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CORRIGENDA TO

“CHARACTERIZATIONS OF MONADIC NIP”

SAMUEL BRAUNFELD AND MICHAEL C. LASKOWSKI

Abstract. The authors correct results in “Characterizations of monadic NIP”
[Trans. Amer. Math. Soc. Ser. B 8 (2021), pp. 948–970]. The notion of
endless indiscernible triviality is introduced and replaces indiscernible triviality
throughout, in particular in Theorem 1.1. The claim regarding the failure of
4-wqo in Theorem 1.2 is withdrawn and remains unproved.

1. Indiscernible triviality

In Theorem 1.1 of [1], several equivalents of a theory being monadically NIP
are given. With the definition of indiscernible-triviality given there, (6) is not
equivalent, as can be seen by Example 1.3. However, by making a slight variation
on the definition of indiscernible-triviality the equivalence of (6) with the other
properties is maintained. Call a linear order (I,<) endless if it has neither a
minimum nor a maximum element. Clearly, any endless linear order is infinite.

Definition 1.1. A theory T has endless indiscernible triviality if for every endless
indiscernible sequence I = (āi : i ∈ I) and every set B of parameters, if I is
indiscernible over each b ∈ B then I is indiscernible over B.

This is the same as the definition of indiscernible-triviality, except that infinite
has been replaced by endless.

With this note, we prove Theorem 1.2.

Theorem 1.2. Replacing indiscernible-triviality by endless indiscernible triviality,
the six statements described in [1, Theorem 1.1] are equivalent.

Before launching into the proof of Theorem 1.2, we highlight what the problem
was in [1]. The first issue is the Furthermore clause in [1, Lemma 2.18], used in
the proof of [1, Proposition 3.11]. We thank James Hanson for providing a coun-
terexample to this clause. The second issue is that in the proof of [1, Proposition
3.11], we assumed that the failure of indiscernible triviality could be witnessed by a
Q-indexed sequence, obliterating the distinction between indiscernible triviality and
endless indiscernible triviality. To see that (full) indiscernible triviality can fail in
a monadically NIP theory, we thank Artem Chernikov for indicating Example 1.3.
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Example 1.3. Let Tdt be the theory of dense meet-trees as in [3, Section 2.3.1].
By [2, Corollary 2.8], Tdt is monadically NIP. (It is also fairly easy to check the
quantifier-free type-counting criterion in [1, Proposition 4.8] over indiscernible se-
quences of singletons, which is sufficient.) Let M |= Tdt, let I = (ai : i ∈ ω) be a
decreasing sequence, and let b, b′ ∈ M be such that b, b′ > a0 and b∧ b′ = a0. Then
I is indiscernible over b and over b′, but not over bb′.

In the remainder of this section, we prove Theorem 1.2 and indicate where the
endlessness assumption is used. Definition 1.4, which appears in [3], is standard.

Definition 1.4. Two sequences (āi : i ∈ I) and (b̄j : j ∈ J) (not necessarily of the
same arities) are mutually indiscernible over C if (āi : i ∈ I) is indiscernible over
C ∪

⋃
{b̄j : j ∈ J} and (b̄j : j ∈ J) is indiscernible over C ∪

⋃
{āi : i ∈ I}.

In [1], in order to recover Theorem 1.1, it suffices to recover Proposition 3.11, so
in the notation there, define

(2∗) T is dp-minimal and has endless indiscernible triviality

which is identical to the existing (2), but now with endless indiscernible triviality
replacing indiscernible-triviality.

Again in the notation of Proposition 3.11, we must show that (2∗) ⇒ (3) and
that (1) ⇒ (2∗).

The existing proof that (2) ⇒ (3) is easily modified to show (2∗) ⇒ (3). The
only issue is that the convex piece I ′ containing āi might not be endless. But in
this case, the convex piece containing āj must be I\I ′, which is endless. So we may
conclude the argument substituting āj for āi and I\I ′ for I ′.

Establishing the implication (1) ⇒ (2∗) is more involved, where (1) states that
T has the f.s. dichotomy. Without going through the problematic (2), the paper
still contains a proof of (1) ⇒ (4), where (4) asserts that there T does not admit
a precoding configuration. Before tracing this proof, we recall these definitions
from [1].

