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Abstract

We introduce the notion of strong p-semi-regularity and show
that if p is a regular type which is not locally modular then any p-
semi-regular type is strongly p-semi-regular. Moreover, for any such
p-semi-regular type, “domination implies isolation” which allows us
to prove the following: Suppose that T is countable, classifiable and
M is any model. If p ∈ S(M) is regular but not locally modular and
b is any realization of p then every model N containing M that is
dominated by b over M is both constructible and minimal over Mb.

1 Introduction

In obtaining the uncountable spectrum of any classifiable theory T in
[2], localizations of ω-stability near certain regular types were consid-
ered. A regular type p ∈ S(M) over a countable M is locally totally
transcendental (locally t.t.) if it is not orthogonal to a q ∈ S(M)
that is strongly regular and for which there is a constructible (and
hence prime) model over M and any realization of q. There are ex-
amples of depth zero non-trivial regular types in classifiable theories
which are not locally t.t (see for instance Example 2.3). We intend to
consider the manner in which models dominated by such types are
constructed in future papers. In this paper, we concentrate on non-
locally modular regular types p and prove that they are all locally t.t.
in a very strong way. The two main results build on the dichotomy
theorem of Hrushovski and Shelah in [4]. Here, we prove that if a
stationary q ∈ S(A) is p-semiregular then
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• q is strongly p-semiregular (see Definition 3.1); and

• q is depth-zero like and “domination implies isolation” (DI),
(see Definitions 5.12 and 6.2) hence if q is based on a model M
then there is a constructible model N ⊇Mb for any realization
b of q|M , and moreover, any N ⊇ Mb that is dominated by b
over M is constructible.

It is this last result which produces in particular the following easy
to state theorem:

Theorem 5.17 Suppose that T is classifiable andM is any model. If
p ∈ S(M) is regular but not locally modular and b is any realization
of p then every model N containing M that is dominated by b over
M is both constructible and minimal over Mb.

Section 2 contains some background information and as well there
is an appendix (section 7) with a review of basic geometric stability
theory. Section 3 contains the introduction of the notion of strongly
semi-regular types and before proceeding to the main theorem, we
provide some applications in section 4. The main theorem is found
in section 5 and the paper proper concludes with an examination
of other circumstances under which domination implies isolation in
section 6.

2 Preliminaries and historical back-

ground

One of the major accomplishments of stability theory was Shelah’s
proof of the Main Gap in [10] where the notion of classifiable was
introduced.

Definition 2.1 A complete theory T in a countable language is clas-
sifiable if T is superstable, has prime models over pairs (PMOP) and
does not have the dimension order property (NDOP).

We assume that the reader is familiar with superstability and
adopt the usual convention when working with stable theories that
we are working in a large, saturated model C of the theory and all
models mentioned are small elementary submodels of C, sets are small
subsets of C and tuples are from C. We will also assume that T
eliminates imaginaries i.e. T = T eq.

We include for the reader’s convenience an appendix at the end of
this paper where we recall many of the basic definitions and notions
from classification theory which we will refer to throughout.
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The two properties, NDOP and PMOP, refer to independent
triples M = (M0,M1,M2) of models of T , where M0 ⊆ M1, M0 ⊆
M2, andM1 ⌣

M0

M2. A superstable theory does not have the dimension

order property (NDOP) if, for every triple M of a-saturated models,
the a-prime model M∗ over M1M2 (which exists in any superstable
theory) is minimal among all a-saturated models containing M1M2.
Shelah proves that NDOP is equivalent to the statement that any
regular type q non-orthogonal to M∗ is either non-orthogonal to M1

or M2.
A superstable theory T has prime models over pairs (PMOP) if,

for any independent triple (M0,M1,M2) of models, there is a con-
structible1 model over M1M2.

After Shelah defined PMOP, Harrington gave another treatment,
which was developed in [1]. Given two independent triples M =
(M0,M1,M2), N = (N0, N1, N2) of models, say that N extends M
if M0 ⊆ N0, N0 ⌣

M0

M1M2, and Ni is dominated by Mi over N0 for

i = 1, 2. Call a strong type stp(b/M1M2) V -isolated if b ⌣
M1M2

N1N2

for every extension N of M. Among countable superstable theories
with NDOP, PMOP is equivalent to “every V -isolated strong type is
isolated.”

