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Abstract
In this paper we consider a diffusion process obtained as a small random 
perturbation of a dynamical system attracted to a stable equilibrium point. The 
drift and the diffusive perturbation are assumed to evolve slowly in time. We 
describe the asymptotics of the time it takes the process to exit a given domain 
and the limiting distribution of the exit point.
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Mathematics Subject Classification numbers: 60F10, 35J25, 60J60

(Some figures may appear in colour only in the online journal)

1.  Introduction and the formulation of the main result

Suppose that the state of a system is determined by a d-dimensional vector. Assume that 
without any perturbations the system is situated at a point O dR∈ , and that it is pushed back 
to O when perturbed by noise, so that the evolution of the perturbed system is described by 
the equation

X b X t X W X xd d d , .t
x

t
x

t
x

t
x d, , ,
1

,( ) ( )   Rεσ= + = ∈ε ε ε ε

Here b is a smooth vector field with an asymptotically stable equilibrium O and σ is a diffusion 
matrix. The vector field provides a repairing mechanism that returns the system close to the 
equilibrium. Observe that the initial position of the process is prescribed at time t  =  1 rather 
than the usual t  =  0 for reasons that will become clear later.

Consider a domain D such that O D∈  and all the points of D D D= ∪∂  are attracted 
to O for the unperturbed system (with 0σ≡ ). Let x,τ ε be the first time when Xt

x,ε reaches 
D∂ . This can be viewed as the life span of our system—the system ‘dies’ when Xt

x,ε exits 
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D. The asymptotics of the life span and the location of the point where Xt
x,ε exits D can be 

explicitly expressed through the action functional corresponding to the diffusion process (see 
[5]). In particular, Vlim ln E 0x

0
2 ,( )ε τ = >ε

ε
↓ , where V depends on the domain D and on the 

coefficients. The system also has the following renewal property: for every x D∈  and t( )ε , 
the distribution of tx, ( )τ ε−ε  conditioned on survival till time t( )ε  is close to the distribution 
of x,τ ε when ε is small. (More precisely, both Ex x, ,/τ τε ε and the random variable obtained 
from tx, ( )τ ε−ε  by conditioning on survival till time t( )ε  and dividing by E x,τ ε converge in 
distribution to an exponential random variable with parameter one.) This property can be 
interpreted as the lack of ageing in the system.

In certain applications, it is natural to allow the system to age. For instance, the repairing 
capabilities may degrade with time. Since in the absence of ageing the life span of the system 
is of order exp const 2( / )ε , it is natural to assume that the degradation occurs slowly, i.e. also 
at exponential time scales. We allow for two ageing mechanisms—one due to the slow evo
lution of coefficients in time and the other due to the dependence on a slowly changing random 
process. This leads us to consider the following stochastic process.

Let ξλ, 0⩾λ , be a continuous time Markov chain on the state space S  =  {1, ..., s}. We 
choose the right-continuous modification of ξλ. Consider the diffusion process

X b X t t X t W X xd , ln , d , ln , d , .t
x

t
x

t t
x

t t
x d, , 2

ln
, 2

ln 1
,

2 2( ) ( )   Rε ξ εσ ε ξ= + = ∈ε ε
ε

ε
ε

ε

Here 0ε>  is a small parameter, Wt is a Wiener process in dR , independent of ξλ. The 
coefficients b k, ,( )⋅ ⋅ , k s1 ⩽ ⩽ , and k, ,( )σ ⋅ ⋅  are assumed to be bounded, continuous, and 
Lipschitz continuous in the spatial variable (with the Lipschitz constant that doesn’t depend 
on λ). The diffusion matrix a x k a x k x k x k, , , , , , , ,ij( ) ( ( )) ( ) ( )λ λ σ λ σ λ= = ∗  is assumed to be 
uniformly positive definite. This condition is needed to make sure that the process exits a 
bounded domain in finite time and for calculating the action functional (which is relevant to 
the questions discussed below). The initial position of the process is prescribed at time t  =  1 
rather than the usual t  =  0 in order to avoid the large negative values of the logarithm inside 
the coefficients.