Definition 1.5. T has the f.s. dichotomy if, for all models M , all finite tuples
ā, b̄ ∈ C, if tp(b̄/Mā) is finitely satisfied in M , then for any singleton c, either
tp(b̄/Māc) or tp(b̄c/Mā) is finitely satisfied in M .

Definition 1.6. A precoding configuration consists of a φ(x̄, ȳ, z) with parameters
and a sequence I = 〈d̄i : i ∈ Q〉, indiscernible over the parameters of φ, such that
for some (equivalently, for every) s < t from Q, there is c ∈ C such that

(1) C |= φ(d̄s, d̄t, c);
(2) C |= ¬φ(d̄s, d̄v, c) for all v > t; and
(3) C |= ¬φ(d̄u, d̄t, c) for all u < s.

In [1, §4], it is proved that if T has the f.s. dichotomy, then T does not admit
coding on tuples, which is condition (3) in [1, Proposition 3.11]. Thus the implica-
tion (3) ⇒ (4) in [1, Proposition 3.11] shows that if T has the f.s. dichotomy then
T does not admit a precoding configuration. (We take this opportunity to note
that after the first sentence in the proof of (3) ⇒ (4) in [1, Proposition 3.11], the
following should be inserted: “By Ramsey and compactness, we may assume that
the truth value of φ(āi, āj , ck,�) depends only on the order-type of ijk�.”)
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Evidently, the existence of a precoding configuration is a statement about a
certain configuration being consistent with T , hence one can use compactness to
construct such configurations from many variations. We record two variants in
Lemma 1.7.

Lemma 1.7. T admits a precoding configuration if either of the following hold:

(1) There is a sequence (d̄i : i ∈ Z) (not necessarily indiscernible) and a formula
φ(x̄, ȳ, z) such that, for every s < 0 < t there is hs,t ∈ C such that

• |= φ(d̄s, d̄t, hs,t);
• |= ¬φ(d̄u, d̄t, hs,t) for every u < s; and
• |= ¬φ(d̄s, d̄v, hs,,t) for every v > t.

(2) Or there is an indiscernible sequence (d̄i : i ∈ Z) and a formula φ(x̄, ȳ, z)
such that, for some s < 0 < t there is hs,t ∈ C such that

• |= φ(d̄s, d̄t, hs,t);
• |= ¬φ(d̄u, d̄t, hs,t) for every u < s; and
• |= ¬φ(d̄s, d̄v, hs,t) for every v > t.

Proof. (1) is immediate by compactness. For (2), we first extend our given in-
discernible sequence (d̄i : i ∈ Z) to an indiscernible sequence (d̄i : i ∈ Q), main-
taining the extra conditions that ¬φ(d̄i, d̄t, hs,t) for all i < s, i ∈ Q and that
¬φ(d̄s, d̄i, hs,t) for all i > t, i ∈ Q in three steps, all using compactness. First, since
(d̄i : i < s, i ∈ Z) is an infinite, indiscernible sequence over (d̄i : i ≥ s), for which
¬φ(d̄i, d̄t, hs,t) for every such i, by compactness there is an extension of this segment
to (d̄i : i < s, i ∈ Q) maintaining indiscernibility of the entire expanded sequence,
as well as ¬φ(d̄i, d̄t, hs,t). Dually, we can find an extension (d̄i : i > t, i ∈ Q) of
(d̄i : i > t, i ∈ Z) maintaining indiscernibility with ¬φ(d̄s, d̄i, hs,t) for every i > t,
i ∈ Q. Finally, for the middle segment (d̄i : s < i < t, i ∈ Z), we only need to
maintain indiscernibility. Although the sequence (di : s < i < t, i ∈ Z) is finite,
it is part of an endless indiscernible sequence. Thus, it follows by compactness
that there is an extension (d̄i : s < i < t, i ∈ Q) of (d̄i : s < i < t, i ∈ Z), for
which the entire sequence (d̄i : i ∈ Q) is indiscernible. So we have constructed an
indiscernible sequence (d̄i : i ∈ Q) with some distinguished pair s < t for which a
witnessing element hs,t exists. However, as Aut(Q, <) is 2-homogeneous and since
every σ ∈ Aut(Q, <) induces an automorphism of C, we conclude that for every
s′ < t′, a witnessing element hs′,t′ exists. Thus, we obtain a precoding configura-
tion. �

We now assume T has the f.s. dichotomy. The proof that T is dp-minimal in the
existing proof of (1) ⇒ (2) in [1, Proposition 3.11] is unchanged. In fact, the proof
gives the following stronger statement.

