
J. Appl. Prob. 55, 701–727 (2018)
doi:10.1017/jpr.2018.46

© Applied Probability Trust 2018

MULTI-TYPE BRANCHING PROCESSES WITH
TIME-DEPENDENT BRANCHING RATES

D. DOLGOPYAT,∗ ∗∗

P. HEBBAR ∗ and

L. KORALOV,∗ Univeristy of Maryland

M. PERLMAN,∗∗∗ Stanford Univeristy

Abstract

Under mild nondegeneracy assumptions on branching rates in each generation, we
provide a criterion for almost sure extinction of a multi-type branching process with
time-dependent branching rates. We also provide a criterion for the total number of
particles (conditioned on survival and divided by the expectation of the resulting random
variable) to approach an exponential random variable as time goes to ∞.
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1. Introduction

The mathematical study of branching processes goes back to the work of Galton and Wat-
son [23] and their interest in the probabilities of the long-term survival of aristocratic family
names. Later it was realized that similar mathematical models could be used to describe the
evolution of a variety of biological populations, for example, in genetics [9]–[11], [13], and in
the study of certain chemical and nuclear reactions [14], [21]. Branching processes are central
in the study of the evolution of various populations such as bacteria, cancer cells, carriers of a
particular form of a gene, where each member of the population may die or produce offspring
independently of the rest.

The individuals involved in the process are referred to as particles. In many models, the
particles may be of different types, representing individuals with different characteristics.
For example, in epidemiology, a multi-type continuous-time Markov branching process may
be used to describe the dynamics of the spread of two types of parasite that can mutate into each
other in a common host population [6]; when modeling cancer, particles of different types may
represent cells that have accumulated a different number of mutations [8]; in physics, cosmic
ray cascades, which involve electrons producing photons and photons producing electrons, can
be modeled by a 2-type branching process [20]. In addition, a vast number of applications of
multi-type branching processes in biology can be found in [12] and [18].

In this paper we are concerned with the long-time behavior of multi-type branching processes
with time-dependent branching rates. We stress that the temporal inhomogeneity is due to the
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702 D. DOLGOPYAT ET AL.

dependence of the branching rates over time (this dependence may model a varying environment
for the entire process) and not on the age of the particles (which is a well-studied model).
We believe that the methods presented in this paper could be used to handle more general
models such as those where, in addition to time dependence, the branching rate may depend
on the age of the particles and/or on their spatial location if the spatial motion in a bounded
domain is allowed. This may be the subject of future work.

For multi-type processes with constant branching rates, according to classical results (see
[2, Chapter 5] and the references therein), three different cases can be distinguished.

The supercritical case. The expectation of the total population size grows exponentially,
and the total population grows exponentially with positive probability as time goes to ∞.

The subcritical case. The expectation of the total population size decays exponentially,
and the population goes extinct with overwhelming probability, that is, the probability that the
population at time n is nonzero decays exponentially in n.

The critical case. The population also goes extinct, but the expectation of the total population
size remains bounded away from 0 and ∞, and the probability of survival decays as c/n for
some c > 0. Moreover, after conditioning on survival, the size of the population divided by its
expectation tends to an exponential random variable.

Whether the process is supercritical, subcritical, or critical, can be easily determined by
examining the (constant) branching rates.

The question we address in the case of time-dependent branching rates is how to distinguish
between different kinds of asymptotic behavior of the process based on the behavior of the
branching rates. Our first result yields a criterion for almost sure extinction of the process in
terms of the asymptotic behavior of the branching rates, under mild nondegeneracy assumptions
on the branching rates at each time step. In the case of single-type branching processes, a similar
result was obtained by Agresti [1]. An earlier partial result in this direction (for single-type
branching processes) was obtained by Jagers [15], who also provided a sufficient condition
for the exponential limit (in distribution) of the size of the population (after conditioning
on survival and dividing by the expectation of the resulting random variable). For single-
type branching processes, a necessary and sufficient condition for exponential distribution
of the particle number conditioned on survival in terms of the branching rates was obtained
independently in [3] and [17]. Our second result yields a necessary and sufficient condition for
the existence of such an exponential limit in the case of multi-type branching processes.

Based on our results, it is natural to classify all the branching processes with time-dependent
branching rates (under the nondegeneracy assumptions) into three categories, based on their
asymptotic behavior.

• Processes in the first category (which includes super-critical processes with time-indepen-
dent rates) are distinguished by a positive probability of survival for infinite time.

• Processes in the second category (which includes critical processes with time-independent
rates) become extinct with probability 1, and the size of the population, after conditioning
on survival and normalization, tends to the exponential limit.

• Processes in the third category (which includes sub-critical processes with time-indepen-
dent rates) become extinct with probability 1, but do not have the exponential limit.

It should be stressed that, in contrast to the case of time-independent rates (when the expected
population size either grows exponentially, decays exponentially, or is asymptotically constant),
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Multi-type branching processes 703

now the expected population size may fluctuate greatly in each of the cases, which makes the
analysis more complicated.

We also remark that some of the classical results on the asymptotic behavior of branching
processes in the time-independent case carry over to the case at hand, while others do not.
For example, in the time-independent case, super-critical processes have the property that the
process normalized by the expected population size tends to a random limit. An analogue of
this statement still holds in the case of time-dependent branching rates, as follows from the
results of [16]. Further results on Lp and almost sure convergence, including those in the case
of countably many particle types, can be found in [4]. Sufficient conditions for the continuity
of the limiting distribution function were stated in [7].

On the other hand, in the time-independent case, a subcritical process conditioned on survival
tends to a random limit. Now, our processes in the third category do not necessarily have this
property (for example, the population, conditioned on survival, may grow along a subsequence).
A more detailed analysis of the near-critical behavior of processes with time-dependent rates
will be the subject of a subsequent paper.

In the next section we introduce the relevant notation and formulate the main results.
The proofs are presented in Sections 3 and 4. In Section 5 we briefly discuss an application of
our results to the case of continuous-time branching.

2. Notation and statement of main results

Let S = {1, . . . , d} be the set of possible particles types. Suppose that, for each i ∈ S and
n ≥ 0, there is a distribution Pn(i, ·) on Z

d+. For a = (a1, . . . , ad) ∈ Z
d+, Pn(i, a) represents

the probability that a particle of type i that is alive at time n is replaced in the next generation
by a1 + · · · + ad particles: a1 particles of type 1, a2 particles of type 2, and so on. A d-type
branching process {Zn} is obtained by starting with a positive finite number of particles at
time 0, and then replacing each particle of each type i, i ∈ S, that is alive at time n, n ≥ 0,
by particles of various types according to the distribution Pn(i, ·) independently of the other
particles alive at time n and of the past, thus obtaining the population at time n + 1.

We write Zn = (Zn(1), . . . , Zn(d)), where Zn(i) is the number of particles of type i at
time n. When the initial population consists of one particle of type j , we may write jZn(i)

to represent the number of particles of type i at time n. Thus, E(jZn(i)) means the same as
E(Zn(i) | Z0 = ej ), where ej is the unit vector in the j th direction. Let jXn denote a generic
random vector with distribution Pn(j, ·).

For s = (s1, . . . , sd) ∈ [0, 1]d , let

f
j
n (s) = E

( d∏
i=1

s
Zn(i)
i

∣∣∣∣ Z0 = ej

)
, g

j
n(s) = E

( d∏
i=1

s
Zn+1(i)

i

∣∣∣∣ Zn = ej

)
.

At times, we may drop the superscript from either of those expressions, and then fn(s) and
gn(s) become vectors. Note that

fn(s) = fn−1(gn−1(s)) = (g0 ◦ g1 ◦ · · · ◦ gn−1)(s), fn(1) = 1,

where 1 = (1, . . . , 1). We also define

fk,n(s) = (gk ◦ · · · ◦ gn−1)(s).
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704 D. DOLGOPYAT ET AL.

Thus, f0,n = fn. Denote

Mn(j, i) = ∂f
j
n

∂si
(1) = E(Zn(i) | Z0 = ej ),

An(j, i) = ∂g
j
n

∂si
(1) = E(Zn+1(i) | Zn = ej ),

Then
Mn = A0, . . . , An−1,

where An and Mn are viewed as matrices. We also define

Mk,n = Ak, . . . , An−1.

Let ‖ · ‖ denote the following norm of a d-dimensional vector: ‖v‖ = |v1| + · · · + |vd |.
We will use certain nondegeneracy assumptions on the distribution of descendants at each step.
We assume that there are ε0, K0 > 0 such that for all i, j ∈ S, the following bounds hold:

(A1) P(Zn+1(i) ≥ 2 | Zn = ej ) ≥ ε0;

(A2) P(Zn+1 = 0 | Zn = ej ) ≥ ε0, where 0 = (0, 0, . . . , 0) ∈ R
d ;

(A3) E(‖Zn+1‖2 | Zn = ej ) ≤ K0.

The following proposition is a generalization of the Perron–Frobenius theorem to the case
when the positive matrices forming a product are allowed to be distinct.

