x), x ∈ Rd, t > 0, (3)

uε(0, x) = g(x), x ∈ Rd. (4)

Let Xx,ε
t be the corresponding family of diffusion processes, namely

dXx,ε
t = b(Xx,ε

t )dt+ εσ(Xx,ε
t )dWt, Xx,ε

0 = x ∈ Rd, (5)

where σ is assumed to be Lipschitz continuous and to satisfy a(x) = (aij(x)) = σ(x)σ∗(x).
Suppose for a moment that the vector field b has just one asymptotically stable equi-

librium point O such that all the points get attracted to O and (b(x), x−O) ≤ −c|x−O|
for some positive constant c and all sufficiently large |x|, while (b(x), x−O) ≤ −c|x−O|2
for all x in a sufficiently small neighborhood of O. Then it is easy to check that

lim
(ε,t)→(0,∞)

P(Xx,ε
t ∈ U) = 1

for any neighborhood U of the equilibrium O. Taking into account that the solution uε of
(3)-(4) can be written in the form uε(t, x) = Eg(Xx,ε

t ) and the continuity of g, we conclude
that

lim
(ε,t)→(0,∞)

uε(t, x) = g(O).

The situation becomes more complicated if the dynamical system ẋ(t) = b(x(t)) has
more than one asymptotically stable attractor. Assume, for brevity, that all the stable
attractors are equilibriums O1, ..., Or. Let Di be the basin of Oi, 1 ≤ i ≤ r, and assume
that the set Rd \ (D1 ∪ ... ∪Dr) belongs to a finite union of surfaces of dimension d− 1.
The long time behavior of Xx,ε

t and uε(t, x) depends on the way in which (ε, t) approaches
(0,∞) and is now determined by the transitions of Xx,ε

t between the attractors O1, ..., Or.
More precisely, let T ε(λ) = exp(λ/ε2). In the generic case, there is a finite set Λ ⊂ (0,∞)
such that for each x ∈ D1 ∪ ... ∪Dr and each λ ∈ (0,∞) \ Λ, one equilibrium OM(x,λ) is
defined such that the measures µε(Γ) = P(Xx,ε

T ε(λ) ∈ Γ) converge weakly to the δ-measure
concentrated at OM(x,λ). The state OM(x,λ) is called the metastable state for the initial
point x and the time scale T ε(λ). From the representation uε(t, x) = Eg(Xx,ε

t ) it follows
that

lim
ε↓0

uε(T ε(λ), x) = g(OM(x,λ)). (6)
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It is worth noting that for all sufficiently large λ, the metastable state OM(x,λ) does not
depend on x. Therefore, the solution uε(T ε(λ), x) tends to a constant as ε ↓ 0 for all
sufficiently large λ.

The theory of metastability (of sublimiting distributions) was developed in [1] (see also
[3], [6], [9]). The notion of a hierarchy of cycles, which is discussed below, was introduced
there. Let S0,T (ϕ) be the action functional for the family Xx,ε

t in C([0, T ],Rd) as ε ↓ 0
([6]):

S0,T (ϕ) =
1

2

∫ T

0

d∑
i,j=1

aij(ϕt)(ϕ̇
i
t − bi(ϕt))(ϕ̇

j
t − bj(ϕt))dt, T ≥ 0, ϕ ∈ C([0, T ],Rd)

for absolutely continuous ϕ, S0,T (ϕ) = +∞ for ϕ that are not absolutely continuous. Here
aij are the elements of the inverse matrix, that is aij = (a−1)ij. The quasi-potential is
defined as

V (x, y) = inf
T,ϕ
{S0,T (ϕ) : ϕ ∈ C([0, T ],Rd), ϕ(0) = x, ϕ(T ) = y}, x, y ∈ Rd.

Note that while the term “quasi-potential” is normally applied to the function V of the
variable y with x being a fixed equilibrium point, we use the same term for the function
of two variables. The hierarchy of cycles is determined by the numbers

Vij = V (Oi, Oj), 1 ≤ i, j ≤ r.

The equilibriums O1, ..., Or are the cycles of rank zero. In the generic case, for each Oi

there exists a unique “next” equilibrium Ol = N (Oi) defined by Vil = mink:k 6=i Vik. For
each sufficiently small δ > 0, with probability close to one as ε ↓ 0, the process Xx,ε

t that
starts in a δ-neighborhood of Oi will enter a δ-neighborhood of N (Oi) before visiting the
basins of any of the equilibriums other than Oi and N (Oi). The time before the process
enters the neighborhood of Ol = N (Oi) is logarithmically equivalent to exp(Vil/ε

2). If the
sequence Oi, N (Oi), N 2(Oi) = N (N (Oi)), ...,N n(Oi), ... is periodic, that is N n(Oi) =
Oi for some n, then a cycle of rank one appears. It contains the cycles of rank zero
Oi,N (Oi), ...,N n−1(Oi). If N n(Oi) 6= Oi for any n ≥ 1, we say that Oi forms a cycle of
rank one. The entire set of equilibriums is decomposed into cycles of rank one, which will
be denoted by C1

1 , ..., C
1
m1

. Note that some of the cycles of rank one may consist of one
cycle of rank zero.

Next, the transitions between cycles of rank one can be considered. Namely, in the
generic case, for each cycle C1

i there is a different cycle N (C1
i ) of rank one determined by

Vij, 1 ≤ i, j ≤ r, with the following property: if the process starts at one of the equilibrium
points in C1

i , then, with probability close to one as ε ↓ 0, it will enter a δ-neighborhood of
one of the equilibrium points inside the cycle N (C1

i ) before visiting basins of any of the
equilibriums outside C1

i and N (C1
i ). This leads to the decomposition of the set of cycles

or rank one into cycles of rank two. This procedure can be continued inductively until we
arrive at a single cycle of finite rank R that contains all the equilibrium points.

3



Let C be a cycle of rank less than R. In the generic case, the process goes from C
to N (C) in the following fashion: there is an equilibrium point O ∈ C such that, with
probability close to one as ε ↓ 0, the basin of attraction of O is the last one (among the
basins of equilibriums that belong to C) visited by the process before the process reaches
a δ-neighborhood of N (C), provided that the process Xx,ε

t starts in a δ-neighborhood of
one of the equilibriums that belong to C. We’ll say that the process exits C though the
equilibrium O and will use the notation O = E(C) in this situation.

It has been shown (see [6]) that for each cycle C within the hierarchy, the transition
from C to N (C) happens at an exponential time scale. More precisely, let τx,ε be the first
time when the process Xx,ε

t enters a δ-neighborhood of N (C). Then there is λ(C) such
that ε2 ln τx,ε → λ(C) almost surely as ε ↓ 0, provided that x belongs to a δ-neighborhood
of one of the equilibriums within C.

Now we can introduce a directed labeled graph G associated with the above hierarchy
of cycles. The vertices of the graph are the equilibrium points O1, ..., Or. We’ll say that
G contains an edge e leading from Oi to Oj if there is a cycle C within the hierarchy such
that Oi = E(C) and Oj = N (C). We’ll use the notation e = R(C) to indicate that e is
the edge leading out of C. With each edge e of the graph, we’ll associate a transition time
scale λe = λ(C). The meaning is that it takes the process time exp(λe/ε

2) (approximately,
up to a sub-exponential factor) to make a transition along the edge e, i.e., from E(C) to
N (C). The transition time scales λe can be expressed through linear combinations of Vij.

Let us return to the non-linear problem (1)-(2). The first thing to observe is that
representation (6) is not immediately available now - metastable states need to be replaced
by metastable distributions (see [5]), whose dependence on λ needs to be explored. The
family of diffusion processes corresponding to a nonlinear problem is also more complicated
due to the dependence of the coefficients on time (through the unknown function uε).
Namely, taking into account the representation of the solution of the (linear) Cauchy
problem as the expected value of an appropriate functional of the process, the family
corresponding to the problem (1)-(2) is defined by the following system on the unknown
family of processes and unknown function uε (see [2], Ch. 5):

dX t,x,ε
s = b(X t,x,ε

s )ds+ εσ(X t,x,ε
s , uε(t− s,X t,x,ε

s ))dWs, s ≤ t, X t,x,ε
0 = x, (7)

uε(t, x) = Eg(X t,x,ε
t ), (8)

where the entries σij of the matrix σ(x, u) are Lipschitz continuous and σσ∗ = a. Under
the above assumptions on the coefficients and the function g, the solution of the system
(7)-(8) exists and is unique.

While the transition scales were determined by the time-independent coefficients in
the linear case, now we will consider a family of transition scales λe(z). These are obtained
by formally replacing the unknown function uε by a constant z in the second argument of
the diffusion coefficient in the equation (which, formally, gives us a linear equation). The
motivation is, roughly speaking, that in each time scale T ε(λ) the solution is close to a
constant in each of the domains Di.
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We see that now the transition scales evolve in time due their dependence on the
(unknown) solution uε. Consider, however, a time interval [T ε(λ − δ), T ε(λ)], where δ is
small. As will be seen, uε typically does not change much in time on this time interval,
and the large deviation theory still applies without drastic modifications, which allows us
to express the limit of uε(T ε(λ), x), as ε ↓ 0, in terms of the limit of uε(T ε(λ− δ), x) and
the functions λe(z). This is the main idea that will allow us to study the evolution in λ
of the limit of uε(T ε(λ), x).

