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Abstract. We give several characterizations of when a complete first-
order theory T is monadically NIP, i.e. when expansions of T by arbitrary
unary predicates do not have the independence property. The central
characterization is a condition on finite satisfiability of types. Other
characterizations include decompositions of models, the behavior of
indiscernibles, and a forbidden configuration. As an application, we
prove non-structure results for hereditary classes of finite substructures
of non-monadically NIP models that eliminate quantifiers.

1. Introduction

It is well known that many first order theories whose models are tame
can become unwieldy after naming a unary predicate. Arguably the best
known example of this is the field (C,+, ·) of complex numbers. Its theory is
uncountably categorical, but after naming a predicate for the real numbers,
the expansion becomes unstable. A more extreme example is the theory T of
infinite dimensional vector spaces over a finite field, in a relational language.
The theory T is totally categorical, but if, in some model V , one names a
basis B, then by choosing specified sum sets of basis elements, one can code
arbitrary bipartite graphs in expansions of V by unary predicates.

As part of a larger project in [?BS], Baldwin and Shelah undertook a study
of this phenomenon. They found that a primary dividing line is whether
T admits coding i.e., there are three subsets A,B,C of a model of T and
a formula φ(x, y, z) that defines a pairing function A×B → C. If one can
find such a configuration in a model M of T , some monadic expansions of
M are wild. The primary focus in [?BS] was monadically stable theories, i.e.
theories that remain stable after arbitrary expansions by unary predicates.
Clearly, the two theories described above are stable, but not monadically
stable. They offered a characterization of monadically stable theories within
the stable theories via a condition on the behavior of non-forking. This
allowed them to prove that monadic stability yields a dividing line within
stable theories: models of monadically stable theories are well-structured
and admit a nice decomposition into trees of submodels, while if a theory is
stable but not monadically stable then it encodes arbitrary bipartite graphs
in a unary expansion, and so is not even monadically NIP.
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A theory T is NIP if it does not have the independence property, and is
monadically NIP if every expansion of a model of T by unary predicates is
also NIP. The behavior of NIP theories has been extensively studied, see e.g.,
[?Pierre]. Soon after [?BS], Shelah further studied monadically NIP theories
in [?Hanf], where he showed they satisfy a condition on the behavior of finite
satisfiable types paralleling the condition on the behavior of non-forking in
monadically stable theories. He was then able to use this to produce a linear
decomposition of models of monadically NIP theories, akin to a single step
of the tree decomposition in monadically stable theories.

We dub Shelah’s condition on the behavior of finite satisfiability the f.s.
dichotomy, and we consider it to be the fundamental property expressible in
the original language L describing the dichotomous behavior outlined above.
We show the f.s. dichotomy characterizes monadically NIP theories and
provide several other characterizations, including admitting a linear decom-
position in the style of Shelah, a forbidden configuration, and conditions on
the behavior of indiscernible sequences after adding parameters. Definitions
for the following theorem may be found in Definitions 3.9, 3.1, 3.4, and 3.8.
Of note is that all but the first two conditions refer to the theory T itself,
rather than unary expansions.

Theorem 1.1. The following are equivalent for a complete theory T with
an infinite model.

(1) T is monadically NIP.
(2) No monadic expansion of T admits coding.
(3) T does not admit coding on tuples.
(4) T has the f.s. dichotomy.
(5) For all M∗ |= T and M,N �M∗, every partial M -f.s. decomposition

of N extends to an (irreducible) M -f.s. decomposition of N .
(6) T is dp-minimal and has indiscernible-triviality.

We believe that monadic NIP (or perhaps a quantifier-free version) is
an important dividing line in the combinatorics of hereditary classes, and
provides a general setting for the sort of decomposition arguments common
in structural graph theory. For example, see the recent work on bounded
twin-width in the ordered binary case, where it coincides with monadic NIP
[?ST,?TW4]. Here, we mention the following conjecture, adding monadic NIP
to a question of Macpherson [?MacHom, Question 2.2.7].

Conjecture 1. The following are equivalent for a countable homogeneous
ω-categorical relational structure M .

(1) M is monadically NIP.
(2) The (unlabeled) growth rate of Age(M) is at most exponential.
(3) Age(M) is well-quasi-ordered under embeddability, i.e. it has no

infinite antichain.

From Theorem 1.1, we see that if T is not monadically NIP then it
admits coding on tuples. This allows us to prove the following non-structure
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theorem in §5 (with Definition 5.1 defining the relevant terms), in particular
confirming (2) ⇒ (1) and a weak form of (3) ⇒ (1) from the conjecture,
although without any assumption of ω-categoricity.

Theorem 1.2. Suppose T is a complete theory with quantifier elimination
in a relational language with finitely many constants. If T is not monadically
NIP, then Age(T ) has growth rate asymptotically greater than (n/k)! for
some k ∈ ω and is not 4-wqo.

We also show the following, partially explaining the importance of monadic
model-theoretic properties for the study of hereditary classes.

Theorem 1.3. Suppose T is a complete theory with quantifier elimination
in a relational language with finitely many constants. Then Age(T ) is NIP
if and only if T is monadically NIP, and Age(T ) is stable if and only if T is
monadically stable.

In Section 2, we review basic facts about finite satisfiability, and introduce
M -f.s. sequences, which are closely related to, but more general than Morley
sequences. The results of this section apply to an arbitrary theory, and so
may well be of interest beyond monadic NIP. Section 3 introduces the f.s.
dichotomy and proves the equivalence of (3)-(6) from Theorem 1.1. Much
of these two sections is an elaboration on the terse presentation of [?Hanf],
although there are new definitions and results, particularly in Section 3.2,
which deals with the behavior of indiscernibles in monadically NIP theories.
In Section 4 we finish proving the main theorem by giving a type-counting
argument that the f.s. dichotomy implies monadic NIP, and by showing that
if T admits coding on tuples then it admits coding in a unary expansion. In
Section 5, we prove Theorems 1.2 and 1.3.

We are grateful to Pierre Simon, with whom we have had numerous
insightful discussions about this material. In particular, the relationship
between monadic NIP and indiscernible-triviality was suggested to us by
him.

1.1. Notation. Throughout this paper, we work in C, a large, sufficiently
saturated, sufficiently homogeneous model of a complete theory T . We
routinely consider tp(A/B) when A is an infinite set. To make this notion
precise, we (silently) fix an enumeration ā of A (of ordinal order type) and an
enumeration x̄ with lg(x̄) = lg(ā). Then tp(A/B) = {θ(x̄′, b̄) : C |= θ(ā′, c̄)
for all subsequences x̄′ ⊆ x̄ and ā′ is the corresponding subsequence of ā}.

2. M-f.s. sequences

Forking independence and Morley sequences are fundamental tools in the
analysis of monadically stable theories in [?BS]. These are less well-behaved
outside the stable setting, but in any theory we may view ‘tp(A/MB) is
finitely satisfiable in M ’ as a statement that A is (asymmetrically) indepen-
dent from B over M . Following [?Hanf], we will use finite satisfiability in
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place of non-forking, and indiscernible M -.f.s. sequences in place of Mor-
ley sequences. Throughout Section 2, we make no assumptions about the
complexity of Th(C).

2.1. Preliminary facts about M-f.s. sequences. For the whole of this
section, fix a small M � C (typically, |M | = |T |).
Definition 2.1. Suppose B ⊇ M . Then for any A (possibly infinite) we
say tp(A/B) is finitely satisfied in M if, for all θ(ȳ, b̄) ∈ tp(A/B), there is

m̄ ∈M lg(ȳ) such that C |= θ(m̄, b̄).

One way of producing finitely satisfiable types in M comes from average
types.

Definition 2.2. Suppose x̄ is a possibly infinite tuple. For any ultrafilter U
on M lg(x̄) and any B ⊇M ,

Av(U , B) = {φ(x̄, b̄) : { m̄ ∈M lg(x̄) : C � φ(m̄, b̄) } ∈ U }
It is easily checked that Av(U , B) is a complete type over B that is finitely

satisfied in M . We record a few basic facts about types that are finitely
satisfied in M . Proofs can be found in either Section VII.4 of [?Shc] or in
[?Pierre].

Fact 2.3. Let M be any model.

(1) For any set B ⊇ M and any p(x̄) ∈ S(B) (x̄ may be an infinite
tuple), p is finitely satisfied in M if and only if p = Av(U , B) for

some ultrafilter U on M lg(x̄).
(2) Suppose Γ(x̄, B) is any set of formulas, closed under finite conjunc-

tions, and each of which is realized in M . Then there is a complete
type p ∈ S(B) extending Γ that is finitely satisfied in M .

(3) (Non-splitting) If p ∈ S(B) is finitely satisfied in M , then p does not
split over M , i.e., if b̄, b̄′ ⊆ B and tp(b̄/M) = tp(b̄′/M), then for any
φ(x̄, ȳ), φ(x̄, b̄) ∈ p if and only if φ(x̄, b̄′) ∈ p.

(4) (Transitivity) If tp(B/C) and tp(A/BC) are both finitely satisfied in
M , then so is tp(AB/C).

Definition 2.4 (M -f.s. sequence). With M fixed as above, let (I,≤) be any
linearly ordered index set.

• Suppose 〈Ai : i ∈ I〉 is any sequence of sets, indexed by (I,≤). For
J ⊆ I, AJ denotes

⋃
j∈J Aj , and for i∗ ∈ I, A<i∗ denotes

⋃
i<i∗ Ai.

A≤i∗ and A>i∗ are defined analogously.
• For C ⊇ M , an M-f.s. sequence over C, is a sequence of sets 〈Ai :
i ∈ I〉 such that tp(Ai/A<iC) is finitely satisfied in M for every i ∈ I.
When C = M we simply say 〈Ai : i ∈ I〉 is an M -f.s. sequence.

Note that for any C ⊇M , 〈Ai : i ∈ I〉 is an M -f.s. sequence over C if and
only if the concatenation 〈C〉 a 〈Ai : i ∈ I〉 is an M -f.s. sequence.

We note two useful operations on M -f.s. sequences over C, ‘Shrinking’ and
‘Condensation’.
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Definition 2.5. Suppose C ⊇M and 〈Ai : i ∈ I〉 is an M -f.s. sequence over
C.