Proposition 2.1. Under assumptions (A1) and (A3), there are two sequences of vectors vn, un ∈
R

d , n ≥ 0, such that

(a) ‖un‖ = ‖vn‖ = 1;

(b) vn(i), un(i) ≥ ε̄ for some ε̄ > 0 and all n ≥ 0, i ∈ S;

(c) there are sequences of positive numbers λn and λ̃n, and a positive constant a such that
λn, λ̃n ∈ (a−1, a) for n ≥ 0 and

An−1vn = λn−1vn−1, A	
n−1un−1 = λ̃n−1un;

(d) for each δ > 0, there is a k′ ∈ N such that

(1 − δ)vn ≤ Mn,n+kv

‖Mn,n+kv‖ ≤ (1 + δ)vn, (1 − δ)un+k ≤ M	
n,n+ku

‖M	
n,n+ku‖ ≤ (1 + δ)un+k

whenever k ≥ k′, v and u are nonzero vectors with nonnegative components, and the
inequality between vectors is understood as the inequality between their components;

(e) there is a K > 0 such that if we define �n = ∏n−1
i=0 λi and �̃n = ∏n−1

i=0 λ̃i , then

1

K
≤ �n

�̃n

≤ K,
1

K
≤ Mk,n(j, i)

(�n/�k)
≤ K, j, i ∈ S.
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Multi-type branching processes 705

This proposition can be derived from, for example, the results of [22, Chapter 3]. Indeed,
from our assumptions (A1)–(A3), it follows that the matrices An have Birkhoff’s contraction
coefficient (in the terminology of [22]) uniformly bounded away from 1. This implies that the
conditions of [22, Lemma 3.4.] are fulfilled (which, in particular, implies that the family Mk,n

is weakly ergodic; see [22]). This lemma and [22, Exercise 3.5] easily imply the existence of
the vectors un and vn. Their required properties are also not difficult to establish. For the sake
of completeness we provide an independent proof in Appendix A.

Remark 2.1. The vectors vn and the numbers λn are uniquely defined by the above conditions,
as seen from the proof of the proposition. The vectors un and the numbers λ̃n will be defined
uniquely by specifying u0, which we assume to be fixed as an arbitrary vector satisfying
conditions (a) and (b).

The probabilistic meaning of the vectors un and vn is as follows. The vector un yields the
asymptotic proportions of different particles in the population provided that Zn is large (see
(4.10) and (4.11) for the precise statement). To see the meaning of vn, consider the total number
of particles at time n, z∗

n = 〈Zn, 1〉. It will be apparent from the proof of Proposition 2.1 that

lim
N→∞

E(z∗
N | Zn = u′)

E(z∗
N | Zn = u′′)

= 〈vn, u
′〉

〈vn, u′′〉 for each u′, u′′ ∈ Z
d , n ∈ Z+.

Thus, vn controls the expected future size of the population.
Our first result yields a necessary and sufficient condition for the almost sure extinction

of {Zn}.
Theorem 2.1. Under assumptions (A1)–(A3), if extinction of the process {Zn} occurs with
probability 1 for some initial population, then

∑∞
k=1(1/�k) = ∞. If

∑∞
k=1(1/�k) = ∞ then

extinction with probability 1 occurs for every initial population.

Remark 2.2. Here and below, when we talk about initial population, we mean that Z0 = u for
some deterministic vector u.

Remark 2.3. The first statement of the theorem can be deduced from the results of [16]. In fact,
the assumptions needed for the first part are weaker than our assumptions above. For example,
weak ergodicity (see [16]) is sufficient. However, the assumption that the matrices Ak are
uniformly bounded from below plays an important role in our proof of the second statement, as
well as in the proof of Theorem 2.2 below. We note that finding the least restrictive conditions
for the validity of Theorems 2.1 and 2.2 remains an interesting open problem. We refer the
reader to [17] for recent results in the case of single-type branching processes.

The next lemma easily follows from Theorem 2.1.

Lemma 2.1. Suppose assumptions (A1)–(A3) hold.

(a) Given l ≥ 0, consider the process {jZ′
n} that starts with one particle of type j alive at time

l followed by branching with the distributions Pl, Pl+1, . . . (where the distributions Pi

are used in the definition of the branching process at the start of the section). Extinction
for this process occurs with probability 1 if and only if

∑∞
k=1(1/�k) = ∞.

(b) Given l > 0, the extinction of {Zn} (or, equivalently, {jZ′
n}) occurs with probability 1 if

and only if
∑∞

k=1(1/�lk) = ∞.
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706 D. DOLGOPYAT ET AL.

Remark 2.4. The divergence of
∑∞

k=1(1/�lk) is the extinction condition for the process {Zln}
obtained by observing our process only at the moments of time that are multiples of l.

Proof of Lemma 2.1. (a) It suffices to note that
∑∞

k=1(1/�k) = ∞ if and only if∑∞
k=l+1(�l/�k) = ∞, while the latter is equivalent to the almost sure extinction of the

process {jZ′
n} by Theorem 2.1.

(b) We observe that, under assumption (A3), there exists a constant C such that for each k and
each lk ≤ n < l(k + 1), we have �lk/C ≤ �n ≤ C�lk . �

The following lemma will be derived at the end of the next section using the results
encountered in the proof of Theorem 2.1.

Lemma 2.2. Under assumptions (A1)–(A3), for each initial population of the branching pro-
cess, there is a constant C > 0 such that

�n

C
≤ E‖Zn‖ ≤ C�n, n ≥ 1, (2.1)

1

C

( n∑
k=1

1

�k

)−1

≤ P(Zn �= 0) ≤ C

( n∑
k=1

1

�k

)−1

, n ≥ 1. (2.2)

To formulate the next theorem, we will make use of the following assumptions:

(A4) the random variables ‖jXn‖2, j ∈ S, n ≥ 0, are uniformly integrable;

(A5) P(Zn �= 0) → 0 as n → ∞ (equivalently,
∑n

k=1(1/�k) → ∞, by (2.2));

(A6) E‖Zn‖/P(Zn �= 0) → ∞ as n → ∞ (equivalently, �n

∑n
k=1(1/�k) → ∞, by (2.1)

and (2.2)).

Let ζn = (ζn(1), . . . , ζn(d)) be the random vector obtained from Zn by conditioning on the
event that Zn �= 0. In other words, we treat the event Zn �= 0 as a new probability space, with
the measure P

′ obtained from the underlying measure P via P
′(A) = P(A)/P(Zn �= 0). When

we write j ζn, we mean that the initial population for the branching process is specified as ej .
We will prove the exponential limit for the multi-type random variable under the assumptions

listed above.

Theorem 2.2. Under assumptions (A1)–(A6), for each initial population of the branching
process and each vector u with positive components, we have the following limit in distribution:

〈ζn, u〉
E〈ζn, u〉

d−→ ξ as n → ∞, (2.3)

where ξ is an exponential random variable with parameter 1. Moreover, if assumptions (A1)–
(A5) are satisfied and, for some initial population, the limit in (2.3) is as specified, then
assumption (A6) is also satisfied.

We say that a process is uniformly critical if it satisfies assumptions (A1)–(A4) and there is
a constant b such that for each n, k, i, j , we have

1

b
≤ Mn,n+k(j, i) ≤ b. (2.4)
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Multi-type branching processes 707

For uniformly critical processes, �k are uniformly bounded from above and below, so

∞∑
k=1

1

�k

= ∞, lim
n→∞ �n

( n∑
k=1

1

�k

)
= ∞.

Therefore, uniformly critical processes become extinct with probability 1 and the distribution
of the appropriately scaled number of particles at time n, conditioned on survival, converges to
an exponential.

The next proposition and the subsequent lemma will be helpful for comparing our results to
those of [15]. Note that Proposition 2.2(d) can be used to show that, under (2.4) (or even under
a weaker condition (2.5)), assumption (A2) almost follows from assumption (A1) in the sense
that assumption (A2) is satisfied for an appropriate subprocess. Given l, let P̃n be the transition
probability of the process {Z̃n}, where Z̃n = Znl . That is, P̃n(i, a) represents the probability
that a particle of type i that is alive at time nl is replaced in generation (n+1)l by a1 +· · ·+ad

particles: a1 particles of type 1, a2 particles of type 2, and so on.

Proposition 2.2. (a) If Pn satisfies assumption (A1) then P̃n satisfies assumption (A1) for each l.

(b) If Pn satisfies assumption (A3) then P̃n satisfies assumption (A3) for each l.

(c) If Pn satisfies assumption (A4) then P̃n satisfies assumption (A4) for each l.

(d) If Pn satisfies assumption (A1) and there is a constant b such that, for each n, k, j,

E(|Zn+k| | Zn = ej ) ≤ b, (2.5)

then there exist l = l(ε0, b) and ε1 = ε1(ε0, b) such that, for each n and j,

P̃n(Z̃n+1 = 0 | Z̃n = ej ) ≥ ε1.

Proof. See Appendix B. �

Lemma 2.3. If {Zn} satisfies assumptions (A1) and (A4), and (2.4) holds, then extinction
happens with probability 1 and (2.3) holds.

Proof. See Section 4. �

For single-type branching processes, Lemma 2.3 is helpful in showing that our results imply
[15, Theorem 5]. In fact, the assumptions of [15, Theorem 5] (generalized to the multi-type
case) are:

• our assumption (A4);

• that (2.4) holds;

• that there is ε̄0 > 0 such that, for each n, i, j,

E(Z2
n+1(i) − Zn+1(i) | Zn = ej ) ≥ ε̄0. (2.6)

We claim that under assumption (A4), (2.6) is equivalent to assumption (A1). On the one hand,

E(Z2
n+1(i) − Zn+1(i) | Zn = ej ) ≥ 2P(Zn+1(i) ≥ 2 | Zn = ej ).
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708 D. DOLGOPYAT ET AL.

On the other hand, by assumption (A4), we can take N ≥ 2 such that

E(Z2
n+1(i) 1{Zn+1(i)≥N} | Zn = ej ) ≤ 1

2 ε̄0 for all n,

where 1{Zn+1(i)≥N} is the indicator function of the event {Zn+1(i) ≥ N}. Then

E(Z2
n+1(i) − Zn+1(i) | Zn = ej ) ≤ 1

2 ε̄0 + (N2 − N)P(Zn+1(i) ≥ 2 | Zn = ej ).