In Section 2 we discuss some a priori estimates for processes with time-dependent
coefficients, assuming that the coefficients can be obtained via a small perturbation of time
independent functions. These estimates will be needed for the processes corresponding to
the nonlinear problem. In Section 3 we review the case of two equilibrium points. This
has been considered in an earlier paper ([5]), and we include it here so that to illustrate
the technique in the simplest case, when the hierarchy of cycles does not change. The
main result, including an inductive description of the changes in the hierarchies of cycles,
is stated and proved in Sections 4 and 5.

2 Diffusion processes with time dependent coefficients

Let α(x) be a symmetric d × d matrix whose elements αij(x) are Lipschitz continuous
with Lipschitz constant L and satisfy

k|ξ|2 ≤
d∑

i,j=1

αij(x)ξiξj ≤ K|ξ|2, x ∈ Rd, ξ ∈ Rd. (9)

Let αij be the elements of the inverse matrix, that is αij = (α−1)ij, and σ be a square
matrix such that α = σσ∗. We choose σ in such a way that σij are also Lipschitz
continuous.

We assume that all the attractors of the bounded Lipschitz continuous vector field b
are equilibriums O1, ..., Or. Assume that their domains of attraction D1, ..., Dr are such
that the set Rd \ (D1 ∪ ... ∪Dr) belongs to a finite union of surfaces of dimension d− 1.
We also assume that there are r > 0 and c > 0 such that

(b(x), x−Oi) ≤ −c|x−Oi|2 (10)

whenever x is in the r-neighborhood of Oi, 1 ≤ i ≤ r.
Let Sα0,T be the normalized action functional for the family of processes Xx,ε

t satisfying

dXx,ε
t = b(Xx,ε

t )dt+ εσ(Xx,ε
t )dWt, Xx,ε

0 = x, (11)

where b is a bounded Lipschitz continuous vector field on Rd. Thus

Sα0,T (ϕ) =
1

2

∫ T

0

d∑
i,j=1

αij(ϕt)(ϕ̇
i
t − bi(ϕt))(ϕ̇

j
t − bj(ϕt))dt

5



for absolutely continuous ϕ defined on [0, T ], ϕ0 = x, and Sα0,T (ϕ) = ∞ if ϕ is not
absolutely continuous or if ϕ0 6= x (see [6]).

We’ll be interested in the long-time behavior of processes whose diffusion coefficients
are time-dependent, but are close to functions that do not depend on time.

Let α̃ε(t, x) be a uniformly positive definite symmetric d × d matrix whose elements
α̃εij are continuous in (t, x) and Lipschitz continuous in x. Let σ̃ε be a square matrix such
that α̃ε = σ̃ε(σ̃ε)∗. We choose σ̃ε in such a way that σ̃εij are also continuous in (t, x) and
Lipschitz continuous in x.

Let X̃x,ε
t satisfy X̃x,ε

0 = x and

dX̃x,ε
t = b(X̃x,ε

t )dt+ εσ̃ε(t, X̃x,ε
t )dWt, (12)

where b is the same as above. The law of this process depends on σ̃ε only through
α̃ε = σ̃ε(σ̃ε)∗. We will assume that the diffusion coefficients for the process X̃x,ε

t are close
to those of Xx,ε

t . Namely, let us assume that

sup
(t,x)∈R+×Rd

|α̃εij(t, x)− αij(x)| ≤ κ, (13)

where κ is small. The reason to introduce the process X̃x,ε
t is that we would like to study

the behavior of the process X t,x,ε
s given by (7)-(8) on a time interval where the variable uε

found inside the diffusion coefficient of (7) does not change much. Since a-priori we don’t
know much about the behavior of the diffusion coefficients in (7) (other than that they
don’t significantly change in time on a certain time interval), it is convenient to consider
a generic process whose diffusion coefficients are close to functions that don’t depend on
time.

Given a domain D and δ > 0, we define

Dδ = {x ∈ D : dist(x, ∂D) ≥ δ, |x| ≤ 1/δ}.

Let x0 be an asymptotically stable equilibrium of b and D be a domain attracted to x0.
Let

v = inf
T,ϕ
{Sα0,T (ϕ) : ϕ ∈ C([0, T ], D), ϕ(0) = x0, ϕ(T ) ∈ ∂D}.

Lemma 2.1. Suppose that b is fixed, α is Lipschitz continuous with Lipschitz constant L,
α̃ε is continuous in (t, x) and Lipschitz continuous in x, and

k|ξ|2 ≤
d∑

i,j=1

αij(x)ξiξj ≤ K|ξ|2 for x ∈ D, ξ ∈ Rd,

k|ξ|2 ≤
d∑

i,j=1

α̃εij(t, x)ξiξj ≤ K|ξ|2 for (t, x) ∈ R+ ×D, ξ ∈ Rd. (14)
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For each δ > 0 there are κ > 0 and a function ρ(ε) (that depend on α and α̃ through L, k
and K) such that limε↓0 ρ(ε) = 0 and

sup
(t,x)∈[T ε(δ),T ε(v−δ)]×Dκ

P(|X̃x,ε
t − x0| < δ, X̃x,ε

s ∈ D for s ≤ t) ≥ 1− ρ(ε),

provided that
sup

(t,x)∈R+×Dκ
|α̃εij(t, x)− αij(x)| ≤ κ.

This lemma was proved in [5]. The main idea was to show that Sα serves a purpose

similar to the action functional for the process X̃x,ε
t , even though the diffusion coefficients

for the process are time-dependent.
The next simple lemma does not require the proximity of α̃ε to α, but only the

boundedness of the entries of α̃ε. It can be proved by standard arguments from large
deviation theory (compare with chapter 3 of [6]).

Lemma 2.2. Suppose that b is fixed and α̃ε is continuous in (t, x) and Lipschitz continuous
in x and satisfies (14). For any compact M ⊂ D, there is v0 > 0 which depends on α̃ε only
through K such that for each δ ∈ (0, v0) there is a function ρ(ε) such that limε↓0 ρ(ε) = 0
and

sup
(t,x)∈[T ε(δ),T ε(v0)]×M

P(|X̃x,ε
t − x0| < δ, X̃x,ε

s ∈ D for s ≤ t) ≥ 1− ρ(ε).

The next lemma implies that the solution of (1)-(2) is nearly constant inside each of
the domains Dδ

i = {x ∈ Di : dist(x, ∂Di) ≥ δ, |x| ≤ 1/δ}, δ > 0, 1 ≤ i ≤ r, for ε small
enough.

Lemma 2.3. Let uε be the solution of (1)-(2). For every positive λ0 and δ there is a
positive ε0 such that

|uε(T ε(λ), x)− uε(T ε(λ), Oi)| ≤ δ (15)

whenever x ∈ Dδ
i , ε ≤ ε0 and λ ≥ λ0.

For a proof of this lemma we refer the reader to [4], where the same statement was
proved in the case of a single domain. The main idea is to express the solution at time
T ε(λ) in terms of the solution at a slightly earlier time T ε(λ)− t as follows

uε(T ε(λ), x) = Euε
(
T ε(λ)− t,XT ε(λ),x,ε

t

)
,

uε(T ε(λ), Oi) = Euε
(
T ε(λ)− t,XT ε(λ),Oi,ε

t

)
.

If t is chosen appropriately, then both X
T ε(λ),x,ε
t and X

T ε(λ),Oi,ε
t belong to a small neigh-

borhood of Oi with overwhelming probability. Therefore, the right hand sides in the
expressions above are very close due to a priori estimates on solutions of quasi-linear
PDEs ([7]).
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3 The case of two equilibrium points

In this section we assume that there are two asymptotically stable equilibrium points
O1, O2 ∈ Rd. Let D1 ⊂ Rd be the set of points in Rd that are attracted to O1 and
D2 ⊂ Rd the set of points attracted to O2. We assume that D1 ∪D2 ∈ Rd \ S, where S
is a (d − 1)-dimensional manifold. Note that in the case of two equilibrium points, the
hierarchy of cycles is always the same: O1 and O2 are cycles of rank zero, and there is
one cycle of rank one which contains both O1 and O2.

Let gmin = infx∈Rd g(x) and gmax = supx∈Rd g(x). Let G be the graph with two vertices
O1 and O2 and two directed edges: e going from O1 to O2 and h going from O2 to O1.
Define the functions λe, λh : [gmin, gmax]→ R via

λe(z) = V
a(·,z)
O1,O2

, λh(z) = V
a(·,z)
O2,O1

,

where in the right hand side we have quasi-potentials for the linear problem obtained by
inserting constant z instead of the variable uε in the diffusion coefficient. An example
with the graphs of these functions is shown in Figure 1.