Let D dR⊂  be a bounded domain with smooth boundary. We assume that there is a point 
O D∈  (the equilibrium) and r, c  >  0 such that

b x k x O c x O, , , 2( ( ) ) ⩽λ − − | − |

whenever x is in the r-neighborhood of O, 0⩾λ , and k S∈ , and that

b x k n x c x D, , , , ,( ( ) ( )) ⩽   λ − ∈∂

where n(x) is the outward unit normal vector. Moreover, we assume that for each λ every 
solution of the equation x t b x t k, ,( ) ( ( ) )λ=′  that starts in D  enters the r-neighborhood of O in 
time that is shorter than c−1.

Recall that x,τ ε is the first time when Xt
x,ε reaches D∂ . We’ll be interested in the asymptotics 

of x,τ ε and the limiting distribution of X x,
x,τ
ε
ε. First, consider the following family of auxiliary 

problems. For each 0⩾λ  and k S∈ , let Yt
x k, , ,ε λ  be the solution of

Y b Y k t Y k W Y xd , , d , , d , .t
x k

t
x k

t
x k

t
x k d, , , , , , , , ,
0

, , ,( ) ( )   Rλ εσ λ= + = ∈ε λ ε λ ε λ ε λ

This is a diffusion process with time-independent coefficients, and the usual action functional 
can be defined:
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S a k b k b k t T
1

2
, , ˙ , , ˙ , , d , 0,T

k
T

i j

d
ij

t t
i

i t t
j

j t0,
,

0 , 1

( ) ( )( ( ))( ( ))   ⩾∫ ∑ϕ ϕ λ ϕ ϕ λ ϕ ϕ λ= − −λ

=

for absolutely continuous C T0, , d([ ] )Rϕ∈ , while S T
k

0,
, ( )ϕ = +∞λ  for ϕ that are not absolutely 

continuous. Here aij are the elements of the inverse matrix, that is a aij
ij

1( )= − . The quasi-
potential is defined as

V x S C T O T x xinf : 0, , , 0 , , .k

T
T
k d d,

,
0,

,( ) { ( ) ([ ] ) ( ) ( ) }  R Rϕ ϕ ϕ ϕ= ∈ = = ∈λ

ϕ

λ

Let

M V xinf .k

x D

k, , ( )=λ λ

∈∂
� (1)

Obviously, this is a continuous function of λ with values in 0,( )∞ .

Assumption 1.  We assume that the equation M k, λ=λ  has a unique solution for each k S∈ .
The solution will be denoted by mk.

Remark.  The case when the equation has finitely many solutions could also be considered 
without major additional difficulties, but would require more complicated notation.

A trivial example where assumption 1 holds is obtained by taking the coefficients b and σ 
that do not depend on λ, since M k,λ  is a positive constant for each k in this case. Similarly, the 

solution exists and is unique if M c 1kd

d
,| | < <

λ
λ  for all λ and k.

Assumption 2.  We assume that for each k S∈  the infimum in V xinfx D
m k,k ( )∈∂  is achieved 

in a single point of the boundary.
The point for which the infimum is achieved will be denoted by xk. Let I k m0,k

k{ } [ )= × , 
and = ∪ =G Ik

s
k1 . Thus G can be viewed as a union of k disjoint segments of lengths m m, ..., s1 . 

It is a subset of the larger space G S 0,[ )= × ∞�  (see figure 1). Define the following Markov 
process on G�:

Z , , 0,( )   ⩾ξ λ λ=λ λ

Figure 1.  A trajectory of the process Zλ.

M Freidlin and L Koralov﻿Nonlinearity 30 (2017) 445
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and let Z Ginf :{ }θ λ= ∉λ  be the first time when the process leaves G.
Now we can formulate the main result.

Theorem 1.1.  Under the above assumptions, for each x D∈  the distribution of ln x2 ,ε τ ε 
converges, as 0ε ↓ , to the distribution of θ. The distribution of X x,

x,τ
ε
ε converges to the  

distribution of xξθ.