Thus, if (2.6) holds then

P(Zn+1(i) ≥ 2 | Zn = ej ) ≥ ε̄0

2(N2 − N)
,

proving that assumption (A1) is equivalent to (2.6).
The results of [15, Theorem 5] are: our Lemma 4.3 (in the single-type case) and our (2.3) (in

the single-type case). The latter holds by Lemma 2.3. We prove Lemma 4.3 in Section 4 under
assumptions (A1)–(A6). However, under assumptions (A1) and (A4), and (2.4), the conclusion
of the lemma still holds (the argument is similar to that in the proof of Lemma 2.3).

3. Survival versus extinction

Proof of Theorem 2.1. We split the proof into two parts.
Part 1:

∑∞
k=1(1/�k) < ∞ implies a positive probability of survival. Fix Z0 = ej with an

arbitrary j ∈ S. Let F n be the σ -algebra generated by the branching process {Zn} = {jZn}.
Let zn = 〈Zn, vn〉. Then

E(zn+1 | Fn) = 〈E(Zn+1 | Zn), vn+1〉 = 〈A	
n Zn, vn+1〉 = 〈Zn, Anvn+1〉 = λnzn.

Accordingly, {zn/�n} is a positive martingale, and, hence, it converges to some random
variable z∞. Now let

Dn(j1, j2) = cov(Zn(j1), Zn(j2)).

One-step analysis yields
Dn+1 = A	

n DnAn + Sn, (3.1)

where

Sn =
d∑

i=1

Mn(j, i)σ
2
n (i) and σ 2

n (j1, j2)(i) = cov(iXn(j1), iXn(j2)).

By Proposition 2.1, there exists a constant B such that ‖Sn‖ ≤ B�n, where ‖ · ‖ is a matrix
norm. Iterating (3.1), we obtain

Dn =
n−1∑
k=0

M	
k+1,nSkMk+1,n.

Hence,

‖Dn‖ ≤ B1

n−1∑
k=0

(
�n

�k+1

)2

�k ≤ B2�
2
n

n−1∑
k=0

1

�k

with some constants B1, B2.
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Multi-type branching processes 709

Thus, ‖Dn‖ ≤ B̃�2
n, and so the martingale {zn/�n} is uniformly bounded in L2. Therefore,

E(z∞) = E(z0) > 0 and, hence, P(z∞ > 0) > 0, implying that the probability of survival
of the branching process starting with a single particle of type j is positive. Therefore, the
probability of survival is positive for every initial population.

Part 2:
∑∞

k=1(1/�k) = ∞ implies that extinction occurs with probability 1. Recall that
f0,n(s) = g0(f1,n(s)) and f0,n(1) = g0(1) = 1. Determining the asymptotic behavior
of 〈1 − f0,n(s), u0〉 will be helpful for proving the theorem and also later in the proof of (4.4).
By the Taylor formula with respect to s = 1,

〈1 − f0,n(s), u0〉
= 〈Dg0(1)(1 − f1,n(s)), u0〉 − 1

2 〈(1 − f1,n(s))
	Hg0(η1,n)(1 − f1,n(s)), u0〉

= 〈A0(1 − f1,n(s)), u0〉 − 1
2 〈(1 − f1,n(s))

	Hg0(η1,n)(1 − f1,n(s)), u0〉,
where Dg0 is the gradient of g0 and η1,n = η1,n(j, s) satisfies f

j
0,n(s) ≤ η1,n ≤ 1 for each

component j ∈ S and s ∈ [0, 1]d . Here Hg0 denotes the Hessian matrix applied to each
component of the vector function g0 separately, then multiplied by vectors (1 − f1,n(s))

	 and
(1 − f1,n(s)) yielding scalars, which are then multiplied by the corresponding components
of u0 to form the scalar product. Therefore, by taking the transpose of A0,

〈1 − f0,n(s), u0〉 = 〈(1 − f1,n(s)), A
	
0 u0〉 − 1

2 〈(1 − f1,n(s))
	Hg0(η1,n)(1 − f1,n(s)), u0〉

= 〈(1 − f1,n(s)), λ̃0u1〉 − 1
2 〈(1 − f1,n(s))

	Hg0(η1,n)(1 − f1,n(s)), u0〉.
Thus, for s �= 1,

(〈1 − f0,n(s), u0〉)−1

= (〈(1 − f1,n(s)), λ̃0u1〉 − 1
2 〈(1 − f1,n(s))

	Hg0(η1,n)(1 − f1,n(s)), u0〉
)−1

= (λ̃0〈(1 − f1,n(s)), u1〉)−1
(

1 + 〈−(1 − f1,n(s))
	Hg0(η1,n)(1 − f1,n(s))/2, u0〉

λ̃0〈(1 − f1,n(s)), u1〉
)−1

= 1

λ̃0〈(1 − f1,n(s)), u1〉
+ 〈(1 − f1,n(s))

	Hg0(η1,n)(1 − f1,n(s))/2, u0〉
λ̃0〈(1 − f1,n(s)), u1〉〈1 − f0,n(s), u0〉

,

where the last equality follows from the simple relation

1

a
= 1

b

(
1 − c

b

)−1

�⇒ 1

a
= 1

b
+ c

ba
.

By iterating the previous equality n times, we obtain

〈1 − f0,n(s), u0〉−1

= 1

�̃n〈1 − s, un〉
+ 1

2

n−1∑
k=0

〈(1 − fk+1,n(s))
	Hgk(ηk+1,n)(1 − fk+1,n(s)), uk〉

�̃k+1〈(1 − fk+1,n(s)), uk+1〉〈1 − fk,n(s), uk〉
, (3.2)

where f
j
k,n(s) ≤ ηk+1,n(j, s) ≤ 1 for each k ≥ 0 and j ∈ S.

Let

α(n, s) = 1

2

n−1∑
k=0

〈(1 − fk+1,n(s))
	Hgk(ηk+1,n)(1 − fk+1,n(s)), uk〉

�̃k+1〈(1 − fk+1,n(s)), uk+1〉〈1 − fk,n(s), uk〉
, (3.3)
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710 D. DOLGOPYAT ET AL.

where we note again that the dependence on s also lies in the vector ηk+1,n since the components
of ηk+1,n satisfy fk,n(s)(i) ≤ ηk+1,n(i) ≤ 1. Then (3.2) takes the form

〈1 − f0,n(s), u0〉 =
(

1

�̃n〈1 − s, un〉
+ α(n, s)

)−1

. (3.4)

We will need the following lemma, the proof of which follows the proof of this theorem.
Denote

�n =
n−1∑
k=0

1

�k+1
.

These are the partial sums of the series found in Theorem 2.1, but with the index of summation
shifted in order to make the arguments below more transparent.

Lemma 3.1. Under assumptions (A1)–(A3), there exists C > 1 such that for each n and each
s ∈ [0, 1]d \ {1}, we have

1

C
≤ α(n, s)

�n

≤ C.

Using Lemma 3.1 in (3.4), we obtain

〈1 − f0,n(0), u0〉 ≤
(

1

�̃n

+ �n

C

)−1

.

Therefore,

〈1 − f0,n(0), u0〉 ≤ C

�n

.

Note that 1 − f
j
0,n(0) = P(Zn �= 0 | Z0 = ej ) for each j ∈ S and, hence, if limn→∞ �n = ∞

then
lim

n→∞ P(Zn �= 0 | Z0 = ej ) = 0.

Thus, extinction occurs with probability 1 if the initial population is ej . Therefore, since j was
arbitrary, extinction occurs with probability 1 for every initial population. �

Proof of Lemma 3.1. The statement will follow if we prove the following bounds on the
terms in the sums for α(n, s) and �n: for each 0 ≤ k ≤ n − 1 and s ∈ [0, 1]d \ {1}, we have

1

C�k+1
≤ 〈(1 − fk+1,n(s))

	Hgk(ηk+1,n)(1 − fk+1,n(s)), uk〉
�̃k+1〈(1 − fk+1,n(s)), uk+1〉〈1 − fk,n(s), uk〉

≤ C

�k+1
. (3.5)

By Proposition 2.1(e), in order to prove (3.5), it is enough to show that there exists an L > 0
such that

1

L
≤ 〈(1 − fk+1,n(s))

	Hgk(ηk+1,n)(1 − fk+1,n(s)), uk〉
〈1 − fk+1,n(s), uk+1〉〈1 − fk,n(s), uk〉 ≤ L. (3.6)

Now, we know that f
j
k,n(0) ≤ f

j
k,n(s) ≤ ηk+1,n(j) ≤ 1 for each k and j ∈ S. Also,

f
j
k,n(0) = P(Zn = 0 | Zk = ej ) ≥ ε0 for each k ≤ n − 1 and, thus, ε0 ≤ ηk+1,n(j) ≤ 1 for

each k ≤ n − 1 and j ∈ S. Thus, by assumptions (A1)–(A3), there exists a constant c1 > 0
such that for each vector ζ with nonnegative components, we have

1

c1
‖ζ‖2 ≤ 〈ζ	Hgk(ηk+1,n)ζ, uk〉 ≤ c1‖ζ‖2.
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Multi-type branching processes 711

In particular, we have

1

c1
‖1 − fk+1,n(s)‖2 ≤ 〈(1 − fk+1,n(s))

T Hgk(ηk+1,n)(1 − fk+1,n(s)), uk〉
≤ c1‖1 − fk+1,n(s)‖2. (3.7)

By Proposition 2.1, for each 0 ≤ k ≤ n − 1,

ε̄‖1 − fk,n(s)‖ ≤ 〈1 − fk,n(s), uk〉 ≤ ‖1 − fk,n(s)‖.
In order to prove (3.6), it is sufficient to prove that there exists a constant c2 > 0 such that for
each 0 ≤ k ≤ n − 1 and each s ∈ [0, 1]d \ {1},

1

c2
≤ ‖1 − fk+1,n(s)‖

‖1 − fk,n(s)‖ ≤ c2.