This notion of V -isolation will not be used directly in the paper,
but it is an example of how, in classifiable theories, certain forms
of domination or “weak” isolation, imply actual isolation. This is a
theme that occurs throughout the paper and is highlighted in section
6.

In [9] but building extensively on [10], Shelah and Buechler prove
that among complete countable theories T , T is classifiable if and
only if every model is prime and minimal over an independent tree
of countable, elementary substructures. We shall call such a tree a
classifying tree.

Since then, there has been a considerable amount of work analyz-
ing the ‘fine structure’ of classifiable theories. The fine structure to a
large extent revolves around understanding the leaves of classifying
trees. The leaves are controlled by depth zero types and so we remind
the reader of the definition (for more definitions and classical results
see the appendix, section 7).

Definition 2.2 A regular type p in a superstable theory is said to
have depth zero if for any a-model M on which p is based and any
realization b of p|M , any type q over M [b] (the a-saturated prime

1Recall that a model N is constructible over a set B if its universe can be enumerated
as {ci : i < α} with tp(ci/B ∪ {cj : j < i}) isolated for each i. Any two constructible
models over B are isomorphic.
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model over Mb), is non-orthogonal to M i.e. p does not support a
regular type.

A leaf is a triple (M, b,N) where M ⊂ N , b ∈ N , tp(b/M) is regular
and depth zero, and N is dominated by b over M . As one can imag-
ine, the computation of the uncountable spectrum of a countable
theory depends on, among other things, understanding the isomor-
phism types of leaves that appear in the classifying trees of models.
Through the coarseness of cardinal arithmetic, in [2], it was not nec-
essary to determine all possible isomorphism types of leaves in order
to determine the uncountable spectra of countable theories. Still, the
techniques available from classification theory are suitable to do this
and demonstrate a deeper understanding of the structure of models of
countable, classifiable theories. In this paper and subsequent papers,
we intend to explore the isomorphism types of leaves (M, b,N) at
least when tp(b/M) is non-trivial; in a classifiable theory, non-trivial
types necessarily have depth zero. We recall two separate facts about
leaves that were known before this investigation.

First of all, if (M, b,N) is a leaf in a classifiable theory, tp(b/M) is
non-trivial and M ⊆a C (all strong types of finite tuples from C over
finite tuples in M are realized in M) then the isomorphism type of
N is determined up to isomorphism over M ; see [10]. Of course such
an M would typically have size at least the continuum but this still
shows that the geometry of tp(b/M) plays a role in the isomorphism
types of leaves.

Secondly, recall that if T is countable and stable, then for any set
A, there is an ℓ-constructible model N over A (see Definition in Sec-
tion 7.3). In particular, if M ⊂ N and N is ℓ-constructible over Mb,
then N is dominated by b over M . In fact, if T is countable, super-
stable, and NDOP, and (M, b,N) is a leaf then N is ℓ-constructible
over Mb. This doesn’t say that the isomorphism type of N is de-
termined by Mb but it does put constraints on how such N can be
built.

Our goal is to measure the extent to which these results can be
extended to constructible models assuming classifiability. Within the
context of ω-stable theories, this is easy. As ω-stable theories have
constructible models over any set, an ω-stable theory is classifiable
if and only if it has NDOP. For such theories, if (M, b,N) is a leaf
then N is constructible over Mb. Unfortunately, for an arbitrary
classifiable theory, there are leaves (M, b,N) for which N is not con-
structible over Mb as this following example shows.

Example 2.3 The language will consist of countably many sorts Un

and a collection of relations Rn
η for η ∈ 2<ω for n ∈ N . There will also
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be a function +n for each n. Between sorts Un+1 and Un there will
be a function fn. The canonical model of our theory in this language
is as follows:

1. Un will be interpreted as the product of n + 1 many copies of
2ω;

2. Rn
η will hold of an n+1-tuple x0, . . . , xn iff η is an initial segment

of xn;

3. +n is interpreted as coordinatewise addition modulo 2, and

4. fn is the projection onto the first n coordinates.