(1) ‘Shrinking:’ For every J ⊆ I, for all A′j ⊆ Aj , and for all C ′ with

C ⊇ C ′ ⊇M , we say 〈A′j : j ∈ J〉 as a sequence over C ′ is obtained

by shrinking from 〈Ai : i ∈ I〉 as a sequence over C.
(2) Condensation:’ Suppose π : I → J is a condensation, i.e., a surjective

map with each π−1(j) a convex subset of I. For each j ∈ J , let
A∗j :=

⋃
{Ai : i ∈ π−1(j) }. We say 〈A∗j : j ∈ J〉 as a sequence over

C is obtained by condensation from 〈Ai : i ∈ I〉 as a sequence over
C.

In particular, removing a set of Ai’s from the sequence is an instance of
Shrinking.

Lemma 2.6. Suppose C ⊇M and 〈Ai : i ∈ I〉 is an M -f.s. sequence over C.
Then Shrinking and Condensation both preserve being an M-f.s. sequence
over C. In particular, for any partition I = J tK into convex pieces, the
two-element sequence 〈AJ , AK〉 is an M -f.s. sequence over C.

Proof. The statement is immediate for Shrinking, and for Condensation
follows by transitivity in Fact 2.3. The last sentence is a special case of
Condensation, as the partition defines a condensation π : I → { 0, 1 } with
π−1(0) = J . �

Definition 2.7. If 〈Ai : i ∈ I〉 is an M -f.s. sequence over C, call 〈Bj : j ∈ J〉
a simple extension, resp. blow-up if 〈Ai : i ∈ I〉 is attained from it by
Shrinking, resp. by Condensation. 〈Dk : k ∈ K〉 is an extension of 〈Ai : i ∈ I〉
if it is a blow-up of a simple extension of 〈Ai : i ∈ I〉 over C.

Here is one general result, whose verification is just bookkeeping.

Lemma 2.8. Suppose 〈Ai : i ∈ I〉 is an M-f.s. sequence, i∗ ∈ I, J ∩
I = ∅, and 〈A′j : j ∈ J〉/MA<i∗ is an M-f.s. sequence over MA<i∗ with⋃
{A′j : j ∈ J } = Ai∗. Then the blow-up

〈Ai : i < i∗〉 a 〈A′j : j ∈ J〉 a 〈Ai : i > i∗〉
is also an M -f.s. sequence.

The next lemma is not used later, but shows that if M � N , then decom-
posing N as an M -f.s. sequence gives a chain of elementary substructures
approximating N .

Lemma 2.9. Suppose M � N and 〈Ai : i ∈ I〉 is any M -f.s. sequence with
MAI = N . Then, for every initial segment I0 ⊆ I (regardless of whether or
not I0 has a maximum) MAI0 is an elementary substructure of N .

Proof. We apply the Tarski-Vaught criterion. Choose a formula φ(x, ā, m̄)
with ā from AI0 and m̄ from M such that N |= ∃xφ(x, ā, m̄). If some
c ∈ N \MAI0 realizes φ(x, ā, m̄), then as tp(c/MAI0) is finitely satisfied in
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M , there is also a solution in M . Otherwise, if there is a solution in MAI0 ,
there is nothing to check. �

The following argument is contained in the proof of [?Hanf, Part I Lemma
2.6], but the statement here is slightly more general. (The paper [?Hanf] is
divided into Part I and Part II, with overlapping numbering schemes.)

Proposition 2.10 (Extending the base). Suppose C ⊇M and 〈Ai : i ∈ I〉
is an M -f.s. sequence over C. For every D ⊇ C, there is D′ with tp(D′/C) =
tp(D/C) and 〈Ai : i ∈ I〉 is an M -f.s. sequence over D′.

Proof. As notation, choose disjoint sets { x̄i : i ∈ I } of variables, with lg(x̄i) =

lg(Ai) for each i ∈ I. For each i ∈ I, choose an ultrafilter Ui on M lg(Ai) such
that tp(Ai/A<iC) = Av(Ui, A<iC).

For a finite, non-empty t = { i1 < i2 < · · · < in } ⊆ I, let x̄t = x̄i1 . . . x̄in .
We will recursively define complete types wt(x̄t) ∈ Sx̄t(D) as follows:

• For t = { i∗ } a singleton, let wt(x̄t) := Av(Ui∗ , D).
• For |t| > 1, letting i∗ = max(t) and s = t \ { i∗ },

wt(x̄t) := ws(x̄s) ∪Av(Ui, Dx̄s)
That is, ā′t realizes wt if and only if ā′s realizes ws and, for every θ(x̄i∗ , d̄, ā

′
s),

θ(ā′i∗ , d̄, ā
′
s) holds if and only if { m̄ ∈M lg(Ai∗ ) : C � θ(m̄, d̄, ā′s) } ∈ Ui∗ .

It is easily checked that each wt(x̄t) is a complete type over D and,
arguing by induction on |t|, whenever t′ ⊆ t, wt′ is the restriction of wt to
x̄t′ . Thus, by compactness, w∗ :=

⋃
{wt(x̄t) : t ⊆ I non-empty, finite } is

consistent, and in fact, is a complete type over D. Choose any realization
〈A′i : i ∈ I〉 of w∗. Then, for each i ∈ I, tp(A′i/DA

′
<i) = Av(Ui, DA′<i).

Since D ⊇ C and tp(Ai/CA<i) = Av(Ui, CA<i), it follows that tp(〈A′i : i ∈
I〉/C) = tp(〈Ai : i ∈ I〉/C). Thus, it suffices to choose any D′ satisfying
〈A′i : i ∈ I〉D ≡C 〈Ai : i ∈ I〉D′. �

2.2. C ⊇M full for non-splitting.

Definition 2.11. We call C ⊇M full (for non-splitting over M) if, for every
n, every p ∈ Sn(M) is realized in C.

The relevance of fullness is that, whenever C ⊇M is full, every complete
type q ∈ S(C) has a unique extension to any set D ⊇ C that does not split
over M . Keeping in mind finite satisfiability as an analogue of non-forking,
the next lemma says that ‘types over C that are finitely satisfied in M are
stationary.’

Lemma 2.12 ([?Hanf, Part I Lemma 1.5]). Suppose C ⊇ M is full and
p ∈ S(C) is finitely satisfied in M . Then for any set D ⊇ C, there is a
unique q ∈ S(D) extending p that remains finitely satisfied over M .

Proof. In fact, we can easily describe q. A formula θ(x̄, d̄) ∈ q if and only
if θ(x̄, c̄) ∈ p for some (equivalently, for every) c̄ from C with tp(d̄/M) =
tp(c̄/M). The fact that q is well-defined is because, being finitely satisfied in
M , p does not split over M . �
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Lemma 2.13 ([?Hanf, Part I Observation 1.6]). Suppose C ⊇ M is full
and 〈A,B〉/C is an M-f.s. sequence over C. Partition B as B1B2 (not
necessarily convex). Then 〈A,B1, B2〉/C is an M -f.s. sequence over C if and
only if 〈B1, B2〉/C is an M -f.s. sequence over C.

Proof. Left to right is obvious. For the converse, we need to show that
tp(B2/B1AC) is finitely satisfied in M . To begin, by Proposition 2.10,
choose B′2 ≡B1C B2 with tp(B′2/B1AC) finitely satisfied in M . Note that

B1B
′
2 ≡C B1B2

Also, since 〈A,B〉/C is an M -f.s. sequence over C, we have both 〈A,B1B2〉/C
and (by Shrinking) 〈A,B1〉/C are M -f.s. sequences over C. By transitivity,
the last statement, coupled with tp(B′2/B1AC) finitely satisfied in M , implies
tp(B1B

′
2/AC) is finitely satisfied in M . Thus, by Lemma 2.12,

B1B
′
2 ≡AC B1B2

As tp(B′2/B1AC) finitely satisfied in M , so is tp(B2/B1AC). �

Lemma 2.14. Suppose C ⊇M is full and 〈A,B〉/C is an M -f.s. sequence
over C. Choose any ā1, ā2 from A and b̄1, b̄2 from B with tp(ā1/C) =
tp(ā2/C) and tp(b̄1/C) = tp(b̄2/C). Then tp(ā1b̄1/C) = tp(ā2b̄2/C).

Proof. Let p = tp(ā1/C). As tp(ā1/C) = tp(ā2/C), the map f : Cā1 → Cā2

fixing C pointwise with f(ā1) = ā2 is elementary. To prove the Lemma, it
suffices to show that b̄2 realizes f(p).

To see this, let b̄∗ be any realization of f(p) (anywhere in C). Then
tp(ā1b̄1/C) = tp(ā2b̄

∗/C). From this it follows that tp(b̄∗/C) = tp(b̄1/C) =
tp(b̄2/C), with the second equality by hypothesis. But also:

(1) tp(b̄∗/Cā2) is finitely satisfied in M since tp(ā1b̄1/C) = tp(ā2b̄
∗/C)

and tp(B/AC) is finitely satisfied in M ; and
(2) tp(b̄2/Cā2) is finitely satisfied in M since tp(B/AC) is finitely satis-

fied in M .

Applying Lemma 2.12 to the last three statements implies tp(b̄2/ā2C) =
tp(b̄∗/ā2C), i.e., b̄2 realizes f(p). �

We glean two results from Lemma 2.14. The first bounds the number of
types realized in an M -f.s. sequence, independent of either |I| or |Ai|.

Lemma 2.15. For any model M , for any M -f.s. sequence 〈Ai : i ∈ I〉, and
for every i∗ ∈ I, k ∈ ω, the number of complete k-types over A<i∗M realized
in A≥i∗ is at most i2(|M |).

Proof. Because of Condensation, it suffices to prove that for any model M
and for any M -f.s. sequence 〈A,B〉, at most i2(|M |) complete k-types are

realized in B. To see this, choose a full C0 ⊇ M with |C0| ≤ 2|M |. By
Proposition 2.10, choose C ⊇M with tp(C/M) = tp(C0/M) and 〈A,B〉 an
M -f.s. sequence over C. Choose any b̄, b̄′ ∈ Bk with tp(b̄/C) = tp(b̄′/C).
As both tp(b̄/AC) and tp(b̄′/AC) are finitely satisfied in M , it follows from
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Lemma 2.12 that tp(b̄/AC) = tp(b̄′/AC). As there are at most i2(|M |)
complete k-types over C, this suffices. �

The second is a refinement of the type structure of an M -f.s. sequence
over a full C ⊇M .