The first inequality, ‖1 − fk,n(s)‖ ≤ c2‖1 − fk+1,n(s)‖, follows from the fact that

‖1 − fk,n(s)‖ = ‖gk(1) − gk(fk+1,n(s))‖ ≤ c2‖1 − fk+1,n(s)‖
since gk is uniformly Lipschitz due to assumption (A3).

We observe that by assumptions (A1)–(A3), each entry of the matrix Ak is uniformly bounded
from above and below, that is, there exist positive constants r and R such that, for each i, j ∈ S,

r ≤ Ak(i, j) ≤ R.

To prove the second inequality, ‖1 − fk+1,n(s)‖ ≤ c2‖1 − fk,n(s)‖, we consider the following
two cases.

Case 1: ‖1 − fk+1,n(s)‖ ≤ rε̄d/c1. Then, from (3.7) and Proposition 2.1,

〈(1 − fk+1,n(s))
	Hgk(ηk+1,n)(1 − fk+1,n(s)), uk〉 ≤ c1‖1 − fk+1,n(s)‖2

≤ rε̄d‖1 − fk+1,n(s)‖
≤ 〈Ak(1 − fk+1,n(s)), uk〉,

and, thus, substituting the above relation into the Taylor formula,

〈1 − fk,n(s), uk〉
= 〈Ak(1 − fk+1,n(s)), uk〉 − 1

2 〈(1 − fk+1,n(s))
	Hgk(ηk+1,n)(1 − fk+1,n(s)), uk〉,

we obtain
〈1 − fk,n(s), uk〉 ≥ 1

2 〈Ak(1 − fk+1,n(s)), uk〉;
thus,

‖1 − fk,n(s)‖ ≥ 〈1 − fk,n(s), uk〉 ≥ 1
2 〈Ak(1 − fk+1,n(s)), uk〉 ≥ 1

2 rε̄‖1 − fk+1,n(s)‖.
So, for c̃2 = 2/(rε̄), we have

‖1 − fk+1,n(s)‖ ≤ c̃2‖1 − fk,n(s)‖.
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712 D. DOLGOPYAT ET AL.

Case 2: 1 − f
j
k+1,n(s) > rε̄/c1 for some j ∈ S. We want to prove that there exists a γ > 0

such that 1 − f
j
k,n(s) ≥ γ . From assumptions (A1) and (A2), for each j ∈ S,

g
j
k (s) = E

( d∏
i=1

s
Zk+1(i)

i

∣∣∣∣ Zk = ej

)
≤ (1 − ε0) + ε0s

2
j ,

and, thus, since f
j
k+1,n(s) < 1 − rε̄/c1,

f
j
k,n(s) = g

j
k (fk+1,n(s)) ≤ (1 − ε0) + ε0

(
1 − rε̄

c1

)2

< 1,

where the last inequality holds since 0 < rε̄/c1 < 1. Setting γ = ε0 − ε0(1 − rε̄/c1)
2,

we obtain
1 − f

j
k,n(s) > γ,

which is the required inequality.
So, from the two cases above, we can define c2 = max(c̃2, d/γ ) to obtain, for each 0 ≤ k ≤

n − 1 and s ∈ [0, 1]d \ {1},
‖1 − fk+1,n(s)‖ ≤ c2‖1 − fk,n(s)‖. �

Proof of Lemma 2.2. Let ū = EZ1. By assumptions (A1)–(A3), for every initial population,
there is a constant c > 0 such that c−1u1 ≤ ū ≤ cu1, where the inequality between vectors is
understood as the inequality between their components. Then, since M	

1,nū = EZn,

c−1M	
1,nu1 ≤ EZn ≤ cM	

1,nu1.

Taking the norm and using the fact that M	
1,nu1 = (�n/�1)un, we obtain (2.1).

From (3.4) with s = 0, and using the fact that 1 − f
j
0,n(0) = P(Zn �= 0 | Z0 = ej ), we

obtain
1

C

(
1

�̃n

+ α(n, s)

)−1

≤ P(jZn �= 0) ≤ C

(
1

�̃n

+ α(n, s)

)−1

.

Using Lemma 3.1 and the first estimate in Proposition 2.1(e), we obtain, for a different
constant C,

1

C

(
1

�n

+ �n

)−1

≤ P(jZn �= 0) ≤ C

(
1

�n

+ �n

)−1

.

Since this is valid for every j , we have the same inequality for an arbitrary initial population (with
a constant C that depends on the initial population). Since �n�n ≥ 1, this implies (2.2). �

4. Convergence of the process conditioned on survival

The following series will be important to our analysis:

�n = 1

2

n−1∑
k=0

1

λk�̃k+1

〈v	
k+1Hgk(1)vk+1, uk〉

〈vk+1, uk+1〉〈vk, uk〉 . (4.1)

Here H denotes the Hessian matrix. It is applied to each component of gk separately, then
multiplied by vectors v	

k+1 and vk+1 to obtain scalars, which are then multiplied by the
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Multi-type branching processes 713

corresponding components of uk to form the scalar product in the numerator. Since all terms
in the right-hand side of (4.1) are positive, the sequence �n is increasing. In each term in (4.1),
each of the factors λk, 〈v	

k+1Hgk(1)vk+1, uk〉, 〈vk+1, uk+1〉, and 〈vk, uk〉 is bounded from above
and below uniformly in k by assumptions (A1)–(A3) and Proposition 2.1. Therefore, by
Proposition 2.1, there is a positive constant C such that

1

C�k+1
≤ 1

2

1

λk�̃k+1

〈v	
k+1Hgk(1)vk+1, uk〉

〈vk+1, uk+1〉〈vk, uk〉 ≤ C

�k+1
, (4.2)

and, consequently,

�n

C
= 1

C

n−1∑
k=0

1

�k+1
≤ �n ≤ C

n−1∑
k=0

1

�k+1
= C�n.

Assumptions (A5) and (A6) can now be written as

�n → ∞, �n�n → ∞ as n → ∞. (4.3)

The proof of Theorem 2.2 will rely on the next seemingly weaker statement.

Theorem 4.1. Under assumptions (A1)–(A6), for each j ∈ S, we have the limit in distribution

〈j ζn, un〉
E〈j ζn, un〉

d−→ ξ as n → ∞,

where ξ is an exponential random variable with parameter 1.

Proof. The proof will rely on several lemmas which we formulate as needed. The proofs
of these lemmas can be found at the end of this section. It is sufficient to show convergence of
moment generating functions. That is, we want to prove that, for each � ∈ [0, ∞),

E

(
exp

(−�〈jZn, un〉P(jZn �= 0)

E(〈jZn, un〉)
) ∣∣∣∣ jZn �= 0

)
→ 1

1 + �
as n → ∞.

Define vectors s̄j such that the ith component of s̄j is

s̄j (i) = exp

(
−�un(i)P(jZn �= 0)

E(〈jZn, un〉)
)

.

Then the j th component of the vector fn(s̄j ) is equal to

f
j
n (s̄j ) = E

(
exp

(
−�〈jZn, un〉P(jZn �= 0)

E(〈jZn, un〉)
))

.

Thus, we want to show that

1 − 1 − f
j
n (s̄j )

P(jZn �= 0)
→ 1

1 + �
as n → ∞. (4.4)

In order to prove (4.4), it will be useful to study the asymptotic behavior of the sum on the
right-hand side of (3.2). We first obtain the upper and lower bounds of the sum using the upper
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714 D. DOLGOPYAT ET AL.

and lower bounds for ηk,n. Observe that Hg
j
k (s) is monotonic in s for each j since g

j
k is a

polynomial with nonnegative coefficients and Hg
j
k (s) is a matrix with entries that are mixed

second derivatives of g
j
k . Therefore, (3.2) yields

(
1

�̃n〈1 − s, un〉
+ 1

2

n−1∑
k=0

〈(1 − fk+1,n(s))
	Hgk(1)(1 − fk+1,n(s)), uk〉

�̃k+1〈(1 − fk+1,n(s)), uk+1〉〈1 − fk,n(s), uk〉
)−1

≤ 〈1 − f0,n(s), u0〉

≤
(

1

�̃n〈1 − s, un〉
+ 1

2

n−1∑
k=0

〈(1 − fk+1,n(s))
	Hgk(fk,n(s))(1 − fk+1,n(s)), uk〉

�̃k+1〈(1 − fk+1,n(s)), uk+1〉〈1 − fk,n(s), uk〉
)−1

.

(4.5)

We briefly explain the idea for the next step. Assume that K is such that n − K is large and
fk,n(s) is close to 1 for k ≤ K + 1. By formally linearizing the mappings gk , gk+1, . . . , gK ,
we write

1 − fk,n(s) ≈ AkAk+1 · · · AK(1 − fK+1,n(s)). (4.6)

We know that
vk = Ak

vk+1

λk

,

and, thus,

vk = AkAk+1 · · · AK

vK+1∏K
i=k λi

. (4.7)

Note the similarity between (4.6) and (4.7): the same product of matrices is applied, albeit
to different vectors. Proposition 2.1(d) (contractive property of the matrices) implies that the
resulting expressions will be aligned in the same direction if K − k is sufficiently large. That
is, we can replace 1 − fk,n(s) (and 1 − fk+1,n(s)) by the vectors ck,nvk (and ck+1,nvk+1) in
each of the terms in the sums in (4.5) for all k that are sufficiently far away from n, where ck,n

satisfy the relation ck,n/ck+1,n = λk . This will allow us to simplify (4.5).
Now we make the above arguments rigorous. For a given ε > 0 and a positive integer n, we

define J (n, ε) as

J (n, ε) = min{k : 1 − f i
k,n(0) > ε for some i ∈ S}.