The theory T of this structure is classifiable; in fact, it is superstable
and unidimensional but not ω-stable. Now suppose thatM is a model
of T and N is an elementary weight one extension of M - the type of
thing that would happen with leaves on a classifying tree. The claim
is that if b ∈ N \M is any finite tuple then N is not constructible over
M . To see this, suppose we have such a b. By presence of addition in
all the sorts and the model M , we can assume that b is a singleton
in some sort Un. But then if one considers the preimage of b under
fn, one sees that this formula in the sort Un+1 does not contain an
isolated type - the predicates Rn

η preclude this.
This example is suggestive of the result we will prove in subse-

quent papers: if we don’t restrict ourselves to finite tuples then of
course N is determined by making a coordinated choice of elements
from each sort.

In the example, all the regular types are locally modular (non triv-
ial). It is not clear in advance that this is important but in this paper
we will show that if (M, b,N) is a leaf in a countable, classifiable the-
ory and tp(b/M) is not locally modular then N is constructible over
Mb.

3 Strongly p-semiregular types

Definitions of semi-regular types, p-simplicity and other related no-
tions can be found in the appendix.

Definition 3.1 A stationary type q ∈ S(B) is strongly p-semiregular
of weight k > 0 if q is p-semiregular of weight k and there is a p-
simple formula θ(x) ∈ q of weight k such that if d realizes θ and
C ⊇ B with d⌣

B
C and wp(d/C) = wp(q), then tp(d/C) = q|C, the

non-forking extension of q to S(C).

The goal of this whole section is to prove the following Theorem.
Its proof is patterned after the argument in [4], where Hrushovski and
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Shelah prove that in a classifiable theory, every non-locally mod-
ular stationary, regular type is strongly regular (i.e., strongly p-
semiregular of p-weight one). We will refer to precise Lemmas in
their paper quite a few times in this section. When there is a risk of
ambiguity, these Lemmas will be denoted as “Lemma x.y[4]”.

Theorem 3.2 If T is classifiable and p is a non-locally modular
regular type, then every stationary p-semiregular type is strongly p-
semiregular.

Remark 3.3 It appears that all is needed is T superstable, PMOP,
and p is non-locally modular of depth zero.

Remark 3.4 By the open mapping theorem, this notion is paral-
lelism invariant. In particular, if d⌣E with tp(d/∅) stationary, then

if tp(d/E) is strongly p-semiregular via θ(x, ē), then tp(d/∅) will be
strongly p-semiregular via dryθ(x, y), where r = stp(e/∅).

We will use this Remark as justification for freely adding inde-
pendent parameters in many places.

3.1 Triples

In this subsection, T is superstable and p is a stationary regular type
over ∅. We adopt the data structure of a triple and then show that a
given triple can be massaged to get matching triples with more and
more desirable properties. The key will be to obtain a minimal triple
as a normal cover of a given one.

Definition 3.5 • A triple is a sequence (a, b, C) such that a, b ∈
D(p,C), i.e., stp(ab/C) is p-simple.

• A triple (a, b, C) is normal if the three strong types stp(ab/C),
stp(a/Cb), and stp(b/Ca) are all p-semiregular.

• A triple (a, b, C) is p-disjoint if clp(Ca) ∩ clp(Cb) = clp(C).

• Two triples (a, b, C), (a′, b′, C ′) are matching if wp(ab/C) =
wp(a

′b′/C ′), wp(a/Cb) = wp(a
′/C ′b′), and wp(b/Ca) = wp(b

′/C ′a′).

There is a canonical way of extending a p-disjoint triple (a, b, C)
to a matching, normal p-disjoint triple (a′, b′, C ′).

Definition 3.6 A soft extension of a triple (a, b, C) is a triple (a′, b′, C ′)
such that

1. a′b′C ′ ⊆ dcl(abC);
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2. C ⊆ C ′ ⊆ clp(C) with C ′ \ C finite and C ′
⌣
C
ab

3. a ⊆ a′ ⊆ clp(C
′a) and b ⊆ b′ ⊆ clp(C

′b).

Note that clp(C
′) = clp(C), clp(C

′a′) = clp(Ca), and clp(C
′b′) =

clp(Cb) in any soft extension.

Lemma 3.7 (Normalization) Given any (a, b, C), there is a soft
extension to a matching, normal triple (a′, b′, C ′), called the normal-
ization of (a, b, C). If (a, b, C) is p-disjoint, then (a′, b′, C ′) will be
p-disjoint as well.