Definition 2.16. An M -f.s. sequence 〈Ai : i ∈ I〉/C is an order-congruence
over C if, for all i∗ ∈ I, for all i∗ ≤ i1 < i2 · · · < in, i∗ ≤ j1 < j2 < . . . jn
from I, and for all āk ∈ Aik , b̄k ∈ Ajk satisfying tp(āk/C) = tp(b̄k/C) for
k = 1, . . . , n, we have

tp(ā1, . . . , ān/CA<i∗) = tp(b̄1, . . . , b̄n/CA<i∗)

The following is essentially part of the statement of [?Hanf, Part I Lemma
2.6].

Proposition 2.17. For every model M , every M -f.s. sequence 〈Ai : i ∈ I〉
over any full C ⊇M is an order-congruence over C.

Proof. Fix i∗, i∗ ≤ i1 < . . . , in, i∗ ≤ j1 < · · · < jn, ā1, . . . , ān, and
b̄1, . . . , b̄n as in the hypotheses. By shrinking, for each 1 ≤ k < n, both
tp(āk+1/Cā1, . . . , āk) and tp(b̄k+1/Cb̄1, . . . , b̄k) are finitely satisfied in M . As
C ⊇M is full, by iterating Lemma 2.14 (n−1) times, we have tp(ā1, . . . , ān/C) =
tp(b̄1, . . . , b̄n/C). Also, both tp(ā1, . . . , ān/CA<i∗) and tp(b̄1, . . . , b̄n/CA<i∗)
are finitely satisfied in M , so tp(ā1, . . . , ān/CA<i∗) = tp(b̄1, . . . , b̄n/CA<i∗)
by Lemma 2.12. �

2.3. M-f.s. sequences and indiscernibles. In this subsection, we explore
the relation between M -f.s. sequences and indiscernibles. An M -f.s. sequence
need not be indiscernible (for example, the tuples can realize different types),
but when it is, it gives a special case of a Morley sequence in the sense of
[?Pierre].

We first show indiscernible sequences can always be viewed as M -f.s.
sequences over some model M .

Lemma 2.18 (extending [?Hanf, Part I Lemma 4.1]). Suppose (I,≤) is
infinite and I = 〈āi : i ∈ I〉 is indiscernible over ∅. (For simplicity, assume
lg(āi) is finite). Then there is a model M such that 〈āi : i ∈ I〉 is both
indiscernible over M and is an M -f.s. sequence.

Furthermore, if there is some B such that I is indiscernible over each
b ∈ B, then M may be chosen so that I additionally remains indiscernible
over Mb.

Proof. Expand the language to have built-in Skolem functions while keeping
I indiscernible, and end-extend I to an indiscernible sequence of order-type
I + ω∗. (For the ‘Furthermore’ sentence, note this can still be done so the
result is indiscernible over each b ∈ B.) Let I∗ be the new elements added,
and let M be reduct of the Skolem hull of I∗ to the original language. (If
I + I∗ were indiscernible over b, then I is indiscernible over Mb.) �



CHARACTERIZATIONS OF MONADIC NIP 9

Armed with this Lemma, we characterize when an infinite I = 〈āi : i ∈ I〉
is both an M -f.s sequence and is indiscernible over M . (A paradigm of an
indiscernible sequence over M that is not an M -f.s. sequence is where M is
an equivalence relation with infinitely many, infinite classes and 〈ai : i ∈ ω〉
is a sequence from some E-class not represented in M .)

Lemma 2.19. An infinite sequence I = 〈āi : i ∈ I〉 of n-tuples is both
indiscernible over M and an M-f.s. sequence if and only if there is an
ultrafilter U on Mn such that tp(āi/MA<i) = Av(U ,MA<i) for every i ∈ I.

Proof. Right to left is clear, so assume I is both indiscernible over M and
an M -f.s. sequence. As (I,≤) is infinite, it contains either an ascending
or descending ω-chain. For definiteness, choose J ⊆ I of order type ω.
To ease notation, we write āk in place of ājk . For each k ∈ ω and each

formula φ(x̄, b̄) ∈ tp(āk/MA<k), let Sk
φ(x̄,b̄)

= { m̄ ∈Mn : C � φ(āk, b̄) }. As

〈āk : k ∈ ω〉 is indiscernible overM , Sk
φ(x̄,b̄)

= S`
φ(x̄,b̄)

for all ` ≥ k, and because

it is an M -f.s. sequence,
⋃
{Sk

φ(x̄,b̄)
: k ∈ ω, φ(x̄, b̄) ∈ tp(āk/MA<k) } has the

finite intersection property. Choose any ultrafilter U on Mn containing every
Sk
φ(x,b̄)

. Thus, for any k ≤ ` < ω and φ(x̄, b̄) with b̄ ⊆ A<k,

φ(x̄, b̄) ∈ tp(ā`/MA<`) ⇔ Sφ(x̄,b̄) ∈ U ⇔ φ(x̄, b̄) ∈ Av(ā`/MA<`)

Finally, as J ⊆ I and I is indiscernible over M , an easy induction on lg(b̄)
gives the result. �

Using Lemma 2.19, we obtain a strengthening of Lemma 2.18. The lemma
below can be proved by modifying the proof of Lemma 2.10, but the argument
here is fundamental enough to bear repeating.

Lemma 2.20. If an infinite I = 〈āi : i ∈ I〉 is both indiscernible over M
and an M-f.s. sequence, then for any C ⊇ M , there is C ′ ⊇ M such that
tp(C ′/M) = tp(C/M) and I is both indiscernible over C ′ and an M-f.s.
sequence over C ′. Thus, if I is an infinite, indiscernible sequence over ∅,
then there is a model M and a full C ⊇M such that I is both indiscernible
over C and an M -f.s. sequence over C.

Proof. For the first sentence, given I, M and C, choose an ultrafilter U as
in Lemma 2.19. A routine compactness argument shows that we can find a
sequence 〈ā∗i : i ∈ I〉 such that tp(ā∗i /CA<i) = Av(U , CA∗<i) for every i ∈ I.
As we also have tp(āi : MA<i) = Av(U ,MA<i), an easy induction shows
that tp(I/M) = tp(I∗/M). Now any C ′ satisfying tp(IC ′/M) = tp(I∗C/M)
suffices.

For the second sentence, given I, apply Lemma 2.18 to get an M for which
I is both indiscernible over M and an M -f.s. sequence, and choose any full
C ⊇M . Then apply the first sentence to I, M , and C. �

Next, we recall the following characterization of indiscernibility. The
relevant concepts first appeared in the proof of Theorem 4.6 of [?Morley]
and a full proof appears in [?Shc, Lemma I, 2.5].
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Lemma 2.21. Suppose 〈Ai : i ∈ I〉 is any sequence of sets indexed by
a linear order (I,≤) and let B be any set. For each i ∈ I, fix a (possibly
infinite) enumeration āi of Ai and let pi(x̄) = tp(āi/BA<i). Then 〈āi : i ∈ I〉
is indiscernible over B if and only if

(1) For all i ≤ j, āj realizes pi; and
(2) Each pi does not split over B.

By contrast, if C ⊇ M and 〈Ai : i ∈ I〉/C is an M -f.s. sequence over C,
then (2) is satisfied, but (1) may fail. In the case where C ⊇M is full, (1)
reduces to a question about types over C.

Lemma 2.22. Suppose C ⊇M is full and 〈Ai : i ∈ I〉 is an M -f.s. sequence
over C. Then 〈Ai : i ∈ I〉 is indiscernible over C if and only if tp(Ai/C) =
tp(Aj/C) for all i, j ∈ I.

Proof. Left to right is clear. For the converse, fix i < j. By Lemma 2.21, it
suffices to show Aj realizes pi. But this is clear, as both tp(Ai/A<iC) and
tp(Aj/A<iC) are finitely satisfied in M and tp(Ai/C) = tp(Aj/C). Since
C ⊇M is full, tp(Aj/A<iC) = tp(Ai/A<iC) = pi by Lemma 2.12. �

In terms of existence of such sequences, we have the following.

Lemma 2.23. Suppose C ⊇M is full and p(x̄) ∈ S(C) is finitely satisfied
in M . Then for every (I,≤) there is an M -f.s. sequence 〈āi : i ∈ I〉 over C
of realizations of p, hence is also indiscernible over C.

Proof. By compactness it suffices to prove this for (I,≤) = (ω,≤). By

Fact 2.3(1), choose an ultrafilter U on M lg(x̄) and recursively let āi be a
realization of Av(U , Cā<i). It is easily checked that 〈āi : i ∈ ω〉/C is an
M -f.s. sequence over C with tp(āi/C) = p for each i. As C ⊇M is full, it is
also indiscernible over C by Lemma 2.22. �

3. The f.s. dichotomy

We begin this section with the central dividing line of this paper. Although
unnamed, the concept appears in Lemma II 2.3 of [?Hanf].

Definition 3.1 (f.s. dichotomy). T has the f.s. dichotomy if, for all models
M , all finite tuples ā, b̄ ∈ C, if tp(b̄/Mā) is finitely satisfied in M , then for
any singleton c, either tp(b̄/Māc) or tp(b̄c/Mā) is finitely satisfied in M .

It would be equivalent to replace ā, b̄ by sets A,B ⊂ C in the definition
above, and this form will often be used. Much of the utility of the f.s.
dichotomy is via the following extension lemma.

Lemma 3.2 ([?Hanf, Part I Claim 2.4]). Suppose T has the f.s. dichotomy
and 〈Ai : i ∈ I〉 is any M-f.s. sequence. Then for every c ∈ C, there is a
simple extension 〈A′j : j ∈ J〉 of 〈Ai : i ∈ I〉 that includes c that is also

an M -f.s. sequence. Moreover, if (I,≤) is a well-ordering with a maximum
element, we may take J = I.
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Proof. Fix any M -f.s. sequence 〈Ai : i ∈ I〉 and choose any singleton c ∈ C.
Let I0 ⊆ I be the maximal initial segment of I such that tp(c/AI0M) is
finitely satisfied in M . Note that I0 could be empty or all of I. If the
minimum element of (I \ I0) exists, name it i∗ and take J = I; otherwise, let
J = I ∪ {i∗}, where i∗ is a new element realizing the cut (I0, I\I0) and put
Ai∗ = ∅.