Fix a number m mmax , ..., s1( )Λ>  and a right-continuous function zλ, 0,[ ]λ∈ Λ , taking val-
ues in S, with a finite number of jumps. Together with zλ, we can consider the function z ,( )λλ  
with values in G S 0,[ )= × ∞� . This can be viewed as a trajectory of the process Zλ. Given 
such a function z, we can define the process

X b X t z t X t z W X xd , ln , d , ln , d , .t
x z

t
x z

t t
x z

t t
x z d, , , , 2

ln
, , 2

ln 1
, ,

2 2( ) ( )   Rε εσ ε= + = ∈ε ε
ε

ε
ε

ε

�
(2)

This is different from the process Xx,ε in that now the trajectory of the underlying Markov 
process is considered fixed. Let x z, ,τ ε  be the first time when Xt

x z, ,ε  reaches D∂ . Let zθ  be the 
first time when z ,( )λλ  leaves G, which corresponds to the stopping time θ for the process Z. 
Observe that the probability of ξλ experiencing a jump at any of the points m m, ..., s1  is zero and 
that the number of jumps on 0,[ ]Λ  is finite with probability one. Therefore, by conditioning 
on a trajectory of the process ξλ, we see that in order to prove theorem 1.1 it suffices to prove 
the following lemma.

Lemma 1.2.  Assume that the function zλ is right-continuous with finitely many jumps at 
points , ..., k1λ λ  and that none of the jumps happens at any of the points m m, ..., s1 . Then for 
each x D∈  the distribution of ln x z2 , ,ε τ ε  converges, as 0ε ↓ , to zθ . The distribution of X x z, ,

x z, ,τ
ε
ε  

converges to xz zθ .

In the next section we gather some facts about processes with time-dependent coefficients that 
will be needed for the proof of lemma 1.2. The lemma itself will be proved in section 3. Finally, 
in section 4 we briefly discuss a situation in which the vector field b is equal to zero near D∂ .

2.  On diffusion processes with time-dependent coefficients

Before we proceed with the proof of lemma 1.2, let us briefly discuss diffusion processes 
whose coefficients are time-dependent, but are close to functions that do not depend on time. 
For T  >  0 and C T, 0, , d([ ] )Rϕ ψ∈ , we define t t, supT t T0,( ) ( ) ( )[ ]ρ ϕ ψ ϕ ψ= | − |∈ .

Let a t x,( )ε� , a x( ), be uniformly positive definite symmetric d d×  matrices whose elements 
aij
ε� , aij, are continuous in (t, x) (x in case of a) and Lipschitz continuous in x with a Lipschitz 

constant L. Assume that there are positive k and K such that

k a t x K t x, , 0, , .
i j

d

ij i j
d d2

, 1

2⩽ ( ) ⩽    ⩾ R R∑ξ ξ ξ ξ ξ| | | | ∈ ∈ε

=
�

k a x K x, , .
i j

d

ij i j
d d2

, 1

2⩽ ( ) ⩽    R R∑ξ ξ ξ ξ ξ| | | | ∈ ∈ε

=

Let σε� , σ be a square matrices such that a ( )σ σ=ε ε ε ∗� � � , a ( )σ σ= ∗. We choose σε� , σ in such a 
way that ijσ

ε�  are continuous in (t, x), while ijσ
ε�  and ijσ  are Lipschitz continuous in x. Let b t x,( )ε� , 

b x( ), be continuous vector fields, Lipschitz continuous in x with Lipschitz constant L.

M Freidlin and L Koralov﻿Nonlinearity 30 (2017) 445
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Let X t
x,∼ ε

 and X t
x,ε satisfy X X x

x x
0

,
0

,= =
∼ ε ε  and

X b t X t t X W X b X t X Wd , d , d , d d d .t
x

t
x

t
x

t t
x

t
x

t
x

t
, , , , , ,( ) ( )   ( ) ( )εσ εσ= + = +

∼ ∼ ∼ε ε ε ε ε ε ε� �

We will assume that the coefficients of the process X t
x,∼ ε

 are close to those of X t
x,ε. Namely, let 

us assume that

b t x b x a t x a xsup , , sup , ,
t x

i i
t x

ij ij
, ,d d

( ) ( ) ⩽    ( ) ( ) ⩽
( ) ( )R R R R

| − | | − |
ε ε

∈ × ∈ ×+ +
�� � �

where �  is small.
The reason to introduce these processes is that we would like to study the behavior of the 