Lemma 4.1. For each ε′ > 0, there exist a natural number K and an ε > 0 such that, for each
s ∈ [0, 1]d \ {1},

1 − fk,n(s) = ck,n(vk + δk,n), (4.8)

where δk,n and ck,n depend on s and satisfy ‖δk,n‖ ≤ ε′ and |(ck,n/ck+1,n) − λk| ≤ ε′ for each
0 ≤ k ≤ J (n, ε) − K and each n.

Note that J (n, ε) → ∞ as n → ∞ since each component of the vector 1 − fk,n(0) is

1 − f i
k,n(0) = P(Zn �= 0 | Zk = ei) and P(Zn �= 0 | Zk = ei) → 0 as → ∞

for each i and each k by Lemma 2.1.
Recall the definition of α(n, s) from (3.3).
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Multi-type branching processes 715

Lemma 4.2. Under assumptions (A1)–(A6),

lim
n→∞

α(n, s)

�n

= 1 uniformly in s ∈ [0, 1]d \ {1}.

We return to the proof of (4.4). By Lemma 4.1, when n is large, the vector 1 − fn(s) =
1 − f0,n(s) is nearly aligned to the vector v0. Thus, in (4.4) we can replace the j th component
of the vector 1 − fn(s̄j ) by

〈1 − fn(s̄j ), u0〉 〈v0, ej 〉
〈v0, u0〉 .

Therefore, in order to prove (4.4), it is sufficient to show that

1 − 〈v0, ej 〉
〈v0, u0〉P(jZn �= 0)

([
�̃n�

(
P(jZn �= 0)

E(〈jZn, un〉) + o

(
P(jZn �= 0)

E(〈jZn, un〉)
))

〈un, un〉
]−1

+ �n

)−1

→ 1

1 + �
,

where we use Lemma 4.2 to transform (3.4) and linearize 1 − s̄j . The left-hand side can be
written as

1− 〈v0, ej 〉
〈v0, u0〉P(jZn �= 0)�n

×
([

�̃n�n�

(
P(jZn �= 0)

E(〈jZn, un〉) + o

(
P(jZn �= 0)

E(〈jZn, un〉)
))

〈un, un〉
]−1

+ 1

)−1

. (4.9)

We will need the next two lemmas.

Lemma 4.3. Under assumptions (A1)–(A6),

lim
n→∞

〈v0, u0〉P(jZn �= 0)�n

〈v0, ej 〉 = 1.

Lemma 4.4. Under assumptions (A1)–(A6),

lim
n→∞ �̃n�n

P(jZn �= 0)〈un, un〉
E(〈jZn, un〉) = 1.

Applying the above two lemmas to transform the expression in (4.9), we obtain

lim
n→∞

(
1 − 〈v0, ej 〉

〈v0, u0〉P(jZn �= 0)�n

×
([

�̃n�n�
(

P(jZn �= 0)

E(〈jZn, un〉) + o

(
P(jZn �= 0)

E(〈jZn, un〉)
))

〈un, un〉
]−1

+ 1

)−1)

= 1 −
(

1

�
+ 1

)−1

= 1

1 + �
.

This completes the proof of Theorem 4.1. �

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2018.46
Downloaded from https://www.cambridge.org/core. University of Maryland College Park, on 30 Aug 2019 at 01:17:26, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jpr.2018.46
https://www.cambridge.org/core


716 D. DOLGOPYAT ET AL.

Proof of Theorem 2.2. First, let assumptions (A1)–(A6) be satisfied. Let P : v → v/‖v‖
be the projection onto the unit sphere with the convention that P (0) = 0. We claim that

lim
n→∞ ‖P (Ej ζn) − un‖ = 0, (4.10)

lim
n→∞ P(‖P (

j ζn

) − un‖ > ε) = 0 (4.11)

for each j and each ε > 0. Fix δ ∈ (0, ε). By Proposition 2.1, we can find k′ ∈ N such that

(1 − δ)un+k′ ≤ M	
n,n+k′u

‖M	
n,n+k′u‖ ≤ (1 + δ)un+k′ (4.12)

whenever u is a nonzero vector with nonnegative components. Let j ζ
k′
n be the random vector

obtained by taking j ζn as the initial population of a branching process, then branching for k′
steps using our original branching distributions Pn, . . . , Pn+k′−1 and evaluating the resulting
population. Note that j ζ

k′
n is different from j ζn+k′ , the latter can be obtained from j ζ

k′
n by

conditioning on the event of nonextinction. Since the extinction of a large initial population in
k′ steps occurs with a small probability and since, by Theorem 4.1, for each a > 0 we have
P(‖j ζn‖ > a) → 1 as n → ∞, we then obtain

lim
n→∞(P(‖P (j ζ

k′
n ) − un+k′ ‖ > ε) − P(‖P (j ζn+k′) − un+k′ ‖ > ε)) = 0.

Also note that limn→∞ (P (Ej ζ
k′
n ) − P (Ej ζn+k′)) = 0. Therefore, since δ > 0 was arbitrarily

small, (4.10) and (4.11) will follow if we show that

‖P (Ej ζ
k′
n ) − un+k′ ‖ ≤ δ for all sufficiently large n (4.13)

and
lim

n→∞ P(‖P (j ζ
k′
n ) − un+k′ ‖ > ε) = 0. (4.14)

Equation (4.13) immediately follows from (4.12). Equation (4.14) is a consequence of

lim
n→∞ P(‖P (j ζ

k′
n ) − P (Ej ζ

k′
n )‖ > ε − δ) = 0,

which can be derived from the Chebyshev inequality since, for each a > 0, we have

P(‖j ζn‖ > a) → 1 as n → ∞.

Thus, we have (4.10) and (4.11).
Next, we show that (4.10) and (4.11), along with Theorem 4.1, imply (2.3) with j ζn in place

of ζn. By Theorem 4.1, it is sufficient to show that we have the limit in probability

〈j ζn, un〉
E〈j ζn, un〉 − 〈j ζn, u〉

E〈j ζn, u〉
P−→ 0 as n → ∞. (4.15)

From (4.10), we know that

lim
n→∞(〈P (E(j ζn)), un〉 − 〈un, un〉) = 0 and lim

n→∞(〈P (E(j ζn)), u〉 − 〈un, u〉) = 0.

From (4.11), the following two limits hold in probability:

lim
n→∞(〈P (j ζn), un〉 − 〈un, un〉) = 0 and lim

n→∞(〈P (j ζn), u〉 − 〈un, u〉) = 0.
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Multi-type branching processes 717

Therefore, the right-hand side of

〈j ζn, un〉
E〈j ζn, un〉 − 〈j ζn, u〉

E〈j ζn, u〉 = ||j ζn||
||E(j ζn)||

( 〈P (j ζn), un〉
〈P (E(j ζn)), un〉 − 〈P (j ζn), u〉

〈P (E(j ζn)), u〉
)

tends to 0 in probability (the factor in the brackets tends to 0 in probability while the first factor
is bounded in L1). This justifies (4.15) and, therefore, (2.3) with j ζn in place of ζn.

If the initial population of the process {Zn} is such that we have more than one particle
at time 0, then we can consider a new process {Z′

n} for which Z′
0 = e1 and the transition

distribution P ′
0 is such that jZ

′
1 coincides in distribution with Z1. We also define P ′

n = Pn for
n ≥ 1. It is easy to see that the modified process satisfies assumptions (A1)–(A4) with possibly
different values of ε0 and K0. On the other hand, 〈ζn, u〉/E〈ζn, u〉 is equal in distribution to
〈j ζ ′

n, u〉/E〈j ζ ′
n, u〉 when n ≥ 1, and, therefore, (2.3) holds for every initial population.

Finally, suppose that assumptions (A1)–(A5) are satisfied. If assumption (A6) fails then
E‖ζn‖ = E‖Zn‖/P(Zn �= 0) is bounded along a subsequence for every initial population.
Then (2.3) does not hold since ζn is integer-valued, which yields a contradiction. �

Proof of Lemma 2.3. From Proposition 2.2, it follows that if {Zn} satisfies the assumptions
of Lemma 2.3 then there exists l such that {Z̃n} = {Znl} satisfies assumptions (A1)–(A3).
By Theorem 2.1, which can be applied due to (2.4), {Z̃n} becomes extinct almost surely.
This implies the almost sure extinction of {Zn}.

Similarly, from Theorem 2.2 (which can be applied since assumptions (A5) and (A6) are met
by the process {Znl} due to (2.4)), it follows that (2.3) holds along a subsequence nl. To show
that (2.3) holds (without restriction to a subsequence), let n = Nl+r with 0 ≤ r < l. We claim
that for every u and every 0 ≤ r < l,

lim
N→∞(

〈ζNl+r , u〉
〈ζNl, uNl〉 − �Nl+r

�Nl

〈uNl+r , u〉) = 0 in probability. (4.16)

Lemma 2.3 follows directly from (4.16) and Theorem 2.2 applied to {ZNl}. The proof of (4.16)
is similar to the proof of (4.11) and (4.15), so we leave it to the reader. �

It still remains to prove Lemmas 4.1–4.4.