Let A′i∗ := Ai∗∪{ c } and A′i := Ai for all i 6= i∗. We claim that 〈A′i : i ∈ J〉
is an M -f.s. sequence. To see this, note that A′<i∗ = A<i∗ = AI0 while A′<j
properly extends AI0 for any j > i∗. Thus, tp(c/A<i∗M) is finitely satisfied
in M , but tp(c/A<jM) is not for every j > i∗.

We first show that tp(Ai∗c/A<i∗M) is finitely satisfied in M . This is
immediate if Ai∗ = ∅. If not and Ai∗ 6= ∅, by the f.s. dichotomy (with A∗i as
b̄, A<i∗ as ā, and c as c), we have that tp(Ai∗/cA<i∗M) is finitely satisfied
in M . But this, coupled with tp(c/A<i∗M) is finitely satisfied in M , would
imply tp(Ai∗c/A<i∗M) is finitely satisfied in M , a contradiction.

To finish, we show that for every j > i∗, tp(Aj/cA<jM) is finitely satisfied
in M . Again, if this were not the case, the f.s. dichotomy would imply
tp(cAj/A<jM) is finitely satisfied in M . But then, by Shrinking, we would
have tp(c/A<jM) finitely satisfied in M , contradicting our choice above.

For the ‘Moreover’ sentence, the only concern is if tp(c/AIM) is finitely
satisfied in M . But in this case we may take i∗ to be the maximal element
of I, rather than a new element in J\I. �

It is evident that Lemma 3.2 extends to M -f.s. sequences 〈Ai : i ∈ I〉/C
over an arbitrary base C ⊇M .

In [?BS, Theorem 4.2.6], the f.s. dichotomy appears as a statement about
the behavior of forking rather than non-forking. Namely, forking depen-
dence is totally trivial and transitive on singletons. We may derive similar
consequences for dependence from the f.s. dichotomy. This is stated in
[?Blum, Corollary 5.22], although missing the necessary condition of full C.

Lemma 3.3. Suppose T has the f.s. dichotomy, and fix ā, b̄, c,M � C.

(1) If tp(ā/Mc) and tp(c/Mb̄) are not finitely satisfiable in M , then
neither is tp(ā/Mb̄).

(2) tp(ā/Mb̄) is finitely satisfiable in M if and only if tp(a/Mb̄) is finitely
satisfied in M for all a ∈ ā.

(3) Let C ⊇M be full. Then tp(ā/Cb̄) is finitely satisfiable in M if and
only if tp(a/Cb) is finitely satisfied in M for all a ∈ ā, b ∈ b̄.

Proof. (1) If tp(ā/Mb̄) is finitely satisfiable in M , then by the f.s. dichotomy
either tp(ā/Mb̄c) or tp(āc/Mb̄) is as well. Shrinking then gives a contradic-
tion.

(2) By induction on lg(ā). Left to right is immediate, so assume tp(a/Mb̄)
is finitely satisfied in M for every a ∈ ā. Write ā = ā′a∗. By induction
we may assume tp(ā′/Mb̄) is finitely satisfied in M . By the f.s. dichotomy,
either tp(ā′a∗/Mb̄) is finitely satisfied in M and we are done immediately,
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or else tp(ā′/Mb̄a∗) is finitely satisfied in M , and we finish using transitivity
from Fact 2.3.

(3) Left to right is immediate by Shrinking, so assume tp(a/Cb) is finitely
satisfied in M for every a ∈ ā and b ∈ b̄. It follows from (2) that tp(ā/Cb) is
finitely satisfied in M for every b ∈ b̄. To conclude that tp(ā/Cb̄) is finitely
satisfied in M , we argue by induction on lg(b̄). Let b̄ = b̄′b∗, and by induction
assume the statement is true for b̄′.

By the f.s. dichotomy, either tp(ā/Mb̄′b∗) or tp(ā′b∗/Mb̄′) is finitely
satisfiable in M . In the first case we are finished immediately, and in the
second we finish by invoking Lemma 2.13. �

In the stable case, forking dependence is symmetric as well and so yields
an equivalence relation on singletons, which is used in [?BS] to decompose
models into trees of submodels. In general, the f.s. dichotomy shows finite
satisfiability yields a quasi-order on singletons when working over a full
C ⊇ M . Taking the classes of this quasi-order in order naturally gives an
irreducible decomposition of C over M in the sense of the next subsection,
but we sometimes wish to avoid having to work over a full C ⊇M .

3.1. Decompositions of models. In this subsection, we characterize the f.s.
dichotomy in terms of extending partial decompositions to full decompositions
of models.

Definition 3.4 (M -f.s. decomposition). Suppose X ⊆ C is any set.

• A partial M -f.s. decomposition of X is an M -f.s. sequence 〈Ai : i ∈ I〉
with

⋃
i∈I Ai ⊆ X.

• An M -f.s. decomposition of X is a partial M -f.s. decomposition with⋃
i∈I Ai = X.

• An M -f.s. decomposition of X is irreducible if, for every i ∈ I and for
every a, b ∈ Ai, neither tp(a/MA<ib) nor tp(b/MA<ia) are finitely
satisfied in M .

By iterating Lemma 3.2 for every c ∈ X for a given set X we obtain:

Lemma 3.5. Suppose that T has the f.s. dichotomy. For any set X ⊆ C
and any C ⊇M , any partial M -f.s. decomposition 〈Ai : i ∈ I〉/C of X has a
simple extension 〈A′j : j ∈ J〉/C to an M -f.s. decomposition of X over C. If

the sets {Ai : i ∈ I } were pairwise disjoint, we may choose {A′j : j ∈ J } to

be pairwise disjoint as well. Furthermore, if (I,≤) is a well-ordering with a
maximum element, we may take J = I.

Proposition 3.6. T has the f.s. dichotomy if and only if for all models
M,N � C (we do not require M ⊆ N) every partial M-f.s. decomposition
〈Ai : i ∈ I〉 of N has an irreducible M -f.s. decomposition of N extending it.

Proof. (⇐) Suppose partial decompositions extend, and let ā, b̄, c ∈ C,M ≺ C
with tp(b̄/ā) finitely satisfiable in M , and let N ≺ C with ā, b̄, c ∈ N . So
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〈ā, b̄〉 is an M -f.s. sequence, and can be extended to an M -f.s. decomposition
of N . After Shrinking, we obtain the conclusion of the f.s.-dichotomy.

(⇒) Given a partial M -f.s. decomposition 〈Ai : i ∈ I〉 of N , apply
Lemma 3.5 to get a simple extension 〈Bk : k ∈ K〉 that is an M -f.s. de-
composition of N . By Zorn’s Lemma, it will suffice to show that if there
is k ∈ K with a, b ∈ Bk and tp(b/B<ka) is finitely satisfiable in M , then
we may blow up the sequence so that a and b are in distinct parts. Given
such a, b ∈ Bk, we have 〈a, b〉/B<k is a partial M -f.s. decomposition of Bk
over B<k. Extending this to a full decomposition of Bk and then applying
Lemma 2.8 to prepend B<k and append B>k gives the result. �

Remark 3.7. We could do the above proof over some full C ⊇M to obtain
an irreducible M -f.s. decomposition that is also an order-congruence.

We note that at the end of [?BS], Baldwin and Shelah conjecture that mod-
els of monadically NIP theories should admit tree decompositions like those
they describe for monadically stable theories, but with order-congruences in
place of full congruences.

3.2. Preserving indiscernibility. We begin with some definitions. The
definition of dp-minimality given here may be non-standard, but it is proven
equivalent to the usual definition with Fact 2.10 of [?DGL].

Definition 3.8 (Indiscernible-triviality and dp-minimality). The first defi-
nition is meant to recall trivial forking.

• T has indiscernible-triviality if for every infinite indiscernible sequence
I and every set B of parameters, if I is indiscernible over each b ∈ B
then I is indiscernible over B.
• T is dp-minimal if, for all indiscernible sequences I = 〈āi : i ∈ I〉

over any set C, every b ∈ C induces a finite partition of the index
set into convex pieces I = I1 � I2 � · · · � In, with at most two Ij
infinite and every Ij = 〈āi : i ∈ Ij〉 is indiscernible over Cb.

As mentioned in the introduction, the notion of a theory admitting coding
was the central dividing line of [?BS]. We weaken the definition here to allow
the sequences to consist of tuples. Note that even the theory of equality
would admit the further weakening of also allowing C to consist of tuples.

Definition 3.9 (Admits coding (on tuples)). A theory T admits coding on
tuples if there is a formula φ(x̄, ȳ, z) (with parameters d̄), sequences I = 〈āi :
i ∈ I〉,J = 〈b̄j : j ∈ J〉, indexed by countable, dense orderings (I,≤), (J,≤),
respectively, and a set { ci,j | i ∈ I, j ∈ J }, such that I is indiscernible over⋃
J ∪ d̄, J is indiscernible over

⋃
I ∪ d̄, and C |= φ(āi, b̄j , ck,l) ⇐⇒ (i, j) =

(k, l).
We call 〈āi : i ∈ I〉, 〈b̄j : j ∈ J〉, { ci,j | i ∈ I, j ∈ J } , φ(x̄, ȳ, z) a tuple-

coding configuration, and let A =
⋃
{ āi : i ∈ I } , B =

⋃
{ b̄j : j ∈ J } and

C = { ci,j | i ∈ I, j ∈ J }.
T admits coding if we may take I and J to be sequences of singletons.
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A convenient variant for this subsection is a joined tuple-coding configu-
ration, which consists of a formula (with parameters) φ(x̄, ȳ, z), a sequence
〈āi : i ∈ I〉 indiscernible over the parameters of φ, indexed by an infi-
nite linear order (I,≤), and a set { ci,j | i < j ∈ I } such that for i < j,
C |= φ(āi, āj , ck,l) ⇐⇒ (i, j) = (k, l). Given a joined tuple-coding configura-
tion, indexed by a countable, dense (I,≤), we may construct a tuple-coding
configuration by keeping φ(x̄, ȳ, z) fixed, choosing open intervals I ′, J ′ ⊆ I
with I ′ � J ′, and letting I ′ = 〈āi : i ∈ I ′〉 and J ′ = 〈āj : j ∈ J ′〉. Conversely,
given a tuple-coding configuration with I = J , we may construct a joined
tuple-coding configuration by considering the indiscernible sequence whose
elements are 〈āib̄i : i ∈ I〉, restricting C to elements ci,j with i < j, and
replacing φ by φ∗(x̄x̄′, ȳȳ′, z) := φ(x̄, ȳ′, z).