Figure 1: The case of two equilibrium points

Without loss of generality we may assume that g(O1) ≤ g(O2). Let λ1 = λe(g(O1))
and λ2 = λh(g(O2)). In order to formulate the results on the asymptotics of uε(T ε(λ), x),
we need the functions z1(λ) and z2(λ), λ > 0, defined as follows:

z1(λ) =

{
g(O1), 0 < λ < λ1,
min{g(O2),min{z : z ∈ [g(O1), g(O2)], λe(z) = λ}}, λ ≥ λ1,

(16)
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z2(λ) =

{
g(O2), 0 < λ < λ2,
max{g(O1),max{z : z ∈ [g(O1), g(O2)], λh(z) = λ}}, λ ≥ λ2.

(17)

Let λ∗ = inf{λ : z1(λ) ≥ z2(λ)}. Assume that the functions z1 and z2 are continuous
at λ∗. Let z∗ = z1(λ∗) = z2(λ∗). Let u1(λ) = min(z1(λ), z∗) and u2(λ) = max(z2(λ), z∗).
On Figure 1, the graphs of u1 and u2 are denoted by the thick and the dotted lines,
respectively.

The asymptotics of uε(T ε(λ), x) is described by the following theorem.

Theorem 3.1. Let the above assumptions be satisfied. Suppose that the function u1(λ) is
continuous at a point λ ∈ (0,∞). Then for every δ > 0 the following limit

lim
ε↓0

uε(T ε(λ), x) = u1(λ)

is uniform in x ∈ Dδ
1. Suppose that the function u2(λ) is continuous at a point λ ∈ (0,∞).

Then for every δ > 0 the following limit

lim
ε↓0

uε(T ε(λ), x) = u2(λ)

is uniform in x ∈ Dδ
2.

Before we proceed with the proof of the theorem, let us briefly discuss Figure 1.
Observe that there are several “special” time scales, where the behavior of the functions
u1(λ) and u2(λ) changes qualitatively. Namely, these functions are constants (equal to
g(O1) and g(O2), respectively) for small values of λ. By drawing the vertical segment
through the point (g(O1), 0) in the (z, λ) plane till the intersection with the graph of λe,
we locate the time scale λ1. After the time scale λ1, the function u1 is just the inverse of
the function λe for a certain range of values of λ. (The time scale λ2 plays the same role
for the function u2.) Then, after λ∗, which corresponds to the intersection of the graphs
of λe and λh, the functions u1(λ) and u2(λ) become constant again. Note that there is
also a point of discontinuity for u1(λ), which corresponds to a local maximum of λe.

In the general case (more than two equilibriums) we’ll encounter several type of special
time scales. In particular, some will correspond to the intersections of vertical lines going
through (g(Oi), 0) with the graphs of λe, others will correspond to intersection points
between λe and λh, yet others will correspond to local maxima of λe for some e (and there
will be other special time scales that are not found in this example).

Proof of Theorem 3.1. Let us show that if z1 is continuous at λ, then

lim sup
ε↓0

sup
x∈Dδ1

uε(T ε(λ), x) ≤ z1(λ). (18)

Similarly, if z2 is continuous at λ, then

lim inf
ε↓0

inf
x∈Dδ2

uε(T ε(λ), x) ≥ z2(λ). (19)
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Due to Lemma 2.3, in order to prove (18), it is sufficient to show that

lim sup
ε↓0

uε(T ε(λ), O1) ≤ z1(λ), (20)

Note that by Lemma 2.2 and (8) there is a positive v0 such that for every 0 < δ < v0
there is ε0 > 0 such that

|uε(T ε(λ), x)− g(Oi)| ≤ δ (21)

whenever x ∈ Dδ
i , 0 < ε ≤ ε0 and δ ≤ λ ≤ v0.

If (20) fails for a certain value of λ, then due to continuity of the functions uε(t, Oi) in
t, it follows from (21) that for an arbitrarily small δ′ > 0 there are sequences εn ↓ 0 and
λn ∈ [δ′, λ] such that

uεn(t, O1) ≤ z1(λ) + δ′, T εn(δ′) ≤ t ≤ T εn(λn)

and
uεn(T εn(λn), O1) = z1(λ) + δ′.

Take δ′′ ∈ (0, δ′) which will be specified later. Due to the continuity of uεn(t, O1) in t, we
can find a sequence µn ∈ [δ′, λn) such that

uεn(T εn(µn), O1) = z1(λ) + δ′′

and
uεn(t, O1) ∈ [z1(λ) + δ′′, z1(λ) + δ′] for t ∈ [T εn(µn), T εn(λn)]. (22)

We can express uεn(T εn(λn), O1) in terms of the process X
T εn (λn),O1,ε
s and the solution at

the earlier time T εn(µn) as follows

uεn(T εn(λn), O1) = Euεn
(
T εn(µn), X

T εn (λn),O1,εn
T εn (λn)−T εn (µn)

)
. (23)

Since z1 is continuous at λ, there are arbitrarily small δ′ > 0 such that λe(z
1(λ) + δ′) >

λe(z
1(λ)) = λ. Since λn ≤ λ, a process starting at O1 and satisfying (11) with

σσ∗(x) = a(x, uεn(T εn(λn), O1)) = a(x, z1(λ) + δ′))

will be in an arbitrarily small neighborhood of O1 at time T εn(λn)− T εn(µn) with prob-
ability which tends to one when εn ↓ 0. By Lemma 2.1, this remains true if the constant
uεn(T εn(λn), O1) is replaced by a function which is sufficiently close to this constant in
Dδ

1, where δ is sufficiently small. Therefore, due to (22) and Lemma 2.3, we can choose δ′′

sufficiently close to δ′ so that X
T εn (λn),O1,εn
T εn (λn)−T εn (µn) will be in a small neighborhood of O1 with

probability which tends to one when εn ↓ 0. With δ′ and δ′′ thus fixed, we let εn ↓ 0 in
(23). The left hand side is equal to z1(λ)+δ′, while the right hand side tends to z1(λ)+δ′′.
This leads to a contradiction which proves that (20) holds, which in turn implies that (18)
holds. The proof of (19) is completely similar.
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Note that the arguments used to prove (20) also lead to the following statement: for
each λ0 > 0

lim sup
ε↓0

sup
λ′∈[λ0,λ]

uε(T ε(λ′), O1) ≤ lim
λ′↓λ

z1(λ′), (24)

now without assuming that z1 is continuous at λ. Similarly, for each λ0 > 0

lim inf
ε↓0

inf
λ′∈[λ0,λ]

uε(T ε(λ′), O2) ≥ lim
λ′↓λ

z2(λ′). (25)

Let us show that if z1 is continuous at λ, then

lim inf
ε↓0

inf
x∈Dδ1

uε(T ε(λ), x) ≥ min(z1(λ), lim
λ′↓λ

z2(λ′)). (26)

Similarly, if z2 is continuous at λ, then

lim sup
ε↓0

sup
x∈Dδ2

uε(T ε(λ), x) ≤ max(z2(λ), lim
λ′↓λ

z1(λ′)). (27)

Due to Lemma 2.3, in order to prove (26), it is sufficient to show that

lim inf
ε↓0

uε(T ε(λ), O1) ≥ min(z1(λ), lim
λ′↓λ

z2(λ′)). (28)

If (28) fails, then for each λ0 > 0 there is δ′ > 0 and a sequence εn ↓ 0 such that

uεn(T εn(λ), O1) < z1(λ)− δ′. (29)

uεn(T εn(λ), O1) < inf
λ′∈[λ0,λ]

uεn(T εn(λ′), O2)− δ′. (30)

These two inequalities can not hold at the same time as follows from Lemma 3.11 of [4],
where an analogue of (29) is ruled out for the case of the initial-boundary value problem
with one equilibrium point inside the domain. Now the boundary condition is replaced
by the presence of the second equilibrium point, but due to (30) the proof goes through
without major modifications. We have thus justified (26), and (27) is absolutely similar.

Note that (18), (19), (26), and (27) imply the statement of the theorem for 0 < λ < λ∗.
Expressing the solution at time T ε(λ) in terms of the solution at an earlier time T ε(λ′)
(similarly to (23)), we see that if

lim inf
ε↓0

inf
x∈Dδ1

uε(T ε(λ′), x) ≤ lim sup
ε↓0

sup
x∈Dδ2

uε(T ε(λ′), x),

then
lim inf
ε↓0

inf
x∈Dδ1

uε(T ε(λ′), x) ≤ lim inf
ε↓0

inf
x∈Dδ1∪Dδ2

uε(T ε(λ), x) ≤

≤ lim sup
ε↓0

sup
x∈Dδ1∪Dδ2

uε(T ε(λ), x) ≤ lim sup
ε↓0

sup
x∈Dδ2

uε(T ε(λ′), x).

11



As follows from the definition of the functions u1(λ) and u2(λ), this allows us to extend
the result to λ ≥ λ∗.

Remark. If λ > λ∗, then u1(λ) = u2(λ) = z∗. It is possible to show that the limit

lim
ε↓0

uε(T ε(λ), x) = z∗

is uniform in (x, λ) ∈ B1/δ × [λ,∞) for each λ > λ∗, where B1/δ is the ball of radius 1/δ

centered at the origin. Therefore, for each δ > 0 and λ > λ∗ there is ε0 > 0 such that

|uε(t, x)− z∗| ≤ δ

whenever ε ∈ (0, ε0), x ∈ B1/δ and t ≥ T ε(λ).