Proof of Lemma 4.1. Suppose that we have (4.8) with ‖δk,n‖ ≤ ε′′, but without any assump-
tions on ck,n. Then we have, for 0 ≤ k < J(n, ε) − K ,

1 − fk,n(s) = 1 − gk(fk+1,n(s)) = Ak(1 − fk+1,n(s)) + αk,n‖1 − fk+1,n(s)‖,
where ‖αk,n‖ can be made arbitrarily small, uniformly in k, by selecting sufficiently small ε.
The latter statement about αk,n follows from the assumption that 1 − f i

k+1,n(s) ≤ ε for all i

(from definition of J (n, ε)) and the fact that

Ak(j, i) = ∂g
j
k

∂si
(1).

The uniformity in k follows from assumption (A3). Thus,

1 − fk,n(s) = Ak(ck+1,n(vk+1 + δk+1,n)) + αk,n‖1 − fk+1,n(s)‖
= ck+1,nλkvk + ck+1,nAkδk+1,n + αk,n‖1 − fk+1,n(s)‖
= ck+1,nλk(vk + α′

k,n),
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718 D. DOLGOPYAT ET AL.

where ‖α′
k,n‖ can be made arbitrarily small, uniformly in k, by selecting sufficiently small ε

and ε′′. Here we use (4.8) with k + 1 instead of k to estimate the contribution from the term
αk,n‖1 − fk+1,n(s)‖. Thus,

ck+1,nλk(vk + α′
k,n) = ck,n(vk + δk,n),

which implies that |(ck,n/ck+1,n) − λk| ≤ ε′ holds for 0 ≤ k < J(n, ε) − K , provided that ε

and ε′′ are sufficiently small. We have demonstrated, therefore, that it is sufficient to establish
(4.8) with the estimate ‖δk,n‖ ≤ ε′ only.

From Proposition 2.1(d), there exists k′ ∈ N such that
(

1 − ε′

2d

)
vk ≤ Mk,k+k′v

‖Mk,k+k′v‖ ≤
(

1 + ε′

2d

)
vk (4.17)

for each k and each nonzero vector v with nonnegative components. Since

Mk,k+k′(j, i) = ∂f
j

k,k+k′

∂si
(1),

we can linearize the mapping 1 − fk,k+k′(s) at s = 1 and find that there is ε such that

‖1 − fk,k+k′(1 − v) − Mk,k+k′v‖ ≤ ε′

2d
‖Mk,k+k′v‖

whenever 0 < ‖v‖ ≤ εd . (We have used here that Mk,k+k′ is bounded uniformly in k.)
Therefore,

Mk,k+k′v − ε′

2d
‖Mk,k+k′v‖1 ≤ 1 − fk,k+k′(1 − v) ≤ Mk,k+k′v + ε′

2d
‖Mk,k+k′v‖1.

Combined with (4.17), this yields

‖Mk,k+k′v‖
(

vk − ε′

d
1
)

≤ 1 − fk,k+k′(1 − v) ≤ ‖Mk,k+k′v‖
(

vk + ε′

d
1
)

.

Setting K = k′ + 1, we see that the last inequality can be applied to v = 1 − fk+k′,n(s),
provided that 0 ≤ k ≤ J (n, ε) − K , resulting in

ck,n

(
vk − ε′

d
1
)

≤ 1 − fk,n(s) ≤ ck,n

(
vk + ε′

d
1
)

,

which yields the desired estimate. �
Proof of Lemma 4.2. We split the difference (α(n, s)/�n) − 1 into three parts. So we want

to prove that for each σ > 0, there is ε > 0 such that
∣∣∣∣α(n, s) − α(J (n, ε) − K − 1, s)

�n

+ α(J (n, ε) − K − 1, s) − �J(n,ε)−K−1

�n

+ �J(n,ε)−K−1 − �n

�n

∣∣∣∣
≤ σ for all s and all sufficiently large n. (4.18)
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Multi-type branching processes 719

Part 1. We first estimate the middle term in (4.18). By Lemma 4.1, for each σ ′ > 0, there
exist a natural number K and ε1 > 0 such that

(1 − σ ′)ck,nvk ≤ 1 − fk,n(s) ≤ (1 + σ ′)ck,nvk for each k < J(n, ε1) − K .

By assumption (A4), ‖iXn‖2 are uniformly integrable, and, thus, the matrices Hgi
k(s), k ≥

0, i ∈ S, are equicontinuous in s. Note also that ‖Hgi
k(1)‖ ≥ c > 0 for all k ≥ 0, i ∈ S. Thus,

there exists ε2 > 0 such that the matrix norm satisfies‖Hgi
k(ηk+1,n) − Hgi

k(1)‖ < σ ′‖Hgi
k(1)‖

for each k < J(n, ε2) − K . Choosing ε = min(ε1, ε2), we see that there is a constant c̃

independent of σ ′ > 0 such that

∣∣∣∣1

2

J (n,ε)−K−1∑
k=0

〈(1 − fk+1,n(s))
	Hgk(ηk+1,n)(1 − fk+1,n(s)), uk〉

�̃k+1〈(1 − fk+1,n(s)), uk+1〉〈1 − fk,n(s), uk〉
− �J(n,ε)−K−1

∣∣∣∣
≤ c̃σ ′�J(n,ε)−K−1

≤ c̃σ ′�n.

(In essence, there a small relative error, linear in σ ′, in the factors in each of the terms of the
sum, and, thus, the total relative error is small.) By choosing σ ′ ≤ σ/3c̃, we obtain

∣∣∣∣α(J (n, ε) − K − 1, s) − �J(n,ε)−K−1

�n

∣∣∣∣ <
σ

3
.

Part 2. Now we estimate the third term in (4.18). We can assume that K and ε are fixed.
We first observe that we can obtain a relation similar to (3.2) by starting with the expression
〈1 − fJ(n,ε),n(s), uJ (n,ε)〉 instead of 〈1 − f0,n(s), u0〉. Thus, by carrying out the same steps as
used to obtain (3.2), we have

〈1 − fJ(n,ε),n(s), uJ (n,ε)〉

=
(

�̃J (n,ε)

�̃n〈1 − s, un〉

+ 1

2

n−1∑
k=J (n,ε)

�̃J (n,ε)〈(1 − fk+1,n(s))
	Hgk(ηk+1,n)(1 − fk+1,n(s)), uk〉

�̃k+1〈(1 − fk+1,n(s)), uk+1〉〈1 − fk,n(s), uk〉
)−1

= 1

�̃J (n,ε)

(
1

�̃n〈1 − s, un〉

+ 1

2

n−1∑
k=J (n,ε)

〈(1 − fk+1,n(s))
	Hgk(ηk+1,n)(1 − fk+1,n(s)), uk〉

�̃k+1〈(1 − fk+1,n(s)), uk+1〉〈1 − fk,n(s), uk〉
)−1

= 1

�̃J (n,ε)

(
1

�̃n〈1 − s, un〉
+ (α(n, s) − α(J (n, ε), s))

)−1

≤ 1

�̃J (n,ε)(α(n, s) − α(J (n, ε), s))

≤ C
1

�̃J (n,ε)(�n − �J(n,ε))
,
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720 D. DOLGOPYAT ET AL.

where the last inequality follows from (3.5) and (4.2). From here, it follows that

(�n − �J(n,ε)) ≤ C
1

�̃J (n,ε)〈1 − fJ(n,ε),n(0), uJ (n,ε)〉
≤ C

�̃J(n,ε)εε̄
.

Therefore,
�n − �J(n,ε)

�n

≤ C

�̃J(n,ε)�nεε̄
≤ C

�̃J(n,ε)�J(n,ε)εε̄
.

Since J (n, ε) → ∞ as n → ∞, by assumption (A6) (see (4.3) and Proposition 2.1(e)), we have
∣∣∣∣ C

�̃J(n,ε)�J(n,ε)εε̄

∣∣∣∣ <
σ

6
for all sufficiently large n.

Now,
�n − �J(n,ε)−K−1

�n

= �n − �J(n,ε)

�n

+ �J(n,ε) − �J(n,ε)−K−1

�n

.

For a fixed K , using assumption (A6) and the fact that J (n, ε) → ∞ as n → ∞, we see that
for all sufficiently large n and k ≥ J (n, ε) − K − 1,

∣∣∣∣ 1

�n

(
1

λk�̃k+1

〈v	
k+1Hgk(1)vk+1, uk〉

〈vk+1, uk+1〉〈vk, uk〉
)∣∣∣∣ <

σ

3(K + 1)
.

Therefore, ∣∣∣∣ 1

�n

(
1

2

J (n,ε)∑
k=J (n,ε)−K−1

1

λk�̃k+1

〈v	
k+1Hgk(1)vk+1, uk〉

〈vk+1, uk+1〉〈vk, uk〉
)∣∣∣∣ <

σ

6
.

Thus,
�J(n,ε) − �J(n,ε)−K−1

�n

<
σ

6
,

and, therefore, for all sufficiently large n, we have
∣∣∣∣�n − �J(n,ε)

�n

∣∣∣∣ <
σ

3
.

Part 3. We know that

α(n, s) − α(J (n, ε) − K − 1, s)

�n

≤ C
�n − �J(n,ε)−K−1

�n

,

and by the same arguments as above for all sufficiently large n, we have
∣∣∣∣C �n − �J(n,ε)−K−1

�n

∣∣∣∣ <
σ

3
.

By the estimates from steps 1–3 for all sufficiently large n and all s ∈ [0, 1]d \ {1}, we have
∣∣∣∣α(n, s)

�n

− 1

∣∣∣∣ < σ.