The following configuration appears in [?Hanf, Part II Lemma 2.2], and
will appear as an intermediate between a failure of the f.s. dichotomy and a
tuple-coding configuration.

Definition 3.10. A pre-coding configuration consists of a φ(x̄, ȳ, z) with
parameters and a sequence I = 〈d̄i : i ∈ Q〉, indiscernible over the parameters
of φ, such that for some (equivalently, for every) s < t from Q, there is c ∈ C
such that

(1) C |= φ(d̄s, d̄t, c);
(2) C |= ¬φ(d̄s, d̄v, c) for all v > t; and
(3) C |= ¬φ(d̄u, d̄t, c) for all u < s.

We show the equivalence of the existence of these notions with the propo-
sition below. The proof of (4) ⇒ (1) in the following is essentially from
[?Hanf, Part II Lemma 2.3], while (3)⇒ (4) is based on [?ST, Lemma C.1].
The idea of (4)⇒ (1) is that when working over a full D ⊇M , types have a
unique “generic” extension by Lemma 2.12. In a failure of the f.s. dichotomy,
the extension of tp(c/D) to tp(c/Dab) is non-generic, and so c can in some
sense pick out a and b from a suitable sequence.

Proposition 3.11. The following are equivalent for any theory T .

(1) T has the f.s. dichotomy.
(2) T is dp-minimal and has indiscernible-triviality.
(3) T does not admit coding on tuples.
(4) T does not have a pre-coding configuration.

Proof. (1)⇒ (2): Suppose T has the f.s. dichotomy. We begin with showing
T is dp-minimal. Choose an indiscernible I = 〈āi : i ∈ I〉 over a set D and
any element b ∈ C. Applying Lemma 2.20 to I (in the theory TD naming
constants for each d ∈ D) choose a model M ⊇ D and a full set C ⊇ M
such that I is both indiscernible over C and an M -f.s. sequence over C. As
in the proof of Lemma 3.2, choose a maximal initial segment I0 ⊆ I such
that tp(b/AI0C) is finitely satisfied in M . If (I \ I0) has a minimal element
i∗, let I1 = (I \ (I0 ∪ { i∗ })), and let I1 = I \ I0 otherwise. As C is full, in
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either case we have an order-congruence of I ∪ { b }, so both I0 and I1 are
indiscernible over Cb, which suffices.

Next, we show indiscernible-triviality. We may assume I = 〈āi : i ∈ Q〉 is
ordered by (Q,≤). The argument here is more involved, as given an infinite,
indiscernible I and a set B over which I is indiscernible over each b ∈ B,
we cannot apply Lemma 2.20 and maintain the indiscernibility over each
b ∈ B. However, the proof of Lemma 2.18 allows us to find a model M such
that I is an M -f.s. sequence and is indiscernible over Mb for every b ∈ B.
Now, call an element b ∈ B high if tp(b/MI) is finitely satisfied in M . By
indiscernibility, if tp(b/MA<i) is finitely satisfied in M for any i, then b is
high. Let B1 ⊆ B denote the set of high elements, and let B0 := B \ B1

be the low (i.e., not high) elements of B. As T satisfies the f.s. dichotomy,
Lemma 3.5 implies I = 〈āi : i ∈ Q〉 has a simple extension (Definition 2.7)
to an M -f.s. sequence with universe (

⋃
I)B. Moreover, any such simple

extension will condense to 〈B0, I, B1〉.
Using this, we argue that I is indiscernible over MB in two steps. First,

we argue that I is indiscernible over MB0. To see this, fix i < j from Q
and let pi = tp(āi/A<iMB0). From the previous paragraph, I is an M -f.s.
sequence over MB0. So pi does not split over M , and so by Lemma 2.21 it
suffices to prove that āj realizes pi. Choose any φ(x̄, b̄, m̄) ∈ pi with m̄ from
M and b̄ from B0. To see that C |= φ(āj , b̄, m̄), choose an automorphism
σ ∈ Aut(C) fixing M and an initial segment 〈āi : i ∈ I0〉 pointwise that
induces an order-preserving permutation of I with σ(āi) = āj . Clearly,
C |= φ(āj , σ(b̄), m̄). It is easily seen that for every singleton b′ ∈ σ(b̄), I is
indiscernible over Mb′ and, as σ fixes AI0 pointwise, b′ is also low. Thus,
any simple extension to (

⋃
I)MB0σ(b̄) will condense to 〈B0σ(b̄)〉 a 〈āi :

i ∈ Q〉 a 〈B1〉. In particular tp(āj/Mb̄σ(b̄)) is finitely satisfied in M . Thus,
if C |= ¬φ(āj , b̄, m̄), by finite satisfiability there would be n̄ from M such
that C |= ¬φ(n̄, b̄, m̄) ∧ φ(n̄, σ(b̄), m̄), which is impossible since σ fixes M
pointwise. Thus, I is indiscernible over MB0.

Finally, to see that I is indiscernible over MB0B1, choose any i1 < . . . ik,
j1 < · · · < jk from Q, b̄ from MB0, and c̄ from B1 and assume by way
of contradiction that C |= ψ(āi1 , . . . , āik , b̄, c̄) ∧ ¬ψ(āj1 , . . . , ājk , b̄, c̄). Recall
〈B0, I, B1〉 is an M -f.s. sequence, so tp(c̄/M(

⋃
I)B0) is finitely satisfied in

M , and so the same formula is true with some m̄ from M replacing c̄. But
this contradicts that I is indiscernible over MB0. Thus, I is indiscernible
over MB.

(2)⇒ (3): Assume (2) holds, but (3) fails, so there is a joined tuple-coding
configuration 〈āi : i ∈ I〉, { ci,j | i < j ∈ I } , φ(x̄, ȳ, z) with (I,≤) countable,
dense. By naming constants, we may assume φ has no parameters. Choose
i < j from I. By dp-minimality, (I,≤) is partitioned into finitely many
convex pieces, indiscernible over ci,j , with at most two pieces infinite.

If āi, āj are in the same convex piece, then taking i < k < j we get
φ(āk, āj , ci,j), contradicting our configuration. So suppose āi and āj are in
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different pieces. Then one of the pieces must be infinite, so by symmetry
suppose the piece I ′ containing āi is. By indiscernible-triviality (āi : i ∈ I ′)
is indiscernible over ājci,j . But then picking some k ∈ I ′\ { i } again gives
φ(āk, āj , ci,j).

(3) ⇒ (4): Assume (4) fails, as witnessed by φ(x̄, ȳ, z), 〈āi : i ∈ Q〉,
and { ci,j : i < j ∈ Q }. Define a new sequence (b̄i : i ∈ Z) where b̄i =
ā3i−1ā3iā3i+1. Let

ψ(x̄−x̄x̄+, ȳ−ȳȳ+, z) := φ(x̄, ȳ, z) ∧ ¬φ(x̄−, ȳ, z) ∧ ¬φ(x̄, ȳ+, z)

Also let di,j = c3i,3j . It is easily verified that (b̄i : i ∈ Z), { di,j | i < j ∈ Z } , ψ
is a joined tuple-coding configuration. That T admits coding on tuples now
follows by the remarks following Definition 3.9.

(4) ⇒ (1): Assume that ā, b̄, M , and c form a counterexample to the f.s.
dichotomy, i.e., tp(b̄/Mā) is finitely satisfied in M , but neither tp(b̄c/Mā)
nor tp(b̄/Māc) are. As 〈ā, b̄〉 is an M -f.s. sequence, by Proposition 2.10
choose a full D ⊇M such that 〈ā, b̄〉/D is an M -f.s. sequence over D. Note
that by transitivity, we also have tp(āb̄/D) finitely satisfied in M .

Claim. There is c′ such that āb̄c′ ≡M āb̄c with tp(āb̄c′/D) finitely satisfied
in M .

Proof of Claim. We first argue that every finite conjunction of formulas from
tp(āb̄/D) ∪ tp(āb̄c/D) is satisfied in M . To see this choose φ(x̄, ȳ, d̄) ∈
tp(āb̄/D) and ψ(x̄, ȳ, z) ∈ tp(āb̄c/M) (φ and ψ may also have hidden param-
eters from M) and we will show that φ(x̄, ȳ, d̄) ∧ ψ(x̄, ȳ, z) has a solution
in M . Let θ(x̄, ȳ, d̄) := φ(x̄, ȳ, d̄) ∧ ∃zψ(x̄, ȳ, z). As tp(āb̄/D) is finitely
satisfied in M , θ(m̄, n̄, d̄) holds for some m̄, n̄ from M . Thus, as M � C and
C |= ∃zψ(m̄, n̄, z), there is k ∈M such that ψ(m̄, n̄, k) holds, which suffices.

Thus, by Fact 2.3(2), there is a complete type p(x̄, ȳ, z) ∈ S(D) extending
tp(āb̄/D)∪ tp(āb̄c/D) that is finitely satisfied in M . As tp(āb̄/D) ⊆ p, there
is an element c′ so that (ā, b̄, c′) realizes p, proving the claim. ♦

By Lemma 2.23, choose an M -f.s. sequence 〈āib̄ici : i ∈ Q〉 over D of
realizations of p that is indiscernible over D. Fix s < t from Q. Note that since
ā, b̄, c,M witness the failure of the f.s. dichotomy, neither tp(b̄scs/Dās) nor
tp(b̄s/Dāscs) are finitely satisfied inM . As notation, let ā<s =

⋃
{ āi : i < s }

and b̄>t =
⋃
{ b̄j : j > t }. Now, by Shrinking and Condensation,

〈ā<s, (āsb̄s), b̄t, b̄>t〉 is an M -f.s. sequence of length 4 over D.