4 General case: preliminary considerations, notations

and assumptions

We assume that there are r equilibrium points O1, ..., Or. Recall that their domains of
attraction are denoted by D1, ..., Dr. As follows from Lemma 2.3, for a fixed value of
λ > 0 and ε ↓ 0, the solution uε(T ε(λ), x) is nearly constant inside each of the domains
Di. We’ll prove that under certain assumptions there is a finite set Λ = {λ0, ..., λN} such
that there are limits

ui(λ) = lim
ε↓0

uε(T ε(λ), x), x ∈ Di, λ ∈ (0,∞) \ Λ. (31)

The functions ui are continuous on (0,∞) \ Λ and are determined by the coefficients
of the equation through the quasi-potential. They will be described inductively: first
we’ll explain how to define each ui(λ) on the interval (0, λ1), then, given the values of
limλ↑λ1 u

i(λ) for all i, we define limλ↓λ1 u
i(λ), then define ui(λ) for λ ∈ (λ1, λ2), etc. As a

by-product of our construction, we’ll see that ui(λ) does not depend on either i or λ for
λ > λN , that is the solution of the PDE tends to a constant in the appropriate time scale.

While constructing the set Λ of “special” time scales, we’ll make certain assumptions
on the coefficients of the equation. These assumptions will be satisfied in a wide range of
situations.

For a fixed value of z ∈ R, we consider the family of processes obtained from (7) by
formally setting uε to be identically equal to z. We drop the superscript corresponding to
the initial time (since the coefficients are now time-independent) and insert the superscript
z to indicate the dependence of the coefficients on the choice of the constant, denoting
the resulting process by Y z,x,ε

t . Thus

dY z,x,ε
t = b(Y z,x,ε

t )dt+ εσ(Y z,x,ε
t , z)dWt, Y z,x,ε

0 = x, (32)
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We can construct the hierarchy of cycles corresponding to Y z,x,ε
t , provided that the “next”

equilibrium point can be defined uniquely for each of the cycles. Observe that different
values of z may result, in principle, in different hierarchies of cycles. We’ll in interested
in the values of z that belong to the interval [gmin, gmax], where gmin = infx∈Rd g(x) and
gmax = supx∈Rd g(x), since it will be seen that the values of the limits in (31) also belong
to this interval.

Assumption A1. We assume that there is a finite set of points Z = {z1, ..., zK} ⊆
(gmin, gmax) such that the notion of the “next” equilibrium is defined uniquely for z ∈
[gmin, gmax]\Z and the hierarchy doesn’t change on each of the segments I1 = (gmin, z1), I2 =
(z1, z2), ..., IK+1 = (zK , gmax).

The hierarchy corresponding to a given value of z ∈ Ik will be denoted by Hk. Recall
that Hk can be viewed as a directed graph. For an edge e ∈ Hk, we define C−k (e) to be
the cycle such that e connects Ek(C−k (e)) with Nk(C−k (e)). The notation E(C) and N (C)
has been introduced in Section 1. Here we use an additional subscript k to stress that
the hierarchy corresponds to z ∈ Ik.

We define C+
k (e) to be the smallest cycle that contains e. Let λe(z) be the transition

scale along the edge e ∈ Hk for the processes Y z,x,ε
t . Let us spell out some of the assump-

tions on the functions λe(z). Since λe(z) can be expressed in terms of aij(·, z) and b(·),
these are essentially assumptions on the coefficients of the equation.

Assumption A2. We assume that if λe(z) is defined on Ik, then it can be continued
to the end-points of the segment in such a way that it is a smooth function of z for z ∈ Ik,
where Ik is the closure of Ik. We’ll assume that each λe has only a finite number of critical
points (i.e., where the derivative is zero) and that these points do not coincide with the
end-points of Ik.

We do not, however, exclude the possibility that λe is defined on both Ik and Ik+1, and
when continued to the common end point of the two segments dλe(z)/dz has two different
values (possibly of opposite signs). Later, as we consider specific cases, we’ll introduce
additional assumptions.

Changes in the Hierarchy.
It is important to understand how the quantities λe(z) behave and how the hierarchy

changes when z passes through a point zk ∈ Z. What causes a change in the hierarchy,
is that the notion of the “next” cycle, which is uniquely defined for z immediately to the
left of zk, is not unique for z = zk for one of the cycles.

Assumption A3. We assume that for each zk only one cycle gets thus affected
(possibly leading to creation or destruction of another cycle, as will be discussed below).

Let e ∈ Hk be the edge that connects Ek(C−k (e)) with Nk(C−k (e)). Let g ∈ Hk+1, g 6= e,
be the edge that connects Ek+1(C

−
k+1(g)) with Nk+1(C

−
k+1(g)), where C−k (e) = C−k+1(g).

In other words, it is the cycle C−k (e) = C−k+1(g) that gets affected by the change in the
notion of the next equilibrium when z passes through zk. Since we assumed that only one
cycle is affected by the change in the hierarchy at zk, if an edge h 6= e, g is represented in
the hierarchy Hk (or Hk+1), then it is also represented in Hk+1 (or Hk).
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Assumption A4. We assume that λh(zk) is distinct from limz↑zk λe(z) = limz↓zk λg(z)
and that λh1(zk) 6= λh2(zk) for h1 and h2 that are different from e and g.

We distinguish three ways in which a change in the hierarchy can take place.
(a) Consider the case when Nk+1(C

−
k+1(g)) ∈ C+

k (e). In this case, the only difference
betweenHk andHk+1 is thatHk+1 contains the extra edge g. ForHk+1, the edge e connects
C+
k+1(g) with Nk+1(C

+
k+1(g)). We’ll say that the hierarchy undergoes the restructuring of

the first kind at zk in this case. (See Figure 2.)

Figure 2: Restructuring of the first kind - the hierarchies Hk and Hk+1.

(b) Another possibility is that Nk+1(C
−
k+1(g)) /∈ C+

k (e), but Nk(C−k (e)) ∈ C+
k+1(g). In

this case, the only difference between Hk and Hk+1 is that Hk+1 does not contain the
edge e. For Hk, the edge g connects C+

k (e) with Nk(C+
k (e)). We’ll say that the hierarchy

undergoes the restructuring of the second kind at zk in this case. (See Figure 3.)

Figure 3: Restructuring of the second kind - the hierarchies Hk and Hk+1.

(c) Finally, it is possible that Nk+1(C
−
k+1(g)) /∈ C+

k (e) and Nk(C−k (e)) /∈ C+
k+1(g).

In this case, Hk and Hk+1 contain the same edges, but the notion of the next cycle
changes, i.e., Nk(C−k (e)) 6= Nk+1(C

−
k+1(g)). For Hk, g connects C+

k (e) with Nk(C+
k (e)).

For Hk+1, e connects C+
k+1(g) with Nk+1(C

+
k+1(g)). We’ll say that the hierarchy undergoes

the restructuring of the third kind at zk in this case. (See Figure 4.)
Observe a certain symmetry: a restructuring of the first (second) kind can be viewed

as a restructuring of the second (first) kind, respectively, as we go from Hk+1 to Hk.
A restructuring of the third kind remains a restructuring of the third kind as we go
from Hk+1 to Hk.
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Figure 4: Restructuring of the third kind - the hierarchies Hk and Hk+1.

Special time scales.
Now let us describe the set Λ of special time scales and the corresponding set Π ⊂

R× R+ of points in the (z, λ) space. We define

Λ0 = {0}, Π0 = {(g(O1), 0), ..., (g(Or), 0)}.

Assumption B1. We’ll assume that all the g(Oi) are distinct.
Let z ∈ Ik. We’ll say that z is a maximum point if there is e ∈ Hk such that the

function λe(·) has a local maximum at z. Let’s denote the set of maximum points by M .
Define

Λ1 = {λe(z) : z ∈M, λe has a local maximum at z},

Π1 = {(z, λe(z)) : z ∈M, λe has a local maximum at z}.

Assumption B2. We’ll assume that M is finite and that no two functions λe1 , λe2
have a local maximum at the same point z ∈ Ik for distinct e1, e2. We also assume that
the number of elements in Λ1 is the same as in M , i.e., no two maximum points result in
the same value of λe.

We’ll say that z ∈ Ik is an intersection point if there are e, g ∈ Hk such that λe(z) =
λg(z). Let’s denote the set of intersection points by N . Define

Λ2 = {λe(z) : z ∈ N, λe(z) = λg(z) for e 6= g},

Π2 = {(z, λe(z)) : z ∈ N, λe(z) = λg(z) for e 6= g}.

Assumption B3. We’ll assume that the set of intersection points is finite and that
each intersection point arises as an intersection of exactly two functions (i.e., there are no
triple intersections). We also assume that the number of elements in Λ2 is the same as in
N , i.e., no two intersection points result in the same value of λe.