Lemma 1.8. If T has the f.s. dichotomy, then for every indiscernible sequence

I = (āi : i ∈ I) and singleton b, there is a partition I = I�
0 I�

1 I2 where I1 is
either empty or a singleton, such that (āi : i ∈ I0) and (āi : i ∈ I2) are mutually
indiscernible over bI1.

In the case where I is Dedekind complete, we may assume I1 is a singleton.
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We will assume that T has the f.s. dichotomy but fails endless indiscernible
triviality and eventually arrive at one of the two clauses of Lemma 1.7, giving
our contradiction. Endlessness of (I,<) is crucial as once we cut the indiscernible
sequence I into two mutually indiscernible halves, we still have that each half is
an infinite indiscernible sequence and thus can be extended. In a nutshell, this
extendibility of each half is what is failing in Example 1.3.

Lemma 1.9. Suppose T has the f.s. dichotomy, (I,<) is an endless, Dedekind
complete linear order, I = (āi : i ∈ I) is indiscernible over ∅, but not over b for
some singleton b ∈ C. Then there are i∗ ∈ I, a finite F ⊆ C, and an F -definable
δ(x̄, y) such that

(1) (āi : i ∈ I) is indiscernible over F ;
(2) the subsequences (āi : i < i∗) and (āi : i > i∗) are mutually indiscernible

over Fbāi∗ ; and
(3) the sequence of truth values of (δ(āi, b) : i ∈ I) is not constant.

Proof. Since I is not indiscernible over b, we apply Lemma 1.8, and let i∗ be the
singleton element of I1 there. Since (I,<) is endless, choose i∗−, i

∗
+ ∈ I with i∗− <

i∗ < i∗+. Choose a formula φ(x̄1, . . . , x̄n, b) witnessing that I is not indiscernible over
b. By mutual indiscernibility over āi∗b, there must be some 1 ≤ k ≤ n for which:
for some/every i1 < i2 < · · · < ik−1 < i∗−, for some/every i∗+ < ik+1 < · · · < in, the
truth values of these three statements are nonconstant:

• φ(āi1 , . . . , āik−1
, āi∗− , āik+1

, . . . , āin , b);

• φ(āi1 , . . . , āik−1
, āi∗ , āik+1

, . . . , āin , b); and
• φ(āi1 , . . . , āik−1

, āi∗+ , āik+1
, . . . , āin , b).

Let I ′ := (�1, . . . , �k−1) � I � (rk+1, . . . , rn) extend I. By compactness, choose
n− 1 new tuples (ā�1 , . . . , ā�k−1

), (ārk+1
, . . . , ārn) such that the extended sequences

(āi : i < i∗, i ∈ I ′) and (āi : i > i∗, i ∈ I ′) remain mutually indiscernible over āi∗b.
Put

F :=
⋃

{ā�i : 1 ≤ i ≤ k − 1} ∪
⋃

{āri : k + 1 ≤ i ≤ n},

and let δ(x̄, y) := φ(ā�1 , . . . , ā�k−1
, x̄, ārk+1

, . . . , ārn , y). This works. �

Lemma 1.10. Suppose T has the f.s. dichotomy. Then T has endless indiscernible
triviality.

Proof. Assume, by way of contradiction, that T fails endless indiscernible triviality.
An easy induction on |B| gives that there is some finite A and singletons b, c for
which some endless (I,<) supports a sequence (āi : i ∈ I) that is indiscernible
over Ab and Ac, but not over Abc. By adding constants to the language we may
assume A = ∅ and, as (Z, <) embeds into any endless linear order, we may take
I = Z. Summarizing, we assume the existence of a sequence (āi : i ∈ Z) that
is indiscernible over b and c individually, but not over bc. Now, working over c,
apply Lemma 1.9 to this sequence and b to obtain i∗ ∈ Z, a finite set F and an
Fc-definable δ(x̄, b) as there. To make the dependence on c explicit, write δ as
δ(x̄, y, c), so δ(x̄, y, z) is F -definable. As (Z, <) is transitive, we may assume i∗ = 0.
We summarize the situation from the point of view of b, which we now label as b0.
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We have the following:

(1) (āi : i ∈ Z) is indiscernible over Fc.
(2) For b = b0,

(a) (āi : i ∈ Z) is indiscernible over Fb0;
(b) (āi : i < 0) and (āi : i > 0) are mutually indiscernible over Fcb0; and
(c) the truth value of (δ(āi, , b0, c) : i ∈ Z) is nonconstant.