As tp(b̄s/Dās) is finitely satisfied in D and D is full, by Lemma 2.13
〈ā<s, ās, b̄s〉 is an M -f.s. sequence over D, and so by Lemma 2.8,

〈ā<s, ās, b̄s, b̄t, b̄>t〉 is an M -f.s. sequence of length 5 over D.

As this sequence is an order-congruence, it follows that tp(b̄s/Dā<sāsb̄>t) =
tp(b̄t/Dā<sāsb̄>t), so we can choose c∗ such that

b̄scs ≡Dā<sāsb̄>t b̄tc
∗
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Thus, since tp(b̄s/Dāscs) is not finitely satisfied in M , neither is tp(b̄t/Dāsc
∗).

By contrast, for j, j′ > t, as both tp(b̄j/Dāscs) and tp(b̄j′/Dāscs) are finitely
satisfied in M and are equal by Proposition 2.17, the same is true of
tp(b̄j/Dāsc

∗) = tp(b̄j′/Dāsc
∗). Dually, since tp(b̄scs/Dās) is not finitely

satisfied in M , neither is tp(b̄sc
∗/Dās); and because tp(b̄scs/Dāi) is finitely

satisfied in M for every i < s, we also conclude tp(b̄sc
∗āi/D) = tp(b̄sc

∗āi′/D)
for all i, i′ < s by Proposition 2.17.

Finally, choose ρ1(x̄, ȳ, z), ρ2(x̄, ȳ, z) ∈ tp(ās, b̄t, c
∗/D) such that neither

ρ1(ās, ȳ, c
∗) nor ρ2(ās, ȳ, z) has realizations in M . Then, letting d̄i := āib̄i

for each i ∈ Q, I = 〈d̄i : i ∈ Q〉 is a pre-coding configuration with respect to
ρ1 ∧ ρ2 and c∗. �

Remark 3.12. The following observation will be useful in Section 5. A
tidy pre-coding configuration I = 〈d̄i : i ∈ Q〉, { cs,t : s < t ∈ Q } , φ(x̄, ȳ, z) is
one where C |= ¬φ(d̄i, d̄j , e) for every i < j and e ∈

⋃
I. The pre-coding

configuration constructed in (4)⇒ (1) is tidy, since, choosing M so I is an
M -f.s. sequence, C |= φ(d̄i, d̄j , e) implies tp(d̄j/d̄ie) and tp(d̄je/d̄i) are not
finitely satisfiable in M . But if e ∈ d̄k for k ≤ i then the former type is
finitely satisfiable in M , and if e ∈ d̄k for k > i, then the latter type is.

The tidiness property extends to the joined tuple-coding configuration
constructed in (3)⇒ (4) and so ultimately to the tuple-coding configuration
as well. That is, from a failure of the f.s. dichotomy, we construct a tuple-
coding configuration I,J , C, φ with C |= ¬φ(āi, b̄j , e) for every āi ∈ I, b̄j ∈ J ,
and e ∈

⋃
I ∪

⋃
J .

4. The main theorem

We recall the main theorem from the introduction. Note that whereas
Clauses (1) and (2) discuss monadic expansions of T , Clauses (3)-(6) are all
statements about T itself.

Theorem 4.1. The following are equivalent for a complete theory T with
an infinite model.

(1) T is monadically NIP.
(2) No monadic expansion of T admits coding.
(3) T does not admit coding on tuples.
(4) T has the f.s. dichotomy.
(5) For all M∗ |= T and M,N �M∗, every partial M -f.s. decomposition

of N extends to an (irreducible) M -f.s. decomposition of N .
(6) T is dp-minimal and has indiscernible-triviality.

The equivalences of (3)-(6) are by Proposition 3.6 and Proposition 3.11.
We note that (1)⇒ (2) is easy: Choose a monadic expansion C∗ that admits
coding, say via an L-formula φ(x, y, z) defining a bijection from the countable
sets A× B → C. By adding a new unary predicate for a suitable C0 ⊆ C,
the formula ψ(x, y) := ∃z ∈ C0φ(x, y, z) can define the edge relation of an
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arbitrary bipartite graph on A×B, and in particular of the generic bipartite
graph. Thus, T is not monadically NIP.

Thus, it remains to prove that (4)⇒ (1) and (2)⇒ (3), which are proved
in the next two subsections.

4.1. If T has the f.s. dichotomy, then T is monadically NIP. The
type-counting argument in this section is somewhat similar to that in [?Blum],
showing that monadic NIP corresponds to the dichotomy of unbounded
partition width versus partition width at most i2(ℵ0). Both arguments use
the tools from Sections 2 and 3 to decompose the model and count the types
realized in a part of the decomposition over its complement. However, while
Blumensath decomposes the model into a large binary tree, our decomposition
takes a single step.

Definition 4.2. Suppose I = { āi : i ∈ I } is any sequence of pairwise disjoint
tuples and suppose N ⊇

⋃
I is any model. An I-partition of N is any

partition N =
⊔
{Ai : i ∈ I } with āi ⊆ Ai for each i ∈ I.

Definition 4.3. For any N � C and A ⊆ N , let rtp(N,A) denote the
number of complete types over A realized by tuples in (N \A)<ω.

We will be primarily interested in the case where A is very large, and
rtp(N,A) is significantly smaller than |A|. The following lemma is similar
to Lemma 2.15, removing the requirement that the partition is convex but
adding a finiteness condition.

For the rest of this section, recall the notation AJ =
⋃
j∈J Aj from the

first part of Definition 2.4.

Lemma 4.4. If T has the f.s. dichotomy, then for every well-ordering (I,≤)
with a maximum element, for every indiscernible sequence I = { āi : i ∈ I }
of pairwise disjoint tuples and every N ⊇

⋃
I, there is an I-partition

{Ai : i ∈ I } of N such that rtp(N,AJ) ≤ i2(|T |) for every finite J ⊆ I.

Proof. By Lemma 2.20, choose a model M of size |T | and a full C ⊇M with

|C| ≤ 2|T | for which 〈āi : i ∈ I〉/C is an M -f.s. sequence over C. (Note that N
might not contain M .) By Lemma 3.5 choose a simple extension 〈Ai : i ∈ I〉
of 〈āi : i ∈ I〉 with

⊔
{Ai : i ∈ I } = N . Thus, {Ai : i ∈ I } is an I-partition

of N . For a given finite J ⊆ I and n̄ ∈ N\AJ , let n̄ ⊂ Ai1 ∪ · · · ∪ Aik
and let n̄ij = n̄ ∩ Aij . As 〈Ai : i ∈ I〉/C is an order-congruence over C by
Lemma 2.17, tp(n̄/CAJ) is determined by { tp(n̄ij/C) : 1 ≤ j ≤ k } and the
order type of the finite set { i1, . . . , ik } ∪ J . There are only finitely many

such order types, and as |C| ≤ 2|T |, there are at most i2(|T |) complete types
over C. So rtp(N,AJ) ≤ i2(|T |) for every finite J ⊆ I. �

On the other hand, if a theory T has the independence property, then no
uniform bound can exist.

Lemma 4.5. Suppose that T has IP, as witnessed by φ(x̄, y) with lg(x̄) = n

and lg(y) = 1. For every λ > 2|T | there is an order-indiscernible I = (ai :
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i ≤ λ), and a model N ⊇ I such that for every I-partition 〈Ai : i ≤ λ〉 of N ,
rtp(N,AI0) ≥ λ for some finite I0 ⊆ (λ+ 1).

Proof. In the monster model, choose an order-indiscernible I = (ai : i ≤ λ)
that is shattered, i.e., there is a set Y = { b̄s : s ∈ P(λ) } such that φ(b̄s, ai)
holds if and only if i ∈ s. Note that for distinct b̄, b̄′ ∈ Y , there is some ai ∈ I
such that tpφ(b̄/ai) 6= tpφ(b̄′/ai). Let N be any model containing I ∪

⋃
Y

and let 〈Ai : i ≤ λ〉 be any I-partition of N . As |I| = λ, while |Y | = 2λ, by
applying the pigeon-hole principle n times (one for each coordinate of b̄) one
obtains Y ′ ⊆ Y , also of size 2λ, and a finite I0 ⊆ I such that b̄ ∈ (AI0)n for

each b̄ ∈ Y ′. As λ > 2|T | and there are at most 2|T | types over I0, we can find
Y ∗ ⊆ Y ′ of size 2λ such that tp(b̄/I0) is constant among b̄ ∈ Y ∗. It follows
that tp(b̄/(I − I0)) 6= tp(b̄′/(I − I0)) for distinct b̄, b̄′ ∈ Y ∗. As Y ∗ ⊆ (AI0)n,
it follows that rtp(N,AI0) ≥ λ. �

To show that the behaviors of Lemma 4.4 and Lemma 4.5 cannot co-exist,
we get an upper bound on the number of types realized in a finite monadic
expansion. Such a bound is easy for quantifier-free types, and the next
lemma inductively steps it up to a bound on all types. The following two
lemmas make no assumptions about T .

For each k ∈ ω, define an equivalence relation ∼k on (N \A)<ω by: ā ∼k b̄
if and only if lg(ā) = lg(b̄) and tpφ(ā/A) = tpφ(b̄/A) for every formula

φ(z̄) of quantifier depth at most k. Clearly, tp(ā/A) = tp(b̄) if and only if
ā ∼k b̄ for every k. To get an upper bound on rtp(N,A), for each k ∈ ω, let
rk(N,A) = |(N \A)<ω/ ∼k |.

Lemma 4.6. For any N � C, A ⊆ N , and k ∈ ω, rk+1(N,A) ≤ 2rk(N,A).
Thus, rtp(N,A) ≤ iω+1(r0(N,A)).

Proof. The second sentence follows from the first as tp(ā/A) = tp(b̄/A) if
and only if ā ∼k b̄ for every k. For the first sentence, we give an alternate
formulation of ∼k to make counting easier. For each k ∈ ω, let Ek be the
equivalence relation on (N \A)<ω given by:

• E0(ā, b̄) if and only if lg(ā) = lg(b̄) and qftp(ā/A) = qftp(b̄/A); and
• Ek+1(ā, b̄) if and only if Ek(ā, b̄) and, for every c ∈ (N \A), there is
d ∈ (N \A) such that Ek(āc, b̄d), and vice-versa,

For each k, let c(k) := |(N \A)<ω/Ek|. It is clear that c(0) = r0(N,A) and

by the definition of Ek+1 we have c(k + 1) ≤ 2c(k) for each k, so the lemma
follows from the fact that Ek(ā, b̄) if and only if ā ∼k b̄, whose verification
amounts to proving the following claim.