Define

Λ3 =
K⋃
k=1

Λk
3 =

(
K⋃
k=1

{lim
z↑zk

λe(z), e ∈ Hk}

)⋃(
K⋃
k=1

{lim
z↓zk

λe(z), e ∈ Hk+1}

)
,
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i.e., Λ3 is determined by the intersections of the graphs of λe for all e with the vertical
lines given by z = zk for all k.

Assumption B4. We’ll assume that Λk1
3 and Λk2

3 don’t intersect for distinct k1 and k2.
Define

Π3 =
K⋃
k=1

{(zk, λ), λ ∈ Λk
3}.

Assumption B5. We’ll assume that Λ0, ...,Λ3 are disjoint.

The cascade of special time scales.
So far, we operated with the hierarchies Hk corresponding to the process (32) for

different values of z. The motivation is that processes of this type come up if we consider
the value of the function uε in (7) to be fixed and identically equal to z. The full picture is
somewhat more complicated. For each value of λ, the solution is approximately constant
in each of the domains Di, yet the constants may be different from one domain to another.
Moreover, at a given timescale λ, the process might or might not be able to exit a domain
Di (or a larger cycle) in time exp(λ/ε2). At each time scale, we’ll be interested in whether
the process can or can not exit a cycle, and below we’ll classify individual cycles within
the hierarchy accordingly. The time scales where this classification may change form the
“special” set that includes the union of Λ1, ...,Λ3. Besides the sets Λ1, ...,Λ3, there are
other “special” time scales that we’ll now define inductively.

Let Λ = Λ0 ∪ ... ∪ Λ3 and Π = Π0 ∪ ... ∪Π3. Let p = (z, 0) ∈ Π0. We’ll say that p is a
point of the first generation. For each point p of the first generation, we consider the ray
l that goes vertically upward in the (z, λ) plane starting at p. All the intersection points
of l with the graphs of λe (for all e) are considered points of the second generation.

Assumption B6. We assume that the vertical rays (here and in the construction
below) don’t intersect any of the graphs at a point where the tangent to the graph is
horizontal.

Let l̃ be the horizontal ray in the (z, λ) plane that starts at a point of the second
generation (intersection of l with the graph of λe) and goes in the direction where the

function λe decreases. All the other intersection points of the ray l̃ with the graphs of λg
(for all g, where λg is defined on the closure of Ik for some k) are considered the points
of the third generation. We continue the process inductively by alternating between the
vertical rays and the horizontal rays in the direction where the corresponding λe decreases
(the latter is defined due to Assumption B6). The set of points of all generations obtained
in this way will be called the cascade of points generated by p.

The definition of a cascade starting at p ∈ Π2 is the same. The cascade starting at
p ∈ Π1 ∪ Π3 is defined similarly but starting with the union of two horizontal rays.

Assumption B7. We assume that a point of a cascade can’t be obtained by follow-
ing two distinct sequences of horizontal and vertical rays originating at the same point.
Moreover, let p1 and p2 belong to two cascades or to the same cascade and let λ1 and λ2
be their projections on the λ-axis. We assume that if p1 and p2 are obtained as a result of

16



intersecting vertical rays from the same cascade with the graphs (say, λe and λg), then λ1
and λ2 are distinct. We also assume that if p1 and p2 belong to different cascades, then
λ1 and λ2 are distinct unless λ1 = λ2 = 0.

The union of cascades will be denoted by Π. The projection of Π on the λ axis
will be denoted by Λ. The set of points of Π that were obtained by intersecting the
horizontal rays with the graphs of λe will be denoted by Πh, the set of points of Π that
were obtained by intersecting the vertical rays with the graphs of λe will be denoted by
Πv. Thus Π = Π ∪ Πh ∪ Πv.

Lemma 4.1. If Assumptions A1-A4 and B1-B7 hold, then the number of points in Π is
finite.

Proof. Since the number of equilibrium points O1, ..., Or is finite, and due to Assumptions
A1, B2, and B3, the number of points in Π is finite. It is equal to the the number of
cascades, which is then also finite. Each cascade may be viewed as a tree-like graph
rooted at a point of the first generation. The edges of the graph are formed by connecting
points of k-th generation with the corresponding points of k+1-st generation via horizontal
or vertical segments. If a vertical ray emanating from a point of k-th generation does not
cross any of the graphs of λe, then the ray itself is also considered a semi-infinite edge of
the graph.

By a path we’ll mean a sequence of edges connecting a point of the first generation with
a corresponding point of the second generation, then with a point of the third generation,
etc.; the last edge of the path may be semi-infinite.

Let us show that each path terminates with a semi-infinite edge (i.e., there can’t be
paths with infinite number of edges) and that the number of paths is finite. This will
imply that the number of points in a cascade is finite since each point of a cascade belongs
to a path.

Since, by Assumption A2, the functions λe are continuous on Ik (each function is
defined on a union of some of the segments), there is a constant K such that supλe < K
for all e (the supremum is taken over the domain where λe is defined). For a point
p ∈ Π2 ∪ Π3, let Sp(δ) denote the square in the (z, λ) plane with side δ and centered at
p. By Assumptions A4 and B3, for each p = (z′, λ′) ∈ Π2 ∪ Π3 there are at most two
edges for which limz↑z′ λe(z) = λ′ and at most two edges for which limz↓z′ λe(z) = λ′. By
Assumption A2, for each p = (z′, λ′) ∈ Π2 ∪ Π3 we can take δ > 0 such that:

(a) λe(z) is monotonic on [z′ − δ/2, z′] whenever e is such that limz↑z′ λe(z) = λ′,
(b) λe(z) /∈ [λ′−δ/2, λ′+δ/2] for z ∈ [z′−δ/2, z′] whenever e is such that limz↑z′ λe(z) 6=

λ′,
(c) λe(z) is monotonic on [z′, z′ + δ/2] whenever e is such that limz↓z′ λe(z) = λ′,
(d) λe(z) /∈ [λ′−δ/2, λ′+δ/2] for z ∈ [z′, z′+δ/2] whenever e is such that limz↓z′ λe(z) 6=

λ′,
(e) Sp(δ) does not contain other points of Π2 ∪ Π3.
Since the number of points in Π2∪Π3 is finite, we can take the same δ for all p ∈ Π2∪Π3.

Moreover, since all the points of Π2 ∪ Π3 are at different heights (different values of λ),
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as follows from Assumptions B3, B4, and B5, we can choose δ sufficiently small so that
[λ′ − δ/2, λ′ + δ/2] does not overlap with [λ′′ − δ/2, λ′′ + δ/2], where λ′ and λ′′ are the
λ-coordinates of p′, p′′ ∈ Π2 ∪ Π3.

The purpose of this construction was to cut out small neighborhoods of all the points
of Π2 ∪ Π3. Since all the functions λe are continuous and intersect only at the points of
Π2 ∪ Π3, there is a positive constant κ such that a vertical edge starting outside ∪pSp(δ)
is longer than κ. Also note that a path that enters Sp(δ) will leave it after going along
at most two vertical edges due to the monotonicity of the functions λe that was a part of
our construction (see Figure 5).

Figure 5: A path passing through Sp(δ) - the dotted line represents a part of the path.

The next time the path returns to Sp(δ) (if it returns at all), it will be higher by at
least κ than when it left Sp(δ). Therefore, each path will have at most 2(1 + δ/κ) vertical
segments that intersect with Sp(δ). Let n be the number of points in Π2 ∪ Π3. Then a
path can have at most 2(1 + δ/κ)n vertical segments that intersect with ∪pSp(δ). All the
other vertical segments are longer than κ. Since supλe < K for all e, there are no vertical
segments that start above the level λ = K. Therefore the number of vertical segments in
a path is bounded from above by 2(1 + δ/κ)n+K/κ.

It is now easy to show that the total number of paths is also finite. Since there is a
finite number of functions λe and each is piece-wise monotonic, a given horizontal edge
can be followed by only a finite number of different vertical edges (not exceeding the
number of monotonicity intervals for all the functions λe, which will be denoted by L). A
given vertical edge can be followed by only a finite number of different horizontal edges
(not exceeding the number of different functions λe, which is bounded from above by L).
Therefore, the total number of paths is bounded from above by L2[2(1+δ/κ)n+K/κ], which
completes the proof.
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5 Inductive construction and the main result

Recall that Λ = {λ0, ..., λN} is the set of special time scales constructed in the previous
section. We list them in the increasing order: 0 = λ0 < ... < λN . Our main result is the
following.

Theorem 5.1. Under the above assumptions (A1-A4 and B1-B7), for each λ ∈ (0,∞)\Λ
there are limits

ui(λ) = lim
ε↓0

uε(T ε(λ), x), x ∈ Di, (33)

where the functions ui are continuous on (0,∞) \ Λ.

First, we’ll identify the limits for λ ∈ (0, λ1). In particular, we’ll get the limits
limλ↑λ1 u

i(λ), which will be denoted by ui−(λ1). Using those, we’ll determine ui+(λ1) =
limλ↓λ1 u

i(λ), which, in turn, will allow us to define the limits ui(λ) for λ ∈ (λ1, λ2). The
procedure will then continue by induction till we reach the interval (λN ,∞).