process Xt
x z, ,ε  given by (2) on such time intervals where the coefficients do not change much 

with time. Thus it is convenient to consider a generic process whose coefficients are close to 
functions that don’t depend on time. Let S T0,  be the action functional for the processes X t

x,ε, 
that is

S a b b t T
1

2
˙ ˙ d , 0,T

T

i j

d
ij

t t
i

i t t
j

j t0,
0 , 1

( ) ( )( ( ))( ( ))   ⩾∫ ∑ϕ ϕ ϕ ϕ ϕ ϕ= − −
=

for absolutely continuous C T0, , d([ ] )Rϕ∈ , while S T0, ( )ϕ = +∞ for ϕ that are not abso-
lutely continuous. The next two lemmas show that S  serves a purpose similar to the action 

functional for the processes X t
x,∼ ε

, even though the diffusion coefficients for the process are 
time-dependent.

Lemma 2.1.  Suppose that aε� , a, b ε� , and b are as above, and positive constants k, K, and L 
are fixed. For every δ, γ and C there exist 0>�  and 00ε >  such that

X SP , expT

x
T

, 2
0,( ( ) ) ⩾ ( [ ( ) ])ρ ϕ δ ε ϕ γ< − +

∼ ε
⋅

−

for 0ε ε<  and T  >  0, C T0, , d([ ] )Rϕ∈  such that x0( )ϕ =  and T S CT0, ( )ϕ+ < .

Lemma 2.2.  Suppose that aε� , a, b ε� , and b are as above, and positive constants k, K, and L 
are fixed. For x dR∈ , T  >  0, and s 0⩾ , put

s C T x S s0, , , 0 , .d
T0,( ) { ([ ] ) ( ) ( ) ⩽ }Rϕ ϕ ϕΦ = ∈ =

For every T  >  0, 0δ> , 0γ> , and s0  >  0, there exist 0>�  and 00ε >  such that for x dR∈ , 
0 0⩽ε ε<  and s s0⩽ , we have

X s sP , exp .T

x, 2( ( ( )) ⩾ ) ⩽ ( [ ])ρ δ ε γΦ − −
∼ ε
⋅

−

Note that the choice of �  and 0ε  in the above lemmas depends on the coefficients only 
through k, K and L.

A sketch of the proof of these lemmas is provided in [2], so we’ll not replicate it here. For 
the most part, it is similar to the proof of the fact that S T0, ( )ϕ  serves as an action functional for 
the process X t

x,ε (see [1, 4]).
We next state a corollary of the above two lemmas that will be used in the paper. Define 

D x D x D: dist ,{ ( ) ⩾ }η= ∈ ∂η  and T exp 2( ) ( / )λ λ ε=ε . Let

v S C T D O T Dinf : 0, , , 0 , .
T

T
,

0,{ ( ) ([ ] ) ( ) ( ) }ϕ ϕ ϕ ϕ= ∈ = ∈∂
ϕ

M Freidlin and L Koralov﻿Nonlinearity 30 (2017) 445
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Assume that

b t x x O b x x O c x O, , , , 2( ( ) )  ( ( ) ) ⩽− − − | − |ε�

whenever x is in the r-neighborhood of O and that

b x n x c x D, , .( ( ) ( )) ⩽   − ∈∂

Moreover, we assume that every solution of the equation x t b x t( ) ( ( ))=′  that starts in D  enters 
the r-neighborhood of O in time that is shorter than c−1.