Because of (1), there is an automorphism σ of C fixing Fc with σ(āi) = σ(āi+1)
for all i ∈ Z. Let bj := σj(b), the j-fold iteration of σ (this also makes sense for
j = 0 and j < 0). Thus, with the same Fc and (āi : i ∈ Z), we have that for
every j ∈ Z, (āi : i ∈ Z) is indiscernible over Fbj : (āi : i < j) and (āi : i > j)
are mutually indiscernible over Fcbj ; and the truth value of (δ(āi, bj , c) : i ∈ Z) is
nonconstant. We remark that we have again made crucial use of the endlessness of
our indiscernible sequence to extend b from a singleton to a whole sequence.

Now, keeping Fc fixed, we ‘couple’ each bj by its corresponding āj , and then by
Ramsey’s Theorem and compactness we get that for any endless (J,<) there are
tuples (ājbj : j ∈ J) (possibly distinct from the original elements) satisfying the
following conditions:

(1) The sequence ((ājbj) : j ∈ J) is indiscernible over Fc.
(2) For all j ∈ J ,

(a) the sequence (āi : i ∈ J) is indiscernible over Fbj ;
(b) the subsequences (āi : i < j) and (āi : i > j) are mutually indiscernible

over Fcbj ; and
(c) the truth values of (δ(āi, , bj , c) : i ∈ J) is nonconstant.

Claim 1 will allow us to define a precoding configuration.

Claim 1. There is a sequence (d̄rbr : r ∈ R) that is indiscernible over Fc with
(d̄r : r ∈ R) indiscernible over Fb0 and an F -definable formula ψ(x̄, y, z) such that

(1) for all r, s ∈ R, |= ψ(d̄r, bs, c) if and only if r = s; and
(2) for every singleton c′ ∈ C and r ∈ R, there is at most one s ∈ R such that

|= ψ(d̄s, br, c
′).

Proof of Claim 1. Consider the sequence (ājbj : j ∈ J) obtained above with J =
3 × R. As notation, for each r ∈ R write each ‘triple’ as (ār− , ār, ār+) and let

d̄r := ār− ārār+ be the concatenation of the triple. In what follows we only consider
br for each r ∈ R. Finally, put

ψ(x̄−x̄x̄+, y, z) := ¬ [δ(x̄−, y, z) ↔ δ(x̄, y, z) ↔ δ(x̄+, y, z)] .

Thus, we have (d̄rbr : r ∈ R) is indiscernible over Fc, and for each r ∈ R we have
(d̄s : s ∈ R) is indiscernible over Fbr and the pair of subsequences (d̄s : s < r)
and (d̄s : s > r) are mutually indiscernible over Fcbr. Moreover, for any r, s ∈ R,
|= ψ(d̄s, br, c) if and only if r = s.

To get the final clause, choose any c′ ∈ C and r ∈ R. We know the original se-
quence (āi : i ∈ 3×R) is indiscernible over Fbr. If it is also indiscernible over Fbrc

′,
then the truth value of (δ(āi, br, c

′) : i ∈ 3 × R) is constant, hence |= ¬ψ(d̄s, br, c′)
holds for every s ∈ R. On the other hand, if it fails to be indiscernible over Fbrc

′,
then, working over Fbr, we apply Lemma 1.9 to the sequence (āi : i ∈ 3 × R).
Choose i∗ ∈ 3 × R for which the subsequences (āi : i < i∗) and (āi : i > i∗) are
mutually indiscernible over Fbrc

′. Choose s ∈ R such that i∗ ∈ {s−, s, s+}. Then
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for any t 
= s, with t ∈ R, the triple (t−, t, t+) lies in one of the two subsequences.
Thus, by indiscernibility we have |= ¬ψ(d̄t, br, c′) for all t 
= s. ♦

Continuing, as (d̄i : i ∈ R) is indiscernible over b0, choose an automorphism
σ ∈ Aut(C) such that σ(d̄j) = d̄j+1 for every j ∈ R, and also σ(b0) = b0. For each

i ∈ Z+, let σ(i) denote the i-fold composition of σ, so e.g., σ(i)(āj) = āj+i, while

σ(i)(b0) = b0. As notation, put ci := σ(i)(c).
For each m ∈ Z+, let Bm = { j ∈ (−∞, 0) | |= ψ(d̄j , bj , cm) }. There are now two

cases, each of which leads to a precoding configuration.