Proof. First, apply Lemma 7.14 to ab/C to get C ′ ⊆ dcl(Cab)∩
clp(C) such that stp(ab/C ′) is p-semi-regular. Note that clp(C

′) =
clp(C), clp(C

′a) = clp(Ca), and clp(C
′b) = clp(Cb). Next, apply the

Lemma to b/aC ′ to get a′ and stp(b/C ′a′) p-semi-regular, and fi-
nally apply the Lemma to a′/C ′b to get b′. It is easily checked that
(a′, b′, C ′) is normal and matches (a, b, C). The preservation of p-
disjointness is clear because of the equality of the p-closed sets men-
tioned above. ✷

Next we describe three ways of extending a given triple (a, b, C)
to a larger, matching (a′, b′, C ′) that preserves p-disjointness.

Definition 3.8 A simple extension of a triple (a, b, C) is any of:

1. (a∗, b, C), where a ⊆ a∗ ⊆ clp(Ca);

2. (a, b∗, C), where b ⊆ b∗ ⊆ clp(Cb);

3. (a, b, C∗), where C∗ ⊇ C and C∗
⌣
C
ab.

Lemma 3.9 Given any p-disjoint, normal (a, b, C), the normaliza-
tion (a′, b′, C ′) of any simple extension is a p-disjoint, matching ex-
tension of (a, b, C).

Proof. That all three species of simple extensions are matching
is clear. Next, we show that each of the simple extensions preserves
p-disjointness. This is clear for the first two, as clp(Ca

∗) = clp(Ca)
in the first case and clp(Cb

∗) = clp(Cb) in the second. As (a, b, C)
normal implies stp(ab/C) is p-semiregular, p-disjointness of the third
species is preserved by Lemma 7.20.

The Lemma now follows from Lemma 3.7. ✷

Definition 3.10 Suppose that (a, b, C) is a p-disjoint normal triple.

7



• A normal cover is any p-disjoint normal (a′, b′, C ′) obtained as
a sequence of extensions as in Lemma 3.9.

• The strength of (a, b, C) which we denote by α(a, b, C), is equal
toR∞(a/bb′C), where b′ is (any) element satisfying stp(b′/Ca) =
stp(b/Ca) and b′⌣

Ca
b. (This is well-defined, as stp(abb′/C) is in-

dependent of our choice of b′.)

• A normal triple (a, b, C) is minimal if α(a, b, C) ≤ α(a′, b′, C ′)
for all of its normal covers (a′, b′, C ′).

Clearly, by superstability and the transitivity of being a nor-
mal cover, every normal triple (a, b, C) has a minimal, normal cover
(a′, b′, C ′). In fact, one can find one with the additional property
that a′ ∈ dcl(C ′a). At present, this improvement does not seem to
be necessary.

Lemma 3.11 Given any p-disjoint, normal triple (a, b, C), there is
a matching minimal, normal, p-disjoint triple (a′, b′, C ′) that is a
normal cover of (a, b, C).

Proof. Among all normal covers (a′, b′, C ′) of (a, b, C), choose
the one of smallest strength. ✷

We close with two lemmas concerning p-disjointness.

Lemma 3.12 Suppose a/C and b/C are both p-semi-regular and
a⌣

C
b. Then the triple (a, b, C) is p-disjoint.

Proof. Choose any e ∈ clp(Ca) ∩ clp(Cb). Then wp(e/Ca) =
wp(e/Cb) = 0. As stp(b/Ca) is p-semi-regular, this implies b⌣

Ca
e,

hence b⌣
C
e. But this, coupled with wp(e/Cb) = 0 implies e ∈ clp(C).

✷

Lemma 3.13 Suppose (a1, b1, C) and (a2, b2, C) are both normal
and p-disjoint. If, moreover, a1b1⌣

C
a2b2, then the triple (a1a2, b1b2, C)

is also p-disjoint.