The construction below generalizes the situation with two equilibrium points con-
sidered in Section 3. Our emphasis is on providing the algorithm for constructing the
functions ui found in the left hand side of (33). The fact that the limits in (33) coincide
with the constructed functions can be justified similarly to the case of two equilibrium
points (with additional notational complications due to the induction), and so this part
of the proof will not be repeated.

Preliminary description of the graphs Gn and G∗n.
As a part of the inductive construction, we’ll need to introduce a sequence of directed

labeled graphs, G0, G1, ..., GN associated to the segments (0, λ1), (λ1, λ2),...,(λN ,∞), and
a sequence of directed labeled graphs G∗1, ..., G

∗
N associated to the points λ1, ..., λN . They

will be constructed inductively: G∗n, n = 1, ..., N , will be determined by Gn−1 and the
values of ui−(λn), while Gn will be determined by G∗n and the values of ui−(λn).

The vertices of the graphs are the equilibrium points O1, ..., Or. Each of the directed
edges will carry a label – active, engaged (to the right or to the left), or conflicted, as will
be described below.

Let λ ∈ (λn, λn+1), 0 ≤ n ≤ N , where we put λ0 = 0 and λN+1 = ∞. Assume that
ui(λ), 1 ≤ i ≤ r, have been defined. Consider the hierarchy of cycles corresponding to the
linear equation (7) with the second argument in σ replaced by ui(λ) for x ∈ Di. We can
view this hierarchy as a directed graph, which will be denoted by Gn. It will be seen that
Gn does not depend on the choice of λ ∈ (λn, λn+1). The values of ui(λ) may in general
be different for different i, and therefore the hierarchy Gn may be different from either of
the hierarchies Hk constructed earlier. The notion of a next equilibrium for some of the
cycles of the hierarchy Gn may be not correctly defined. Namely, it may happen that for
a given cycle C there are two edges e and g connecting C with the equilibria Oi and Oj

such that λe = λg, where λe and λg are the transition scales.
We define Gn to contain those edges of Gn for which λe ≤ λ. We’ll see that the

labeling of the edges (which will be done via an inductive procedure below) has the
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following properties: an edge e ∈ Gn is active if e = R(C) for some C (the edge leading
out of C), N (C) is defined uniquely and satisfies λe < λ. Edges e and g are conflicted if
e = g = R(C) (i.e., the notion of next is not uniquely defined) and λe = λg < λ. An edge
e is engaged to the right (or engaged to the left) if e = R(C), N (C) is uniquely defined,
λe = λ, and e connects Oi to Oj with ui(λ) < uj(λ) (or ui(λ) > uj(λ), respectively).

Consider an example with two equilibria corresponding to Figure 1. In that example,
there are intervals (λ0, λ1), ..., (λ4,∞) with the corresponding graphs G0,...,G4. G0 does
not contain edges. G1 contains an edge e leading from O1 to O2, which is engaged to the
right. G2 and G3 in addition to that contain an edge g leading from O2 to O1, which is
engaged to the left. Finally, both edges e and g are active for G4.

We’ll separate each graph Gn into classes of equivalence (clusters) by saying that Oi

and Oj are in the same equivalence class if they are connected by a chain of active edges
to the same equilibrium (each equilibrium is considered to be connected to itself by an
empty chain of edges). As a part of the inductive construction, we’ll see that each graph
has only three types of clusters:

(a) The only edges leading out of the points of a cluster are the active edges. In this
case we’ll say that this is a sleeping cluster. In particular, there are no edges leading out
of a sleeping cluster to a different cluster.

(b) There is one equilibrium Oi within a cluster with an engaged edge e leading out
of Oi. This edge leads to a point outside the cluster. The rest of the edges leading out of
the points of the cluster are active. The vertex Oi can be reached from any of the points
of the cluster by following a chain of active edges. In this case we’ll say that this is an
engaged cluster.

(c) There is a cycle C within a cluster such that there are two conflicted edges leading
out of C. These edges lead to two distinct points outside the cluster. The rest of the
edges leading out of the points of the cluster are active. The cycle C can be reached from
any of the points of the cluster by following a chain of active edges. In this case we’ll say
that we have a conflicted cluster.

We’ll say that a vertex Oi is subordinated to Oj if we can reach Oj from Oi by following
a chain of active edges. An example in Figure 6 shows a hypothetical graph with edges
of different types. The active edges are denoted by solid lines, conflicted edges by dotted
lines, and engaged edges by dashed lines.

Figure 6: In this graph, vertices O1, O2, O3, and O4 form a conflicted cluster, O5 and O6

are separate engaged clusters, while O7, O8, and O9 are separate sleeping clusters.
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Remark 5.2. Based on the inductive construction below, for λ ∈ (λn, λn+1) the values
ui(λ) do not depend on i for all Oi within a given cluster.

We’ll see that for a sleeping cluster ui(λ) do not depend on λ ∈ (λn, λn+1) for Oi that
belong to the cluster. Moreover, for a sleeping cluster ui(λ) is equal to the projection of
some point p ∈ (Π0 ∪ Π2 ∪ Πh) ∩ {(z, λ) : λ < λn} onto the z-axis.

For an engaged cluster, there is one equilibrium Oi within a cluster with an engaged
edge e leading out of Oi. We’ll see that λe(u

i(λ)) = λ, while uj(λ) = ui(λ) for the other
points Oj within the cluster.

For a conflicted cluster, there is a cycle C within a cluster such that there are two
conflicted edges e and g leading out of C to some vertices Oj1 and Oj2 , respectively. We’ll
see that the values of ui(λ) do not depend on λ for Oi that are within the cluster. These
values are equal to zk ∈ Z for some k, while uj1(λ) < zk < uj2(λ) for λ ∈ (λn, λn+1).
Moreover, C is a cycle in Hk for which the notion of “next” changes at z = zk.

Inductive construction.
Now we formulate the basis of the induction process. We put ui+(λ0) = g(Oi). By

Lemma 2.2, (31) holds for λ ∈ (0, δ) with the right hand side equal to g(Oi) for some
positive δ, which explains our definition of ui+(λ0). We put G0 to be the graph with the
vertices at O1, ..., Or and with no edges. It is clear that this trivial graph has all the
properties that we claimed should hold for the graphs Gn.

The inductive step will consist of three parts.
Part I. First, we define ui(λ) for λ ∈ (λn, λn+1) while assuming that we know Gn and

ui+(λn) for all i. Namely, consider first Oi such that there is an engaged edge e between
Oi and Oj with E(C) = Oi and N (C) = Oj. Assume that e is engaged to the right. It will
follow from the inductive construction of Gn that λe(z) is defined for z immediately to the
right of ui+(λn) and is strictly increasing for z ∈ (ui+(λn), ui+(λn) + δ) for some positive δ.
We can therefore define ui(λ) for λ ∈ (λn, λn + δ′) for some δ′ > 0 as the inverse function
to λe(z), z ∈ (ui+(λn), ui+(λn) + δ). Let’s examine how large δ′ can be chosen. By the
definition of the sets Λ1 and Λ3, the function λe(z) will keep increasing at least until it
reaches the value λn+1. This means that ui(λ) can be defined for λ ∈ (λn, λn+1). The
case when e is engaged to the left is only different in that we need to look at values of
λe(z) for z to the left of ui+(λn).

If there is no engaged edge starting at Oi but Oi is subordinated to Oj with an engaged
edge leading out of Oj, then we define ui(λ) = uj(λ) for λ ∈ (λn, λn+1), where the right
hand side has been defined in the previous step. When we discussed the structure of the
clusters, we noted that there is at most one such Oj for a given Oi, so this is a correct
definition.

If Oi does not have an engaged edge starting from it and is not subordinated to any
Oj with an engaged edge starting at Oj, then we define ui(λ) = ui+(λ) for λ ∈ (λn, λn+1).
To sum up this construction, the values of ui(λ) are defined to be the same within the
cluster. They depend on λ ∈ (λn, λn+1) if the cluster has a vertex with an engaged edge
coming out of it, otherwise the values ui(λ) are constant in λ ∈ (λn, λn+1) and are equal
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to ui+(λn).
Finally, we define ui−(λn+1) = limλ↑λn+1 u

i(λ) for all i. The first part of our inductive
construction is complete.

Part II. Now let’s define G∗n while assuming that we know Gn−1 and ui−(λn). The
description will depend on the type of point λn is (i.e., whether it belongs to Λ1, Λ2, Λ3,
or is obtained as a part of the cascade) and what type of an edge is affected.

Recall that Gn−1 can be separated into clusters, which will be called Γ1,Γ2, ...,ΓM .
Each sleeping cluster has no engaged edges leading out of it, each engaged cluster has one
engaged edge leading out of it, each conflicted cluster has two conflicted edges leading out
of it.

Case 1. Suppose that λn ∈ Λ1. Then we define G∗n = Gn−1.
Case 2. Now consider the case λn ∈ Λ2. This means that there is z ∈ Ik for some k

and e, g ∈ Hk such that λe(z) = λg(z), with e 6= g. Different scenarios are possible:
1) Suppose that e and g are engaged edges leading out of engaged clusters (say Γm1

and Γm2 , respectively) such that ui−(λn) = z for Oi ∈ Γm1∪Γm2 . Suppose also that e leads
to a vertex in Γm2 , while g leads to a vertex in Γm1 . Then both e and g become active for
G∗n, i.e., the clusters Γm1 and Γm2 merge forming a sleeping cluster (See Figure 7).