Claim. If the quantifier depth of φ(z̄) is at most k, then for all partitions

z̄ = x̄ȳ, for all ē ∈ Alg(ȳ), and for all ā, b̄ ∈ (N \ A)lg(x̄), if Ek(ā, b̄), then
N |= φ(ā, ē)↔ φ(b̄, ē).

Proof of Claim. By induction on k. Say ψ(z̄) := ∃wφ(w, z̄) is chosen with
the quantifier depth of φ is at most k. Fix a partition z̄ = x̄ȳ and choose
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ē ∈ Alg(ȳ), ā, b̄ ∈ (N \ A)lg(x̄) with Ek+1(ā, b̄). Assume N |= ∃wφ(w, ā, ē).
There are two cases. If there is some h ∈ A such that N |= φ(h, ā, ē), then
N |= φ(h, b̄, ē) by the inductive hypothesis. On the other hand, if there is
c ∈ (N \A) such that N |= φ(c, ā, ē), use Ek+1(ā, b̄) to find d ∈ (N \A) such
that Ek(āc, b̄d). Thus, the inductive hypothesis implies N |= φ(d, b̄, ē), so
again N |= ψ(b̄, ē). ♦

�

The following transfer result is the point of the previous lemma. Again, it
will be used when rtp(N+, A) is significantly smaller than |A|.

Lemma 4.7. Let N ⊇ A be any model and let N+ = (N,U1, . . . , Uk) be
any expansion of N by finitely many unary predicates. Then rtp(N+, A) ≤
iω+1(rtp(N,A)).

Proof. For each n, expanding by k unary predicates can increase the number
of quantifier-free n-types by at most a finite factor, i.e. 2k, so r0(N+, A) =
r0(N,A) ≤ rtp(N,A). The result now follows from Lemma 4.6. �

Finally, we combine the lemmas above to obtain the goal of this subsection.

Proposition 4.8. If T has the f.s. dichotomy, then T is monadically NIP.

Proof. By way of contradiction assume that T is not monadically NIP, but
has the f.s. dichotomy. Let T+ be an expansion by finitely many unary
predicates that has IP. Choose a cardinal λ > iω+1(|T |). Let N+ |= T+

with N+ ⊇ I = (ai : i ≤ λ) as in Lemma 4.5, so for any I-partition of N+

there is I0 ⊆ (λ+ 1) with rtp(N+, AI0) > iω+1(|T |).
Let N be the L-reduct of N+. As I remains L-order-indiscernible, and

T has the f.s. dichotomy, choose an I-partition 〈Ai : I ≤ λ〉 of N as in
Lemma 4.4, so rtp(N,AJ) ≤ i2(|T |) for every J ⊆ (λ + 1). Since N+ is a
unary expansion of N , rtp(N+, AJ) ≤ iω+1(|T |) for every J ⊆ (λ+ 1), by
Lemma 4.7. This this contradicts our ability to find an I0 ⊆ (λ+ 1) from
the previous paragraph for the chosen I-partition of N+. �

Lemma 2.15 and the arguments in this subsection seem to indicate that,
for a generalization of the structural graph-theoretic notion of neighborhood-
width [?Gur] similar to Blumensath’s generalization of clique-width [?Blum],
monadic NIP should correspond to a dichotomy between bounded and
unbounded neighborhood-width.

4.2. From coding on tuples to coding on singletons. This subsection
provides the final step, (2)⇒ (3), in proving Theorem 4.1 by showing that if
T admits coding on tuples, then some monadic expansion admits coding (i.e.,
on singletons). For the result of this subsection, since T admitting coding
on tuples immediately implies T is not monadically NIP, we could finish by
[?BS, Theorem 8.1.8], which states that if T has IP then this is witnessed on
singletons in a unary expansion. But the number of unary predicates used
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would depend on the length of the tuples in the tuple-coding configuration,
which would weaken the results of Section 5.

Deriving non-structure results in a universal theory from the existence
of a bad configuration is made much more involved if the configuration can
occur on tuples. If one is willing to add unary predicates, arguments such as
that from [?BS] mentioned above will often bring the configuration down to
singletons. A general result in this case is [?Blum, Theorem 4.6] that (under
mild assumptions) there is a formula defining the tuples of an indiscernible
sequence in the expansion adding a unary predicate for each “coordinate
strip” of the sequence. The results of [?Sim21] indicate the configuration can
often be brought down to singletons just by adding parameters, instead of
unary predicates, but these arguments seem difficult to adapt to tuple-coding
configurations. Another approach, which we use here, is to take an instance
of the configuration where the tuples have minimal length, and argue that
the tuples then in many ways behave like singletons.

Definition 4.9. Given a tuple-coding configuration I = 〈āi : i ∈ I〉,J =
〈b̄j : j ∈ J〉, { ci,j | i ∈ I, j ∈ J } , φ(x̄, ȳ, z), indexed by disjoint countable
dense orderings (I,≤), (J ≤), an order-preserving permutation of (I,≤)
(resp. (J,≤)) naturally gives rise to permutation of A =

⋃
I (resp. B =

⋃
J ;

call such permutations of A and B standard permutations.
A tuple-coding configuration as above is regular if C |= φ(d̄, ē, ci,j) ↔

φ(σ(d̄), τ(ē), ci,j) whenever d̄ ⊆ A, ē ⊆ B (including cases with d̄ 6∈ I, ē 6∈ J ),
σ is a standard permutation of A corresponding to an element of Aut(I,≤)
fixing i, and τ is a standard permutation of B corresponding to an element
of Aut(J,≤) fixing j.

By Ramsey and compactness, if T admits coding on tuples via the formula
φ(x̄, ȳ, z), then it admits a regular tuple-coding configuration via the same
formula φ(x̄, ȳ, z).

Definition 4.10. Let 〈āi : i ∈ I〉, 〈b̄j : j ∈ J〉, { ci,j | i ∈ I, j ∈ J } , φ(x̄, ȳ, z)
be a tuple-coding configuration with (I,≤), (J,≤) countable, dense. The
pair (d̄, ē) with d̄ ⊆ A, ē ⊆ B is a witness for ck,` if there are open intervals
I ′ ⊆ I, J ′ ⊆ J with k ∈ I ′, ` ∈ J ′ such that for all k′ ∈ I ′, `′ ∈ J ′, we have
C |= φ(d̄, ē, ck′,`′) ⇐⇒ (k, `) = (k′, `′).

A tuple-coding configuration has unique witnesses up to permutation if for
every ci,j ∈ C, the only witnesses for ci,j are of the form (σ(āi), τ(b̄j)) for
some σ a permutation of āi and some τ a permutation of b̄j

Lemma 4.11. Let 〈āi : i ∈ I〉, 〈b̄j : j ∈ J〉, { ci,j | i, j ∈ I } , φ(x̄, ȳ, z) be a
regular tuple-coding configuration for T , with |x̄|+ |ȳ| minimal. Then this
configuration has unique witnesses up to permutation.

Proof. Suppose not, and let (d̄, ē) be a witness for ci,j , such that (d̄, ē) 6=
(σ(āi), τ(b̄j)) for any σ, τ . First, if either d̄ ∩ āi = ∅ or ē ∩ b̄j = ∅, then
regularity immediately implies that (d̄, ē) is not a witness. So let d̄∗ be the
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subsequence of d̄ intersecting āi, and ē∗ the subsequence of ē intersecting b̄j .
Either d̄∗ 6= d̄ or ē∗ 6= ē so assume the former.

Let I∗ ⊆ I be an open interval such that d̄ ∩
⋃

(āi : i ∈ I∗) = d̄∗. Let
φ∗(x̄∗, ȳ, z) be the formula obtained by starting with φ(d̄, ȳ, z), and then
replacing the subtuple d̄∗ with the variables x̄∗; so we have plugged the
elements of d̄\d̄∗ as parameters into φ. For each k ∈ I∗, let ā∗k be the
restriction of āk to the coordinates corresponding to d̄∗. Then 〈ā∗i : i ∈
I∗〉, 〈b̄j : j ∈ J〉, { ci,j | i ∈ I∗, j ∈ J } , φ∗(x̄∗, ȳ, z) is also a regular tuple-
coding configuration, contradicting the minimality of |x̄|+ |ȳ|. �

The following Lemma completes the proof of Theorem 4.1.

Lemma 4.12. Suppose T admits coding on tuples. Then T admits coding
in an expansion by three unary predicates.

Proof. Choose a tuple-coding configuration

Ā = 〈āi : i ∈ I〉, B̄ = 〈b̄j : j ∈ J〉, C = { ci,j | i ∈ I, j ∈ I } , φ(x̄, ȳ, z)

with |x̄|+ |ȳ| as small as possible. By the remarks following Definition 4.9.
we may assume this configuration is regular, so by Lemma 4.11, it has unique
witnesses up to permutation. Let L∗ = L ∪ {A,B,C } and let C∗ be the
expansion of C interpreting A as

⋃
Ā, B as

⋃
B̄, and C as itself. Let

φ∗(x, y, z) := A(x) ∧B(y) ∧ C(z)∧
∃x̄′ ⊆ A, ȳ′ ⊆ B(φ(xx̄′, yȳ′, z) ∧ ∀z′ ∈ C(z′ 6= z → ¬φ(xx̄′, yȳ′, z′)))

Let ai be the first coordinate of āi, and bj the first coordinate of b̄j . Then
A1 = { ai : i ∈ I } , B1 = { bj : j ∈ J }, and C witness coding in T ∗ = Th(C∗)
via the L∗-formula φ∗(x, y, z). �

5. Finite structures

In this section, we restrict the language L of the theories we consider to
be relational (i.e., no function symbols) with only finitely many constant
symbols.

Definition 5.1. For a complete theory T and M |= T , Age(M), the isomor-
phism types of finite substructures of M does not depend on the choice of
M , so we let Age(T ) denote this class of isomorphism types.