Proof. In light of Lemma 7.20, then p-disjointness of (a1, b1, C)
implies that clp(a1a2b2C) ∩ clp(b1a2b2C) ⊆ clp(a2b2C), so

clp(a1a2C) ∩ clp(b1b2C) ⊆ clp(a2b2C)

Arguing in reverse, the p-disjointness of (a2, b2, C) yields

clp(a1a2C) ∩ clp(b1b2C) ⊆ clp(a1b1C)

Furthermore, it follows immediately from Lemma 3.12 that

clp(a1b1C) ∩ clp(a2b2C) ⊆ clp(C)

and the result follows. ✷
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3.2 Triples over semi-regular types

Suppose that we have a fixed p-semi-regular type stp(e/∅). To find
a formula as in Theorem 3.2 one first encapsulates e into the first
component of a triple.

Definition 3.14 A triple (a, b, C) is over e if e ∈ dcl(a) and e⌣Cb.

Lemma 3.15 Suppose that (a, b, C) is over e. Then every soft ex-
tension (a′, b′, C ′) is also over e. In particular, the normalization
(a′, b′, C ′) given by Lemma 3.7 is also over e.

Proof. Since a ⊆ a′, e ⊆ dcl(a′). Also, since C ′
⌣
C
ab, we get

C ′
⌣
Cb
e, implying that stp(e/C ′b) does not fork over ∅. Again, by

p-semiregularity, we have e ⌣
C′b

clp(C
′b), so stp(e/C ′b′) does not fork

over ∅. ✷

3.3 Using triples

We recall in the appendix basic definitions and facts about regular
locally modular types (Section 7.1)

The following Proposition is the content of Lemma 3.2 of [4].

Proposition 3.16 Suppose p ∈ S(∅) is a stationary, non-locally
modular regular type. Then, for every realization d of p, there is a
minimal, normal, p-disjoint triple (a, b, C) over d. Moreover, wp(a/C) =
wp(b/C) = 2, wp(ab/C) = 3, and wp(a/bC) = wp(b/aC) = 1.

Proof. By the first paragraph of the proof of Lemma 3.2 in
[4], there is a triple (a, b,M), where M is an a-model, a and b each
consist of two M -independent realizations of p|M , with wp(a/Mb) =
wp(b/Ma) = 1 and the triple (a, b,M) being p-disjoint.

By the p-weight computations, at least one of {a1, a2} must be
independent from b over M , so by passing to an automorphism of C,
we may assume that d ⊆ a and d⌣Mb. Thus, (a, b,M) is over d.

Now, apply the Normalization Lemma 3.7, and then choose a minimal
normal cover via Lemma 3.11. ✷

The following generalization is the point of all these definitions.

Proposition 3.17 Suppose p ∈ S(∅) is stationary, regular, but non-
locally modular. For any k ≥ 1 and any e such that stp(e/∅) is p-
semi-regular with wp(e) = k, there is a minimal, normal, p-disjoint
(a, b, C) over e such that wp(ab/C) = 3k, wp(a/C) = wp(b/C) = 2k,
and wp(a/bC) = wp(b/aC) = k.

9



Proof. First, by p-semi-regularity, choose E and an E-independent
(di : i < k) realizations of p|E such that e⌣E and e and (di : i < k)

are domination equivalent over E. Without loss, we may assume
E = ∅.

Fix (a0, b0, C0) as in Proposition 3.16. Without loss, we may
assume that it is over d0. Next, choose {aibi : i < k} to be C0-
independent with stp(aibi/C0) = stp(a0b0/C0) for each i. Again, we
may assume that each di is over (ai, bi, C0). As notation, let ā denote
{ai : i < k} and b̄ denote {bi : i < k}.

By iterating Lemma 3.13, we have that the triple (ā, b̄, C0) is p-
disjoint. As well, it follows from the independence that wp(ā/C0) =
wp(b̄/C0) = 2k, wp(āb̄/C0) = 3k, and wp(ā/C0b̄) = wp(b̄/C0ā) = k.
It also follows that (ā, b̄, C0) is normal.

As wp(e/d0, . . . , dk−1) = 0, it follows that wp(e/āC0) = 0. Thus,
the triple (eā, b̄, C0) is a simple extension of (ā, b̄, C0). By employing
Lemmas 3.9, 3.11, and 3.15, there is a matching, minimal, normal
cover (a, b, C) of (eā, b̄, C0) that is p-disjoint and over e.

✷

We continue literally along the lines of Section 3 of [4], with our
Proposition 3.17 taking the place of their Lemma 3.2. A key point
is that we have the following Lemma, which takes the place of their
Lemma 3.3.