For x D∈ , let x,τ ε�  be the first time when X t
x,∼ ε

 reaches the boundary of D. ThusX
x,

x,
∼
τ
ε
ε�  is the 

location of the first exit. Let

x D v S C T D O T x: inf : 0, , , 0 , .
T

T
,

0,{ { ( ) ([ ] ) ( ) ( ) }}ϕ ϕ ϕ ϕ= ∈∂ = ∈ = =
ϕ

A

Lemma 2.3.  Suppose that aε� , a, b ε� , and b are as above. For each , 0δ η>  there are 0>�  
and a function ( )ρ ε  (that depend on aε� , a, b ε� , and b through k, K, L, c, and r) such that 
lim 00 ( )ρ ε =ε↓  and

	(A)	 T vP 1x,( ⩽ ( )) ⩾ ( )τ δ ρ ε+ −ε ε�  for x D∈ ,
	(B)	 T vP 1x,( ⩾ ( )) ⩾ ( )τ δ ρ ε− −ε ε�  for x D∈ η,
	(C)	 XP dist , 1

x,
x,( ( ) ⩽ ) ⩾ ( )η ρ ε−

∼
τ
ε
ε� A  for x D∈ η.

	(D)	 X OP 1t
x,

( ) ⩾ ( )η ρ ε| − | < −
∼ ε

 for x D t T T v, ,[ ( ) ( )]δ δ∈ ∈ −η ε ε ,

provided that

b t x b x a t x a xsup , , sup , .
t x D

i i
t x D

ij ij
, ,

( ) ( ) ⩽    ( ) ( ) ⩽
( ) ( )R R

| − | | − |
ε ε

∈ × ∈ ×+ +
�� � �� (3)

This lemma can be easily proved using a modification of theorems 4.2 and 4.3 from chapter 
4 of [5] if we substitute our lemmas 2.1 and 2.2 for the corresponding results concerning the 
case of time-independent coefficients.

An easy corollary of this lemma is that at an exponential time the process either can be 
found in a small neighborhood of O or has earlier crossed the boundary of the domain.

Lemma 2.4.  Suppose that aε� , a, b ε� , and b are as above. For each , 0δ η>  such that O D∈ η, 
there is a function ( )ρ ε  (that depends on aε� , a, b ε� , and b through k, K, L, c, and r) such that 
lim 00 ( )ρ ε =ε↓  and

X D t x D t TP or 1 for , , .t
x x, ,(     ⩽ ) ⩾ ( )    [ ( ) )τ ρ ε δ∈ − ∈ ∈ ∞
∼ ε η ε ε�

Proof.  Let 01η >  be sufficiently small so that there is a domain D
∼

 with smooth boundary 
such that D D1 =

∼η
. Note that if 1η  is sufficiently small, then lemma 2.3 is applicable to the 

domain D
∼

. If the process does not reach D∂  by the time t T ( )δ− ε , then we can apply part (D) 
of lemma 2.3 (with sufficiently small δ) to the domain D

∼
 and the process starting at Xt T

x,
( )δ

ε
− ε , 

and the result follows from the Markov property.� □

3.  Proof of the main result

In this section we prove lemma 1.2, which, as we discussed above, implies theorem 1.1. Let us 
first assume that z k≡λ  (the general case will be considered below). An example of the graph 
of M k,λ  is shown in figure 2.

M Freidlin and L Koralov﻿Nonlinearity 30 (2017) 445
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Let u t x t, Pk x k, , ,( ) ( ⩽ )τ=ε ε . Take an arbitrary 0η>  such that O D∈ η. We claim that 

u T xlim , 0k
0

, ( ( ) )λ =ε
ε ε

↓  for each mkλ<  uniformly in x D∈ η. Assume the contrary. Choose 
0δ>  and m0 k

1 2⩽ λ λ< <  such that

u T x u T xlim sup sup , lim sup sup , ,
x D

k

x D

k

0

,
1

0

,
2( ( ) ) ( ( ) )λ λ<

ε

ε ε

ε

ε ε

↓ ∈ ↓ ∈η η� (4)

while

M .k
2

,1λ δ< −λ� (5)

Let

a x a x k b x b x k, , , , , ,1 1( ) ( )   ( ) ( )λ λ= =� (6)

a t x a x t T k b t x b x t T k, , ln , , , , ln , ,2
1

2
1( ) ( ( ) ( ) )   ( ) ( ( ) ( ) )ε λ ε λ= − = −ε ε� �� (7)

X t
x,∼ ε

 be the corresponding process, and x,τ ε�  be the corresponding stopping time. Choose 0>�  
such that the conclusion of lemma 2.3 holds. Due to the continuity assumptions on a and b, 
estimate (3) holds if we restrict t to the interval T T0, 2 1[ ( ) ( )]λ λ−ε ε  and choose 2 1λ λ−  suf-
ficiently small. Note that we can achieve (4), (5) even with the requirement that 2 1λ λ−  is 
smaller than any prescribed positive number.