Since σ > 0 is arbitrary, the proof is complete. �
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Multi-type branching processes 721

Proof of Lemma 4.3. We know that P(jZn �= 0) = 1 − f
j
n (0), and, therefore, for a fixed

j ∈ S, by Lemma 4.1, it is sufficient to prove that

lim
n→∞(c0,n〈v0, u0〉�n) = 1, (4.19)

where c0,n is the same as in Lemma 4.1. From Lemma 4.2 and (3.4), we know that

〈1 − f0,n(s), u0〉 ∼
(

1

�̃n〈1 − s, un〉
+ �n

)−1

as n → ∞.

By substituting in s = 0 and by replacing 〈1 − f0,n(0), u0〉 by c0,n〈v0, u0〉, we obtain

lim
n→∞ c0,n〈v0, u0〉

(
1

�̃n〈1, un〉
+ �n

)
= 1.

Thus, we have

lim
n→∞ c0,n�n〈v0, u0〉

(
1

�̃n�n〈1, un〉
+ 1

)
= 1.

By assumption (A6), �̃n�n → ∞ as n → ∞, proving (4.19). �

Proof of Lemma 4.4. As in the proof of Lemma 4.3, it is sufficient to show that

lim
n→∞

c0,n�̃n�n〈v0, ej 〉〈un, un〉
E(〈jZn, un〉) = 1.

We observe that

E(〈jZn, un〉) =
d∑

i=1

E(Zn(i)un(i) | Z0 = ej )

=
d∑

i=1

un(i)E(Zn(i) | Z0 = ej )

=
d∑

i=1

un(i)Mn(j, i)

= 〈Mnun, ej 〉
= 〈un, M

T
n ej 〉.

We know that v0 = Mnvn/�n, and, thus, we want to prove that

lim
n→∞

c0,n�̃n�n〈vn, M
	
n ej 〉〈un, un〉

�n〈un, M	
n ej 〉 = 1.

By (4.19), it is sufficient to show that

lim
n→∞

�̃n〈vn, M
	
n ej 〉〈un, un〉

�n〈v0, u0〉〈un, M	
n ej 〉 = 1.
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722 D. DOLGOPYAT ET AL.

By Proposition 2.1(d), the vectors M	
n ej align with the vectors un. Therefore, it remains to

prove that
�̃n〈vn, un〉
�n〈v0, u0〉 = 1.

But this holds since

〈vn, un〉 =
〈
vn,

A	
n−1un−1

λ̃n−1

〉
=

〈
An−1vn,

un−1

λ̃n−1

〉
= λn−1

λ̃n−1
〈vn−1, un−1〉 = �n

�̃n

〈v0, u0〉,

where the last equality is obtained by iterating the previous steps n times. �

5. Continuous-time branching processes

In this section we provide an application of our results to continuous-time branching pro-
cesses. Let ρt (j), 1 ≤ j ≤ d , be continuous functions and Pt(j, ·) be transition distributions
on Z

d+ such that Pt(j, a) is continuous for each a ∈ Z
d+.

Let jXt be a random vector with values in Z
d+, whose distribution is given by Pt(j, ·).

We assume that there are ε0, K0 > 0 such that for all i, j ∈ S, the following bounds hold:

(A0′) ε0 ≤ ρt (j) ≤ K0;

(A1′) P(jXt (i) ≥ 2) ≥ ε0;

(A2′) P(jXt = 0) ≥ ε0;

(A3′) E(‖jXt‖2
) ≤ K0.

Assuming that we start with a finite number of particles and that the above bounds hold, the
transition rates ρt (j) and the transition distributions Pt(j, ·) define a continuous-time branching
process {Zt } with particles of d different types. Namely, each particle of type j alive at time t

undergoes transformation into a1 + · · · + ad particles: a1 particles of type 1, a2 particles of
type 2, and so on, during the time interval [t, t +�] with probability ρt (j)Pt (j, a)(�+o(�)).

Observe that {Zn}, n ∈ N, n ≥ 0, is a discrete-time branching process that satisfies
assumptions (A1)–(A3) (with different ε0 and K0). The fact that it satisfies assumptions (A1)
and (A2) is clear. The first moment M(t) = EZt satisfies

M ′(t) = B	(t)M(t), (5.1)

where B(t)ji = ρt (j)(E(jXt (i)) − δij ). Similarly, if E(||jXt ||p) exists and depends continu-
ously on t , then the moments of {Zt } of order p satisfy inhomogeneous linear equations, and
if E(||jXt ||p) is uniformly bounded in both t and j , then the coefficients of those equations
are uniformly bounded. In particular, assumption (A3′) implies that (A3) is satisfied, while
a bound on the third moment of ‖jXt‖ (see assumption (A4′) below) would imply that (A4)
is satisfied.

Recall that, in the notation of Section 2 applied to the process observed at integer time points,

EZn = M	
n Z0.

Therefore, from Proposition 2.1(e) for each initial population, there is a positive constant C

such that
1

C
�n ≤ ‖EZn‖ ≤ C�n.
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Multi-type branching processes 723

From (5.1), it follows that there is a positive constant c such that

1

c
‖EZn‖ ≤ ‖EZt‖ ≤ c‖EZn‖, n ≤ t ≤ n + 1.

Therefore, the condition
∑∞

k=1(1/�k) = ∞ used in Theorem 2.1 is equivalent to∫ ∞

0

1

‖EZt‖ dt = ∞. (5.2)

Thus, we have the following continuous-time analogue of Theorem 2.1.

Theorem 5.1. Under assumptions (A0′)–(A3′), if extinction of the process {Zt } occurs with
probability 1 for some initial population, then (5.2) holds. If (5.2) holds then extinction with
probability 1 occurs for every initial population.

To formulate the next theorem, we will make use of the following assumptions:

(A4′) E(‖jXt‖3
) ≤ K0 for some K0 > 0;

(A5′) P(Zt �= 0) → 0 as t → ∞;

(A6′) E‖Zt‖/P(Zt �= 0) → ∞ as t → ∞.

Note that if (A0′)–(A6′) are satisfied then (A1)–(A6) are satisfied by the discrete-time pro-
cess {Zn}. Let ζt = (ζt (1), . . . , ζt (d)) be the random vector obtained from Zt by conditioning
on the event that Zt �= 0. The following theorem is an easy consequence of Theorem 2.2.
The proof is left to the reader.

Theorem 5.2. Under (A0′)–(A6′), for each initial population of the branching process and
each vector u with positive components, we have the limit in distribution

〈ζt , u〉
E〈ζt , u〉

d−→ ξ as t → ∞, (5.3)

where ξ is an exponential random variable with parameter 1. Moreover, if (A0′)–(A5′) are
satisfied and, for some initial population, the limit in (5.3) is as specified, then (A6′) is also
satisfied.

Appendix A. Proof of Proposition 2.1

Let K be the cone of positive vectors. Given u, v ∈ K , their Hilbert metric distance is
defined by

d(u, v) = ln
β(u, v)

α(u, v)
,

where β(u, v) = maxi v(i)/u(i) and α(u, v) = mini v(i)/u(i). Note that d defines the distance
on the space of lines in K in the sense that

d(au, bv) = d(u, v), d(u, cu) = 0.

Moreover, our next estimate holds.

Lemma A.1. ([19, Lemma 1.3].) If ‖u‖ = ‖v‖ = 1 then

‖u − v‖ ≤ ed(u,v) − 1.

We will also use the next result due to Birkhoff [5].

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2018.46
Downloaded from https://www.cambridge.org/core. University of Maryland College Park, on 30 Aug 2019 at 01:17:26, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jpr.2018.46
https://www.cambridge.org/core


724 D. DOLGOPYAT ET AL.

Lemma A.2. ([5, Theorem XVI.3.3] or [19, Theorem 1.1].) If A is a linear operator that
maps K into itself so that A(K) has finite diameter � with respect to the Hilbert metric, then
for each u, v ∈ K,

d(Au, Av)

d(u, v)
≤ tanh

(
�

4

)
< 1.

Proof of Proposition 2.1. Assumptions (A1)–(A3) imply that An(K) ⊂ K̄(R), where R =√
K0/ε0 and

K̄(R) :=
{
u : u(i) > 0 for each i and max

i
u(i) ≤ R min

i
u(i)

}
.

Note that if u, v ∈ K̄(R) then multiplying these vectors by cu = (maxi u(i))−1 and cv =
(maxi v(i))−1, respectively, leads to

β(u, v) ≤ R, α(u, v) ≤ 1

R
,

and so diam(K̄(R)) ≤ 2 ln R.
Now letKk,n = Mk,nK and let Kk,n denote the set of elements ofKk,n with unit norm. Then,

for each fixed k, Kk,n is a nested sequence of compact sets, and from Lemma A.2 we see that
the diameter of Kk,n with respect to the Hilbert metric is less then (2 ln R)(tanh(ln R/2))n−k−1.
Hence, LemmaA.1 can be used to show that

⋂
n>kKk,n is a single point, which we call vk . Since

Ak−1(
⋂

n>kKk,n) = ⋂
n>k−1Kk−1,n, it follows that Ak−1vk = λk−1vk−1 for some λk−1 > 0.

Next, let u0 be an arbitrary vector with

‖u0‖ = 1, u0(i) > ε0 for each i.

Let un = M	
n u0/‖M	

n u0‖, λ̃n = ‖A	
n un‖. Note that un ∈ K̄(R).

Then {un} and {vn} satisfy Proposition 2.1(a)–(e). Indeed, Proposition 2.1(a) holds by
construction. Proposition 2.1(b) holds since, for each vector w in K̄(R) of unit norm,

min
i

w(i) ≥ maxi w(i)

R
≥ 1

dR
.

Proposition 2.1(c) holds since each entry of un(i) and vn(i) is squeezed between 1/R and 1,
while each entry of An is between ε0 and

√
K0.