Figure 7: Two clusters consisting of O1, O2, O3, O4 on the one hand, and O5, O6 on the
other hand, which are engaged in Gn−1, merge to form a sleeping cluster in G∗n.

2) Suppose that everything is as above, except that e leads to a vertex in Γm2 , while g
leads to a vertex outside Γm1 . In this case only e becomes active, while g stays engaged,
i.e., the clusters merge forming an engaged cluster (See Figure 8).

Figure 8: Two clusters consisting of O1, O2, O3, O4 on the one hand, and O5, O6 on the
other hand, which are engaged in Gn−1, merge to form one engaged cluster in G∗n.
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3) Suppose that e is engaged leading out of an engaged cluster Γm, while g is an active
edge within Γm leading out of Oj. Suppose that ui−(λn) = z for Oi ∈ Γm. In this case g
becomes engaged, while the other edges are unaffected, i.e., the cluster Γm falls apart in
two engaged clusters (See Figure 9). It becomes engaged to the right if λg is increasing
at z and engaged to the left if λg is decreasing at z.

Figure 9: The cluster consisting of O1, ..., O6 breaks apart into two engaged clusters.

4) If neither of the scenarios 1)-3) takes place, then we define G∗n = Gn−1.
Case 3. Now consider the case λn ∈ Λ3. This means that there is a cycle C in the

hierarchy Hk such that the notion of “next” is not defined uniquely for it at z = zk and
(zk, λn) ∈ Π3. Let us assume that ui−(λn) = zk for the equilibria Oi within C, otherwise
we define G∗n = Gn−1. Again, we go through different scenarios in all of which we assume
that C is the cycle for which the notion of “next” changes at zk.

1) Suppose that C was a part of an engaged cluster Γ and e is the edge leading
out of C for Hk, i.e., Rk(C) = e. Let g be the edge leading out of C for Hk+1 to an
equilibrium Oj, i.e., Rk+1(C) = g, Nk+1(C) = Oj. Suppose that Γ is engaged to the right
for λ ∈ (λn−1, λn) (the case of Γ engaged to the left is treated similarly).

If uj−(λn) < zk (which implies that Oj /∈ Γ), then the cycle C together with all the
vertices subordinated to it forms a new cluster that is conflicted for G∗n. The remaining
part of the cluster Γ stays engaged to the right. The difference between Gn−1 and G∗n is
that the edge g is present in G∗n (the edges e and g are conflicted), while only e is present
in Gn−1 - either engaged or active (See Figure 10).

Figure 10: A part of an engaged cluster breaks away to form a conflicted cluster.

If uj−(λn) > zk (which implies that Oj /∈ Γ), then a new cluster forms consisting of
C and all the vertices subordinated to it. The cluster is engaged to the right via the
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edge g. The remaining part of the cluster Γ stays engaged to the right, while the edge e
disappears (See Figure 11).

Figure 11: A part of an engaged cluster breaks away to form an engaged cluster.

Suppose that uj−(λn) = zk. In this case Oj must belong to Γ as follows from the earlier
assumptions on the function λe. If g was not represented in Gn−1, then it gets added to
the cluster Γ, which remains engaged to the right for G∗n (g remains in the cluster if it
was represented in Gn−1). Whether e remains represented in G∗n depends on whether zk
corresponds to the restructuring of the first, second, or third kind. Namely, in the cases
of restructuring of the first (see Figure 12) and third (see Figure 13) kind, e remains in Γ
if and only if Oj is subordinated to C in Gn−1.

Figure 12: Restructuring of the first kind: two possible scenarios.

Figure 13: Restructuring of the third kind: two possible scenarios.

In the case of restructuring of the second kind, e is not represented in G∗n (see Fig-
ure 14).
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Figure 14: Restructuring of the second kind.

2) Suppose that C was a part of a conflicted cluster Γ. Suppose that there are two
conflicted edges e and g leading out of C to some vertices Oj1 and Oj2 , respectively, such
that uj1(λ) < zk < uj2(λ) for λ ∈ (λn−1, λn). Suppose that Oj1 belongs to a cluster Γm1

and Oj2 belongs to a cluster Γm2 for the graph Gn−1. Suppose that Γm1 is engaged to the
right via an edge h and ui−(λn) = zk for Oi ∈ Γm1 (the case when Γm2 is engaged to the
left and ui−(λn) = zk for Oi ∈ Γm2 is treated similarly).

In this case the clusters Γm1 and Γ from the graph Gn−1 become one cluster for the
graph G∗n. If h leads to a vertex within the cluster Γ, then e and h becomes active edges
within the larger cluster Γ ∪ Γm1 . The cluster Γ ∪ Γm1 becomes engaged to the right via
the edge g in the graph G∗n (See Figure 15).

Figure 15: A conflicted cluster becomes engaged.

If h leads to a vertex outside the cluster Γ, then it stays an engaged edge within the
larger cluster, g disappears, and e becomes an active edge within Γ∪Γm1 (See Figure 16).

Figure 16: A conflicted cluster becomes engaged. One of the conflicted edges disappears.

Suppose now that ui−(λn) < zk for Oi ∈ Γm1 and ui−(λn) > zk for Oi ∈ Γm2 . Suppose
also that there is a cluster Γm3 in Gn−1 that is engaged via an edge h to a vertex in Γ and
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is such that ui−(λn) = zk for Oi ∈ Γm3 . In this case the clusters Γm3 and Γ from the graph
Gn−1 become one cluster for the graph G∗n. The edge h becomes active and the cluster
Γ ∪ Γm1 is conflicted in G∗n (see Figure 17).

Figure 17: An engaged cluster gets attached to a conflicted one.

3) If neither of the scenarios 1)-2) takes place, then we define G∗n = Gn−1.
Case 4. Finally consider the case when λn was obtained as a part of a cascade.

Namely, assume that there is z ∈ Ik such that (z, λn) is obtained as the intersection of a
vertical ray with the graph of λe(z), where e is an edge represented in Hk. Suppose that
Gn−1 contains a sleeping cluster Γ such that ui−(λn) = z for Oi ∈ Γ.

1) Suppose that the edge e (represented in Hk, but not in Gn−1) leads from a vertex
in Γ to a vertex Oj. If uj−(λn) = z (in which case Oj belongs to Γ), then e is added
as an active edge, and Γ with this extra edge remains a sleeping cluster within G∗n (see
Figure 18).

Figure 18: An active edge is added to a sleeping cluster.

If uj−(λn) < z (or uj−(λn) > z), then the edge e is added as an engaged edge and Γ
becomes engaged to the left (right) in G∗n (see Figure 19).

Figure 19: A sleeping cluster becomes engaged.
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2) Suppose that Gn−1 contains a cluster Γm distinct from Γ such that ui−(λn) = z for
Oi ∈ Γm. Suppose that Γm is engaged to a vertex in Γ via an edge h. Then Γm and Γ
from the graph Gn−1 become one cluster for the graph G∗n. The edge h becomes active
and the cluster Γ ∪ Γm1 is sleeping in G∗n (see Figure 20).

Figure 20: An engaged cluster gets attached to a sleeping one.

3) If neither of the scenarios 1)-2) takes place, then we define G∗n = Gn−1.
Part III. Now let’s define Gn and ui+(λn) while assuming that we know G∗n and

ui−(λn). Let Γ be a cluster within G∗n such that ui−(λn) = z∗ for Oi ∈ Γ. Suppose that Γ
is engaged via an edge e.

From our construction above it follows that G∗n contains at most once such cluster
Γ with the following property: either Γ is engaged to the right and λe(z) < λn for
z ∈ (z∗, z∗ + δ) for some positive δ or Γ is engaged to the left and λe(z) < λn for
z ∈ (z∗ − δ, z∗) for some positive δ. In this case we’ll say that Γ is a “special” cluster. If
G∗n does not contain a special cluster, then we define Gn = G∗n and ui+(λn) = ui−(λn) for
all i.

Assume that G∗n contains a special cluster and that it is engaged to the right (the case
when it is engaged to the left is treated similarly). Let us project the set Π on z-axis and
list those of the points of the projection that are to the right of z∗ in the increasing order,
denoting them by z1, ..., zL.

We’ll describe the transition from G∗n to Gn using a two-part induction procedure, the
first part being induction on l = 1, ..., L (the second part of the induction will be explained
below). At each step of induction we’ll have a new “transitional” graph separated into
clusters - the first graph will coincide with G∗n and the last one will coincide with Gn. For
each cluster Γ within a transitional graph, we’ll define the value u(Γ). The first set of
values u(Γ) is just ui−(λn) for Oi ∈ Γ.

Let Γ now denote the special cluster within G∗n. At the fist step of induction we
change the value of u(Γ) to z1. We need to examine the following scenarios to describe
the transitional graph that replaces G∗n.