By the definition of u k,ε  and the Markov property of the process,

u T x u T x T T T, , P ,k k x k X,
2

,
1

, ,
1

,
2 1T

x k

1
, ,

( ( ) ) ( ( ) ) ( ( ) ⩽ ( ) ( ))( )λ λ τ λ τ λ λ= + > −ε ε ε ε ε ε ε ε εε λ
ε

�
�

(8)

Observe that T T T M k
2 1

,1( ) ( ) ( )λ λ δ− < −ε ε ε λ . Therefore, by part (B) of lemmas 2.3 and 2.4, 
the second term in the right hand side of (8) tends to zero as 0ε ↓  uniformly in x D∈ η. This, 

however, is a contradiction with (4), so we do have u T xlim , 0k
0

, ( ( ) )λ =ε
ε ε

↓  for each mkλ<  
uniformly in x D∈ η.

Next, we claim that u T xlim , 1k
0

, ( ( ) )λ =ε
ε ε

↓  for each mkλ>  uniformly in x D∈ η. Since mk 
is the unique solution of the equation M k, λ=λ , while M k,λ  is bounded (as the coefficients are 
bounded), we have M k, λ<λ  for mkλ> . Choose 0δ>  and mk

1 2λ λ< <  such that

M .k,
1

1 δ λ+ <λ

Figure 2.  Graph of M k,λ .

M Freidlin and L Koralov﻿Nonlinearity 30 (2017) 445



452

We can achieve this while choosing 2λ  arbitrarily close to mk. With a, b, a�, b� defined by (6) and 
(7), choose 0>�  such that the conclusion of lemma 2.3 holds. Due to the continuity assump-
tions on a and b, estimate (3) holds if we restrict t to the interval T T0, 2 1[ ( ) ( )]λ λ−ε ε  and 
choose 2λ  sufficiently close to 1λ . With these new 1λ  and 2λ , we again employ (8), writing it as

( ( ) ) ( ( ) ) ( ⩽ ( ) ( ) ( ))( ( ( ) ))( )λ λ τ λ λ τ λ λ= + − | > −ε ε ε ε ε ε ε ε ε ε εε λ
ε

�u T x u T x T T T u T x, , P 1 , .k k X x k k,
2

,
1

,
2 1

, ,
1

,
1T

x k

1
, ,

The conditional probability in the right hand side tends to one uniformly in x D∈ η as 0ε ↓  by 
part (A) of lemma 2.3 since T T T T M k

2 1 1
,1( ) ( ) ( ) ( )λ λ λ δ− > > +ε ε ε ε λ  for all sufficiently small 

ε. Therefore, u T xlim inf , 1x D
k

0
,

2( ( ) )λ =ε
ε ε

↓ ∈ η . Since 2λ  can be chosen to be arbitrarily close 
to mk and since u t x,k, ( )ε  increases with t, we conclude that u T xlim , 1k

0
, ( ( ) )λ =ε
ε ε

↓  uniformly 
in x D∈ η.

Now let us prove that the distribution of X x k, ,
x k, ,τ
ε
ε  converges to xk. From our assumptions on the 

continuity of the coefficients it follows that for each λ that is sufficiently close to mk the infi-
mum V xinfx D

k, ( )λ
∈∂  is achieved in a single point of the boundary that will be denoted by xk( )λ . 