Case 1. Some Bm is not well ordered.

Fix such an m ∈ Z+. Fix a strictly decreasing sequence J = (jn : n ∈ ω) from
Bm and put I := (i ∈ Z+ : i ≥ m). Thus K := J�0�I describes a subordering of
(R, <) of order type (Z, <). For k ∈ K, let ēk denote the concatenation d̄kbk and
let θ(x̄1y1, x̄2y2, z) := ψ(x̄2, y1, z). That (ēk : k ∈ K) and θ satisfy the hypotheses
of Lemma 1.7(2) with s = 0, t = m, and hs,t = cm follows from Claim 2.

Claim 2.

(1) |= ψ(d̄m, b0, cm);
(2) |= ¬ψ(d̄i, b0, cm) for all i > m; and
(3) |= ¬ψ(d̄m, bj , cm) for all j ∈ J .

Proof of Claim 2. For (1), we have |= ψ(d̄0, b0, c), hence applying σm gives
|= ψ(σm(d̄0), σm(b0), σm(c)), i.e., |= ψ(d̄m, b0, cm).

For (2), we know that for any k > 0, |= ¬ψ(d̄k, b0, c), so applying σm yields
|= ¬ψ(d̄k+m, b0, cm).

For (3), since j ∈ Bm, we have |= ψ(d̄j , bj , cm). But then by the final clause of
Claim 1, we have |= ¬ψ(d̄m, bj , cm) for m 
= j. ♦

Case 2. Not Case 1, i.e., every Bm is well ordered.

In this case, for any i ∈ Z+, the shifted set

Bm + i = { r ∈ (−∞, 0) | r = b+ i for some b ∈ Bm, i ∈ Z+ }

is well ordered as well. Since any well-ordered subset of (−∞, 0) is nowhere dense,
it follows by Baire category that the complement

S = { r ∈ (−∞, 0) | r 
∈ Bm + i for every i,m ∈ Z+ }

is not nowhere dense. Thus, S contains a strictly decreasing sequence J = (jn :
n ∈ ω), so K := J�0�Z+ has order type (Z, <). For each k ∈ K, let ēk denote the
concatenation d̄kck, let bi,j := σ(i)(bj−i), and let θ(x̄1z1, x̄2z2, y) := ψ(x̄1, y, z2).
Here, we will get an instance of precoding via Lemma 1.7(1), as witnessed by
(ēk : k ∈ K), θ, and the witnesses bi,j for j < 0 < i from K, once we establish
Claim 3.
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Claim 3. For every j ∈ S and i ∈ Z+,

(1) |= ψ(d̄j , bi,j , ci);
(2) for all j′ ∈ S \ { j }, |= ¬ψ(d̄j′ , bi,j , ci); and
(3) for all � > i, |= ¬ψ(d̄j , bi,j , c�).

Proof of Claim 3. For (1) and (2): By Claim 1(1), we have |= ψ(d̄j−i, bj−i, c) and

for any t 
= j − i we have |= ¬ψ(d̄t, bj−i, c). Applying σ(i) yields |= ψ(d̄j , bi,j , ci),
but |= ¬ψ(d̄j′ , bi,j , ci) for any j′ 
= j.

For (3), given � > i, put m := � − i. Since j ∈ S, j − i 
∈ Bm, so
|= ¬ψ(d̄j−i, bj−i, cm). Then, applying σ(i) (and using c� = σ(i)(cm)) yields
|= ¬ψ(d̄j , bi,j , c�), as required. ♦

�

2. Well-quasi-order

In [1, Theorem 5.3], the proof that Age(T ) is not 4-wqo is flawed. The issue
is that the formula φ∗(x, y, z) is not existential, and thus neither is the formula
∃zφ∗(x, y, z) that we use to define the edges of our graphs. Since the formula is not
existential, it need not be preserved by embeddings. Thus the first sentence of the
last paragraph of the proof is unjustified.
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