1) The special cluster Γ merges with a previously engaged cluster Γm to form a sleeping
cluster. Namely, suppose that G∗n contains an engaged cluster Γm with u(Γm) = z1 such
that Γm is engaged to a vertex in Γ via an edge h. Suppose that e leads to a vertex in
Γm. Then Γm and Γ form one sleeping cluster in the transitional graph and the edges e
and h become active in this cluster. The new cluster does not have the “special” property
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(it is not even engaged). The situation can be illustrated by Figure 7, in which Gn−1 and
G∗n need to be replaced by G∗n and ‘the new transitional graph’, respectively. The letters
above the edges also need to be adjusted to the current notations.

2) A previously engaged cluster Γm attaches to the special cluster Γ. Namely, suppose
that G∗n contains an engaged cluster Γm with u(Γm) = z1 such that Γm is engaged to
a vertex in Γ via an edge h. Suppose that e leads to a vertex in a cluster Γm1 with
u(Γm1) > z1. Then Γm and Γ form one cluster in the transitional graph and the edge h
becomes active in this cluster. This larger cluster is special for the transitional graph. Up
to notation for the edges, the situation can be illustrated by Figure 8, in which Gn−1 and
G∗n need to be replaced by G∗n and ‘the new transitional graph’, respectively.

3) The special cluster Γ merges with an engaged cluster Γm to form an engaged cluster.
Namely, suppose that G∗n contains an engaged cluster Γm with u(Γm) = z1 such that Γm is
engaged to a vertex outside Γ via an edge h. Suppose that e leads to a vertex in Γm. Then
Γm and Γ form one engaged cluster in the transitional graph, which is engaged via the
edge h. The edge e becomes active in this cluster. This situation can also be illustrated
by Figure 8, the difference from the previous case being that the resulting cluster now
doesn’t have the “special” property.

4) The special cluster Γ merges with a conflicted cluster Γm to form another special
cluster. Namely, suppose that G∗n contains a conflicted cluster Γm with u(Γm) = z1 (in
which case z1 coincides with one of the points zk) such that Γm has conflicted edges g and
h. Suppose that g leads to a vertex in Γ. Suppose that e leads to a vertex in Γm. Then
Γm and Γ form one cluster in the transitional graph, the edge h becomes engaged to the
right, while e and g become active in this cluster. The new cluster still has the “special”
property. Here, up to notation for the edges, the situation is shown in Figure 15.

If, on the other hand, e leads to a vertex outside in Γm, then Γm and Γ still form
one cluster in the transitional graph, the edge h disappears, g becomes active, and e
remains engaged to the right. The new cluster still has the “special” property. Here, up
to notation for the edges, the situation is shown in Figure 16.

5) The special cluster Γ attaches to a conflicted cluster Γm. Namely, suppose that G∗n
contains a conflicted cluster Γm with u(Γm) = z1 (in which case z1 coincides with one
of the points zk) such that Γm has conflicted edges g and h. Suppose that neither g nor
h lead to a vertex in Γ. Suppose that e leads to a vertex in Γm. Then Γm and Γ form
one conflicted cluster in the transitional graph, where the edge e becomes active. The
new cluster does not have the “special” property. Here, up to notation for the edges, the
situation is shown in Figure 17.

6) The special cluster Γ attaches to a sleeping cluster Γm. Namely, suppose that G∗n
contains a sleeping cluster Γm with u(Γm) = z1. Suppose that e leads to a vertex in
Γm. Then Γm and Γ form one sleeping cluster in the transitional graph and the edge e
becomes active in this cluster. The new cluster does not have the “special” property. Up
to notation for the edges, this situation is shown in Figure 20.

7) An edge within the special cluster Γ becomes engaged instead of active or Γ itself
loses the special property. Namely, suppose that Γ contains a vertex Oi such that an edge
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g leading out of it (whether active or engaged) has the property that λg(z1) = λn. Then
Oj and all the vertices of Γ subordinated to it form a new cluster that is engaged to the
right via the edge g but is not special. The remaining part of Γ (if it is non-empty) forms
an engaged special cluster in the transitional graph. Up to notation for the edges, this
situation is shown in Figure 9.

8) The notion of “next” changes for the special cluster Γ or its sub cluster. Namely,
suppose that z1 coincides with one of the points zk. Suppose that Γ contains a cycle C
that is present in both Hk and Hk+1 for which the notion of “next” changes at zk.

Suppose that e′ is the edge leading out of C for Hk, i.e., Rk(C) = e′. Let g be the
edge leading out of C for Hk+1 to an equilibrium Oj, i.e., Rk+1(C) = g, Nk+1(C) = Oj.

8a) A sub cluster of Γ becomes conflicted. Namely, if Oj ∈ Γm for some Γm 6= Γ with
u(Γm) < z1, then the cycle C together with all the vertices subordinated to it forms a new
cluster that is conflicted for the transitional graph. The remaining part of the cluster Γ
stays engaged to the right. The difference between G∗n and the transitional graph is that
the edge g is present in the transitional graph (the edges e′ and g are conflicted), while
only e′ is present in G∗n. There is at most one special cluster in the transitional graph.
Up to notation for the edges, this situation is shown in Figure 10.

8b) A sub cluster of Γ breaks off to form another special cluster. Namely, if Oj ∈ Γm
for some Γm 6= Γ with u(Γm) > z1, then a new cluster forms consisting of C and all
the vertices subordinated to it. The cluster is engaged to the right via the edge g. The
remaining part of the cluster Γ stays engaged to the right, while the edge e′ disappears.
There are now up to two special clusters in the transitional graph. Up to notation for the
edges, this situation is shown in Figure 11.

8c) A sub cluster of Γ attaches to a different vertex within Γ. Namely, suppose that
Oj ∈ Γ. If g was not represented in G∗n, then it gets added to the cluster Γ, which remains
a special cluster engaged to the right for the transitional graph (g remains in the cluster
if it was represented in G∗n). Whether e′ remains represented in the transitional graph
depends on whether zk corresponds to the restructuring of the first, second, or third kind.
Namely, in the cases of restructuring of the first and third kind, e′ remains in Γ if and
only if Oj is subordinated to C in G∗n (see Figures 12 and 13). In the case of restructuring
of the second kind, e′ is not represented in the transitional graph (see Figure 14, again,
up to notation for the edges).

If neither of the scenarios described above takes place, then the transitional graph
coincides with G∗n. This completes our description of the transitional graph corresponding
to z1. Now we replace G∗n by the transitional graph. If it has no special clusters, the
inductive procedure stops. If it has one special cluster, we repeat the above construction
with z1 replaced by z2. If it has two special clusters, we repeat the construction applied
to one of the clusters with the other special cluster temporarily fixed. In this way, we
proceed from z2 to z3, etc., until we reach zL. Observe that there are no special clusters
with the value zL.

The second part of the inductive construction concerns the fact that once we reach
zL, the resulting graph may still have special clusters. The values u(Γ) for those clusters
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belong to the set {z1, ..., zL}, i.e., are to the right of z∗. We can now apply the above con-
struction to each of the clusters successively, thus making sure that a transitional graph
only has clusters with the values of u(Γ) in the set {z2, ..., zL}. Continuing by induction
on l, we can get rid of all the special clusters. The last transitional graph will be denoted
by Gn and the values u(Γ) for this graph give us ui+(λn). This concludes the inductive
construction of Gn and ui+(λn).

Now, that our inductive construction is complete, let us make an observation concern-
ing the values of ui(λ) for λ ∈ (λN ,∞).

Theorem 5.3. There is a constant u such that for each λ > λN and each x ∈ Rd there
is the limit

lim
ε↓0

uε(T ε(λ), x) = u.

Proof. If the graph GN contains an engaged cluster, then there is an equilibrium Oi within
the cluster with an engaged edge e leading out of Oi such that λe(u

i(λ)) = λ. This implies
that supλe > λN . Therefore, either λe has a local maximum that is larger than λN or
the graph of λe intersects one of the vertical lines z = zk at a point that is higher than
λN . In either of these cases, λN can’t be the maximum of the set Λ due to our definition
of the sets Λ1 and Λ3. We conclude that GN can’t contain engaged clusters. For all the
clusters that are sleeping or conflicted, the values ui(λ) do not depend on λ ∈ (λN ,∞).
Therefore, ui(λ) = ui for some constants ui.

Fix a value λ > λN , and observe that on the interval [T ε(λ),∞) the function uε

satisfies the equation that is almost linear, i.e., the diffusion matrix in (1) is close to
a(x, ui) for x ∈ Di. We can consider equation (1) on the interval [T ε(λ),∞) with initial
data that is close to ui on Di. It is not difficult to show that, as in the linear case, the
solution tends to a constant in the time scale T ε(λ) if λ is sufficiently large. This implies
that ui do not depend on i, that is ui = u and all i.

Strictly speaking, the fact that ui(λ) do not depend on i (or λ for λ > λN) implies
the statement for x ∈ ∪iDi, but then it is not difficult to extend it to x ∈ Rd \ ∪iDi since
the process X t,x,ε

s starting at such x will reach the interior of one of the domains Di in
sub-exponential time.
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