Moreover, xk( )λ  is continuous at mk. Given 0η> , choose mk
1λ <  such that x xdist ,k k( ( ) )λ η<  

for m, k
1[ ]λ λ∈ . With a, b, a�, b� defined by (6) and (7), choose mk

1λ <  and mk2λ >  in such a 
way that (3) holds if we restrict t to the interval T T0, 2 1[ ( ) ( )]λ λ−ε ε , where �  is sufficiently 
small for the conclusion of lemma 2.3 to hold (this may require modifying the previously 
selected 1λ  by making it larger).

As we showed above, Xt
x k, ,ε  does not exit D prior to time T 1( )λε  with probability that tends 

to one uniformly in x D∈ η. By lemma 2.4, XT
x k, ,

1( )λ
ε
ε  belongs to Dη with probability that tends to 

one. Therefore, by the above construction and part (C) of lemma 2.3, the process Xt
x k, ,ε  reaches 

the boundary of D for the first time in an η-neighborhood of xk
1( )λ  with probability that tends 

to one. Since η was arbitrary, this proves that the distribution of X x k, ,
x k, ,τ
ε
ε  converges to xk.

It remains now to get rid of the assumption that z k≡λ . Assume now that zλ has finitely 
many jumps at points , ..., k1λ λ  and that none of the jumps happens at any of the points 
m m, ..., s1 . Suppose that z

1⩾θ λ . As we showed above, TP 1x z, ,
1( ( )) →τ λ>ε ε  as 0ε ↓ . By lemma 

2.4, XT
x z, ,

1( )λ
ε
ε  belongs to Dη, with sufficiently small η, with probability that tends to one. Using 

the Markov property of the process, we can now replace the values of z on the interval 0, 1[ )λ  
by z 2λ , i.e. z now has one fewer jump. At the same time, the coefficients of the process need 
to be set to be equal to zero on the interval T0, 1[ ( )]λε . The earlier arguments still apply in this 
situation. Continuing by induction on the number of the jump, we obtain the desired result.

4. The case of no repairing mechanism near the boundary

Let us modify some of the assumptions on the coefficients b and σ. Namely, instead of assum-
ing that b is Lipschitz continuous, we assume that it can be continued from D  to the entire 
space as a Lipschitz continuous function, yet is equal to zero outside D . Inside D , the drift is 
assumed to have the same properties as before. For simplicity, let us assume that σ is an iden-
tity matrix and that b does not depend on ξ. Thus the process under consideration is

X b X t t W X xd , ln d d , .t
x

t
x

t
x d, , 2
1

,( )   Rε ε= + = ∈ε ε ε
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Let D1 be a domain with smooth boundary such that D D1⊂ . Let x
1

,τ ε be the first time when 

Xt
x,ε reaches D1∂ . We’ll be interested in the limiting distribution of X x,

x
1

,
τ
ε
ε. The fact that b  =  0 in 

D D1 \  can be viewed as the absence of a repair mechanism in a part of the domain.
As follows from theorem 1.1, there is x D∈∂∗  such that X xlim x

0
,
x, =ε τ
ε

↓
∗

ε  in distribution for 
each x D∈ . Note that x* is now non-random. In [3] we considered the behavior of the process 
in Dd \R  obtained from Xt

x,ε by running the clock only when Xt
x,ε is outside D. (The ageing 

mechanism was not considered there, which is not a problem since the process in Dd \R  is 
relevant now only at one time scale associated with the exit of Xt

x,ε from D). An adaptation of 
the results from [3] gives us the following fact: for D1⊂γ ∂  and x D D1 \∈ ,

X u xlim P ,x

0

,
x
1

,( ) ( )γ∈ =
ε τ

ε γ

↓
ε

where uγ is the unique solution of the following non-standard boundary problem

u x x D D0, ,1( )   \∆ = ∈γ

u x
x

x D

1, ,

0, ,1
( )

\
⎧
⎨
⎩

γ
γ

=
∈
∈∂

γ

u x Dis constant on ,( )       ∂γ

u x n x, 0,⟨ ( ) ( )⟩∇ =γ ∗ ∗

where n(x) is the normal to D∂  at x. For x D∈ , we have X u xlim P x
0

,
x
1

,( ) ( )γ∈ =ε τ
ε γ

↓
∗

ε .
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