The growth rate of Age(T ) (sometimes called the profile or (unlabeled)
speed) is the function ϕT (n) counting the number of isomorphism types with
n elements in Age(T ).

We also investigate Age(T ) under the quasi-order of embeddability.We say
Age(T ) is well-quasi-ordered (wqo) if this class does not contain an infinite
antichain, and we say Age(T ) is n-wqo if Age(M∗) is wqo for every expansion
M∗ of any model M of T by n unary predicates that partition the universe.

The definition of n-wqo is sometimes given for an arbitrary hereditary
class C rather than an age, with C n-wqo if the class C∗ containing every
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partition of every structure of C by at most n unary predicates remains wqo.
Our definition is possibly weaker, but then its failure is stronger.

Example 1. Let T = Th(Z, succ). Then Age(T ) is wqo, but not 2-wqo,
since Age(T ) contains arbitrarily long finite paths, and marking the endpoints
of these paths with a unary predicate gives an infinite antichain.

By contrast, if T = Th(Z,≤), then Age(T ) can be shown to be n-wqo for
all n.

The following lemma shows that when considering n-wqo, adding finitely
many parameters is no worse than adding another unary predicate.

Lemma 5.2. Suppose Age(M) is (n+ 1)-wqo. If M∗ is an expansion of M
by finitely many constants, then Age(M∗) is n-wqo.

Proof. Suppose an expansion by k constants is not n-wqo, as witnessed
by an infinite antichain {M+

i }i∈ω in a language L+ expanding the initial
language by the k constants and by n unary predicates. Let M∗i be the
structure obtained from M+

i by forgetting the k constants, but naming their
interpretations by a single new unary predicate. As Age(M) is (n+ 1)-wqo,
{M∗i }i∈ω contains an infinite chain M∗i1 ↪→M∗i2 ↪→ . . . under embeddings. As
there are only finitely many permutations of the constants, some embedding
in the chain must preserve them, contradicting that {M+

i }i∈ω is an antichain.
�

In both Theorem 5.3 and 5.6, the assumption that T has quantifier
elimination is only used to get that the formula witnessing that T admits
coding on tuples is quantifier-free, and the formula witnessing the order
property in the stability part of Theorem 5.6, so the hypotheses of the
theorems can be weakened to only these specific formulas being quantifier-free.
This weakened assumption is used in [?ST]. From the proof of Proposition
3.11, if the failure of the f.s. dichotomy is witnessed by quantifier-free
formulas, then the formula witnessing coding on tuples will be quantifier-free
as well.

Theorem 5.3. If a complete theory T has quantifier elimination in a rela-
tional language with finitely many constants is not monadically NIP, then
Age(T ) has growth rate asymptotically greater than (n/k)! for some k ∈ ω
and is not 4-wqo.

Proof. Since T is not monadically NIP, let

〈āi : i ∈ I〉, 〈b̄j : j ∈ J〉, { ci,j | i ∈ I, j ∈ J } , φ(x̄, ȳ, z)

be a regular tuple-coding configuration with unique witnesses up to permu-
tation. The only place we use T has QE is to choose φ quantifier-free. Let
L∗ expand by unary predicates for A,B, and C as well as constants for the
parameters of φ, and let φ∗ be as in the proof of 4.12. Let A ⊆ Age(T ∗) be
the set of finite substructures that can be constructed as follows.

(1) Pick X ⊂fin I, Y ⊂fin J , and E ⊂ X × Y .
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(2) Start with { āi : i ∈ X } ∪ { b̄j : j ∈ Y } ∪ { ci,j | (i, j) ∈ E }.
(3) For every point ci,j added in the previous step, add the four elements

ci±ε,j and ci,j±ε, where i± ε are closer to i than any other element of
X, and j ± ε are closer to j than any other element of Y .

(4) Add the parameters of φ∗.

Claim. For any M ∈ A and a, b, c ∈M , C |= φ∗(a, b, c) ⇐⇒ M |= φ∗(a, b, c).

Proof of Claim. Since φ is quantifier-free, it remains to check that if the
existential quantifiers in φ∗ are witnessed in C and C |= φ∗(a, b, c) then they
are witnessed in M , and if the universal fails in C then it fails in M . From
the unary predicates at the beginning of φ∗, we may let a ∈ āi, b ∈ b̄j , and
c = ck,`. If C |= φ(a, b, c), the only tuple in C that can witness x̄′ is the rest
of the tuple āi, which will be in M because it only contains full tuples, and
similarly for witnessing ȳ′. Since our configuration has unique witnesses up
to permutation, if the universal quantifier fails in C, this is witnessed by an
element ck′,`′ with i − ε ≤ k′ ≤ i + ε and j − ε ≤ `′ ≤ j + ε. By regularity,
this failure is also witnessed by some element in { ci±ε,j , ci,j±ε }. ♦

Given a bipartite graph G with n edges and no isolated vertices, we may
encode it as a structure MG ∈ A by starting with tuples āi for each point
in one part and tuples b̄j for each point in the other part, and including
ck,` whenever we want to encode an edge between āk and b̄`. Note that
|MG| = O(n), and this encoding preserves isomorphism in both directions.
In the proof of [?Rap, Theorem 1.5], the asymptotic growth rate of such
graphs is shown to be at least (n/5)!, which gives the desired growth rate
for Age(T ∗) with the constant k depending on the length of the tuples in
the tuple-coding configuration. Since expanding by finitely many unary
predicates and constants increases the growth rate by at most an exponential
factor, we also get the desired growth rate for Age(T ).

Furthermore, if MH embeds into MG, then H must be a (possibly non-
induced) subgraph of G. So we get that Age(T ∗) is not wqo by encoding
even cycles. We expanded by three unary predicates, and by Lemma 5.2 the
parameters may be replaced by another unary predicate while still preserving
the failure of wqo, so we get that Age(T ) is not 4-wqo. �

Remark 5.4. There is a homogeneous structure, with automorphism group
S∞WrS2 in its product action, that is not monadically NIP and whose
growth rate is the number of bipartite graphs with a prescribed bipartition,
n edges, and no isolated vertices. So the lower bound in this theorem cannot
be raised above the growth rate of such graphs. Precise asymptotics for this
growth rate are not known, although it is slower than n! and [?CPS, Theorem
7.1] improves Macpherson’s lower bound to ( n

logn2+ε )
n for every ε > 0.

If Conjecture 1 from the Introduction (in particular (1)⇒ (2)) is confirmed,
then the lower bound on the growth rate in Theorem 5.3 would also confirm
[?Rap, Conjecture 3.5] that for homogeneous structures there is a gap from
exponential growth rate to growth rate at least (n/k)! for some k ∈ ω.
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Theorem 5.3 is somewhat surprising. Since passing to substructures can
be simulated by adding unary predicates, it is clear that if T is monadically
tame, then Age(T ) should be tame. However, unary predicates can do
more, so it seems plausible that Age(T ) could be tame even though T is not
monadically tame. Our next theorem gives some explanation for why this
does not occur, at least when assuming quantifier elimination.

First we need to define stability and NIP for hereditary classes. The
following definition is standard and appears, for example, in [?ST, §8.1].

Definition 5.5. For a formula φ(x̄, ȳ) and a bipartite graph G = (I, J, E),
we say a structure M encodes G via φ if there are sets A = { āi | i ∈ I } ⊆
M |x|, B = { b̄j | j ∈ J } ⊆M |y| such that M |= φ(āi, b̄j)⇔ G |= E(i, j).

A class of structures C has IP if there is some formula φ(x̄, ȳ) such that for
every finite, bipartite graph G = (I, J, E), there is some MG ∈ C encoding G
via φ. Otherwise, C is NIP.

A class of structures C is unstable if there is some formula φ(x̄, ȳ) such
that for every finite half-graph G, there is some MG ∈ C encoding G via φ.
Otherwise, C is stable.

Equivalently, by compactness arguments, C is NIP (resp. stable) if and
only if every completion of Th(C), the common theory of structures in C, is.
Note that it suffices to witness that C has IP or is unstable using a formula
with parameters, since we can remove them by appending the parameters to
each āi.

The sort of collapse between monadic NIP and NIP in hereditary classes
observed in the next theorem occurs for binary ordered structures [?ST],
since there the formula giving coding on tuples is quantifier-free. It also
occurs for monotone graph classes (i.e. specified by forbidding non-induced
subgraphs), where NIP actually collapses to monadic stability, and agrees
with nowhere-denseness [?AA].

Theorem 5.6. Suppose that a complete theory T in a relational language
with finitely many constants has quantifier elimination. Then Age(T ) is NIP
if and only if T is monadically NIP, and Age(T ) is stable if and only if T is
monadically stable.

Proof. We first consider the NIP case.
(⇐) Suppose Age(T ) has IP, as witnessed by the formula φ(x̄, ȳ). By

compactness, there is a model N of the universal theory of T in which
φ encodes the generic bipartite graph. But then N is a substructure of
some M |= T , and naming a copy of N in M by a unary predicate U and
relativizing φ to U gives a unary expansion of M with IP.

(⇒) Suppose T is not monadically NIP, witnessed by a tuple-coding config-
uration I = (āi : i ∈ I),J = (b̄j : j ∈ J), C = { ci,j | i ∈ I, j ∈ J } , φ(x̄, ȳ, z),
with φ quantifier-free and containing parameters m̄. By Remark 3.12, we
may also assume the configuration is tidy. For any bipartite graph G, let
MG ∈ Age(T ) contain m̄, tuples from I and J corresponding to the two
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parts of G, and an element of ci,j for each edge of G so that R∗(x̄, ȳ; m̄) :=
∃z ∈ C(φ(x̄, ȳ, z; m̄)) encodes G on I(MG) × J (MG). But by tidiness,
R(x̄, ȳ; m̄) := ∃z(φ(x̄, ȳ, z; m̄) ∧ z 6∈ m̄) encodes G on I(MG) × J (MG) as
well.

For the stable case, the backwards direction is the same except using the
infinite half-graph in place of the generic bipartite graph. For the forwards
direction, if T is unstable then by quantifier-elimination Age(T ) is also
unstable. If T is stable but not monadically stable, then by [?BS, Lemma
4.2.6] T is not monadically NIP, so we are finished by the NIP case. �
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