We prove the first inequality of Proposition 2.1(d), the second is similar. By Lemma A.2,

d(Mn,n+kv, vn) ≤ εk := 2(ln R)
(
tanh

( 1
2 ln R

))k−1
.

Note that εk can be made as close to 0 as we wish by taking k large. By the definition of the
Hilbert metric, there is a number an,k such that

an,kvn ≤ Mn,n+kv

‖Mn,n+kv‖ ≤ an,keεk vn.

Taking the norm, we see that e−εk ≤ an,k ≤ 1. This proves Proposition 2.1(d) for k′ such that
eεk′ ≤ 1 + δ.

Next,

〈un, vn〉 =
〈
M	

k,nuk

�̃n/�̃k

, vn

〉
= 1

�̃n/�̃k

〈uk, Mk,nvn〉 = �n/�k

�̃n/�̃k

〈uk, vk〉.
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Due to Proposition 2.1(a) and (b) proved above, 〈uj , vj 〉 are uniformly bounded from above and
below, that is, ε0d ≤ 〈uj , vj 〉 ≤ 1, proving the first inequality of Proposition 2.1(e). To prove
the second inequality, we note that, by the foregoing discussion, there is a constant L such that
for each j and n, we have

1

L
vn−1 ≤ An−1ej ≤ Lvn−1.

ApplyingMk,n−1 to this inequality and using the fact thatMk,n−1vn−1 = �n−1/�kvk , we obtain

vk(i)

L
≤ Mk,n(i, j)

�n−1/�k

≤ Lvk(i).

Combining this with (b) and (c) established above, we obtain the second inequality in Propo-
sition 2.1(e). The proof is complete. �

Appendix B. Skipping generations

Proof of Proposition 2.2. (a) If assumption (A1) is satisfied then the probability to survive
till time l(n + 1) − 1 starting from a single particle at time ln is bounded from below. One
of the surviving particles will have two or more offspring of type i with probability bounded
from below.

To prove parts (b) and (c), we consider l = 2. Then the result for larger l follows similarly
by induction since particles of generation l + 1 are children of particles of generation l.

(b) It suffices to show that E((Zn+2(i; k))2 | Zn = ej ) ≤ K̄ , where Zn+2(i; k) is the number
of particles of type i at time n + 2 whose parents have type k. In other words, it suffices to
bound E(Y 2), where Y = ∑N

m=1 Xm, Xm are independent, have common distribution X, and
are independent of the random variable N , where also E(X2) ≤ K1, E(N2) ≤ K2. Note that

E(Y 2) = E(NE(X2) + ( 1
2N(N − 1)

)
(E(X))2),

which yields the desired bound.

(c) It suffices to show that the random variables Y 2
n are uniformly integrable, where Yn =∑Nn

m=1 Xm,n, Xm,n are independent, have common distribution Xn and are independent of the
random variable Nn, and X2

n, N
2
n are uniformly integrable. We have

Y 2
n = Y 2

n 1{Nn>M} +Y 2
n 1{Nn≤M} .

The expectation of the first term is equal to

E(Y 2
n 1{Nn>M}) = E

(
NnE(X2

n) 1{Nn>M} + 1
2Nn(Nn − 1) 1{Nn>M}(E(Xn))

2).
This expression can be made arbitrarily small by choosing a sufficiently large M since E(X2

n)

are uniformly bounded and N2
n are uniformly integrable. For the second term, we have

Y 2
n 1{Nn≤M} ≤

( M∑
m=1

Xm,n

)2

,

which is uniformly integrable due to the uniform integrability of X2
n.
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726 D. DOLGOPYAT ET AL.

(d) Choose l so that (
1 + 1

2ε0
)l

> b. (B.1)

It suffices to show that, for each j ,

P(jZl = 0) ≥ ε1, (B.2)

where ε1 depends only on ε0 and b.
Given j ∈ S and 0 ≤ n ≤ l, we say that (n, j) is 1-unstable if n < l and

P(Zn+1 = 0 | Zn = ej ) ≥ 1
2ε0.

Otherwise, we say that (n, j) is 1-stable.
For p > 0, we say that (n, j) is (p + 1)-unstable if it is either p-unstable or n < l − 1 and

P(Zn+1(m) = 0 for all m : (n + 1, m) is p-stable | Zn = ej ) ≥ 1
2ε0.

Otherwise, we say that (n, j) is (p + 1)-stable. For example, (n, j) is 2-unstable if it is
either 1-unstable or, with a probability that is not too small, all its children are 1-unstable.

We call l-stable pairs simply stable. A particle from generation n of type j will be called
stable if the pair (n, j) is stable. We claim that all generation 0 particles are unstable. Indeed, by
definition, each stable particle has at least one stable child with probability at least 1− 1

2ε0, and,
by assumption (A1), it has at least two stable children with probability at least ε0. Accordingly,
for each stable particle, the expected number of its stable children is at least 1 + 1

2ε0. Hence,
for (0, j) to be stable, the expected number of its (stable) descedents after l generations would
need to be greater than (1 + 1

2ε0)
l ≥ b, contradicting (2.5).

Set M = 4b/ε0. Then, from (2.5), it follows that for each j ∈ S and n ≥ 0,

P(|Zn+1| ≥ M | Zn = ej ) ≤ 1
4ε0.

Define ηp as

ηp = inf P(Zn+p = 0 | Zn = ej ),

where the infimum is taken over all (n, j) which are p-unstable. Note that

η1 ≥ 1
2ε0 and ηp ≥ 1

4ε0η
M
p−1,

where the factor 1
4ε0 represents the probability that the original particle had fewer than M chil-

dren all of which are (p − 1)-unstable and ηM
p−1 is the probability that all these children leave

no descendants after p − 1 steps. This proves (B.2) with l given by (B.1) and ε1 = ηl . �

Acknowledgements

The authors were partially supported by the National Science Foundation (NSF) through
the Research Experiences for Undergraduates at the University of Maryland (grant number
DMS-1359307). In addition, D. Dolgopyat was supported by NSF grant DMS-1362064 and
L. Koralov was supported by NSF grant DMS-1309084 and the Army Research Office (grant
number W911NF1710419).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2018.46
Downloaded from https://www.cambridge.org/core. University of Maryland College Park, on 30 Aug 2019 at 01:17:26, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jpr.2018.46
https://www.cambridge.org/core


Multi-type branching processes 727

References

[1] Agresti, A. (1975). On the extinction times of varying and random environment branching processes. J. Appl.
Prob. 12, 39–46.

[2] Athreya, K. B. and Ney, P. E. (2004). Branching Processes. Dover, Mineola, NY.
[3] Bhattacharya, N. and Perlman, M. (2017). Time inhomogeneous branching processes conditioned on

non-extinction. Preprint. Available at https://arxiv.org/abs/1703.00337.
[4] Biggins, J. D., Cohn, H. and Nerman, O. (1999). Multi-type branching in varying environment. Stoch.

Process. Appl. 83, 357–400.
[5] Birkhoff, G. (1967). Lattice Theory, 3rd edn. AMS, Providence, RI.
[6] Borovkov, K., Day, R. and Rice, T. (2013). High host density favors greater virulence: a model of parasite-host

dynamics based on multi-type branching processes. J. Math. Biol. 66, 1123–1153.
[7] Cohn, H. and Wang, Q. (2003). Multitype branching limit behavior. Ann. Appl. Prob. 13, 490–500.
[8] Durrett, R. (2015). Branching Process Models of Cancer. Springer, Cham.
[9] Fisher, R. A. (1923). On the dominance ratio. Proc. R. Soc. Edinburgh 42, 321–341.

[10] Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford University Press.
[11] Fisher, R. A. (1931). The distribution of gene ratios for rare mutations. Proc. R. Soc. Edinburgh 50, 204–219.
[12] Haccou, P., Jagers, P. and Vatutin, V. A. (2007). Branching Processes: Variation, Growth, and Extinction

of Populations. Cambridge University Press.
[13] Haldane, J. B. S. (1927). A mathematical theory of natural and artificial selection, part V: selection and

mutation. Proc. Camb. Phil. Soc. 23, 838–844.
[14] Hawkins, D. and Ulam, S. (1946). Theory of multiplicative processes I. Los Alamos Scientific Laboratory.
[15] Jagers, P. (1974). Galton-Watson processes in varying environments. J. Appl. Prob. 11, 174–178.
[16] Jones, O. D. (1997). On the convergence of multitype branching processes with varying environments. Ann.

Appl. Prob. 7, 772–801.
[17] Kersting, G. (2017). A unifying approach to branching processes in varying environments. Preprint. Available

at https://arxiv.org/abs/1703.01960.
[18] Kimmel, M. and Axelrod, D. E. (2015). Branching Processes in Biology, 2nd edn. Springer, New York.
[19] Liverani, C. (1995). Decay of correlations. Ann. Math. 142, 239–301.
[20] Mode, C. J. (1971). Multitype Branching Processes: Theory and Applications. Elsevier, New York.
[21] Semenov, N. N. (1934). Chain Reactions. Goshimizdat, Leningrad (in Russian).
[22] Seneta, E. (2006). Non-Negative Matrices and Markov Chains. Springer, New York.
[23] Watson, H. W. and Galton, F. (1875). On the probability of the extinction of families. J. R. Anthropol. Inst.

G. 4, 138–144.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2018.46
Downloaded from https://www.cambridge.org/core. University of Maryland College Park, on 30 Aug 2019 at 01:17:26, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jpr.2018.46
https://www.cambridge.org/core

	1 Introduction
	2 Notation and statement of main results
	3 Survival versus extinction
	4 Convergence of the process conditioned on survival
	5 Continuous-time branching processes
	A Proof of Proposition 2.1
	B Skipping generations
	Acknowledgements
	References