From now on, fix a triple (a, b, C) as in Proposition 3.17.

Lemma 3.18 Choose any b′ realizing stp(b/Ca) with b′⌣
Ca
b. Then:

1. wp(a/bb
′C) = 0;

2. b′⌣
C
b;

3. stp(a/Cbb′) is isolated. (This is slightly stronger than what is
stated in the text. The ‘improvement’ is not needed.)

Proof. (1) Here is where p-disjointness plays a leading role. Re-
call that (a, b, C) covers (ā, b̄, C0), where for each i < k, wp(ai/biC0) =
1. As stp(ai/biC0) is p-semi-regular, we additionally have wp(ai/bC) =
1 as well. So, in order to establish (1), it suffices to prove that
wp(ai/bb

′C) = 0 for each i < k.
Fix an i < k. We will actually prove that ai ⌣/

C0bi
b′, which suffices.

To see this, by p-disjointness we have

clp(Ca) ∩ clp(Cb) ⊆ clp(C)

Thus, acl(C0ai)∩acl(C0bi) ⊆ clp(C). Coupling this with the fact that
stp(aibi/C0) is p-semi-regular implies aibi⌣

C0

clp(C), hence

acl(aiC0) ∩ acl(biC0) ⊆ acl(C0)

10



Now, on one hand, b′⌣
Ca
b, so in particular bi⌣

Ca
b′. By p-semi-regularity,

aibi⌣
C0

Cab, so bi ⌣
C0ai

Ca hence, by transitivity

bi ⌣
C0ai

b′

On the other hand, since stp(b′/Ca) = stp(b/Ca), there is b′i ∈ b′

(corresponding to bi) such that b′i⌣/
C0

ai, hence

b′⌣/
C0

aibi

Combining the last three displayed expressions with Lemma 7.22
(where b′ takes the role of X) we obtain ai ⌣/

C0bi
b′.

(2) Given (1), this is identical to the p-weight computation given
in Lemma 3.3[4] just multiplied by k.

(3) This is just like 3.3(c)[4], with the minimality playing the
same role here as it did there. More precisely, in order to establish
a ⌣
Cbb′

BB′, one splits BB′ into its the p-weight zero part and its p-

semi-regular part. The independence of the first half is due to (a, b, C)
having minimal strength, and the independence of the second half is
due to the fact that wp(a/Cbb

′) = 0 from (1). ✷

Continuing, Lemma 3.4[4] goes through, with the following changes:

• In (1), multiply all inequalities by k;

• Replace (2)ii by ‘wp(b
′/Cab) < k’;

• (2)iii remains as stated, ‘ρ(a, b, b′) holds and wp(a/Cbb
′) = 0.’

With these changes, Lemma 3.5[4] goes through. Finally, the
Proof of 3.1[4] goes through verbatim, noting our definition of (a, b, C)
being ‘over e’ implies e⌣Cb. In particular, stp(e/Cb) is strongly p-

semiregular. In light of Remark 3.4, so is stp(e/∅). ✷

4 Applications of Theorem 3.2

In this brief section, we give two applications of Theorem 3.2, al-
though they will not be used in the proof of our main results.

Lemma 4.1 If T is superstable, if H is an infinitely definable con-
nected group (over A), with generic strongly p-semiregular, then H
is definable over A.

11



Proof. Let r be the generic of H and ϕ(x) ∈ L(A) be the
formula such that r is the unique type of p-weight k in ϕ. By super-
stability, there is a definable group H ′ with connected component H.
The formula ϕ(x) contains the principal generic, hence H ′ is a finite
union of translates of ϕ. Each translate of ϕ contains a unique type
of p-weight equal to k. Every other generic type of H ′ must also be
of p-weight k, so there are only finitely many generic types in H ′.
This means that H, its connected component, has finite index in H ′,
hence that H itself is in fact definable (H is a closed subgroup in H ′,
if it has finite index it must be also open). ✷

Together with Theorem 3.2, this immediately yields the following
corollary:

Corollary 4.2 Let T be classifiable and p a non-locally modular reg-
ular type. If H is an infinitely definable connected group (over A),
with generic p-semiregular, then H is definable over A.

The second application connects binding group constructions with
isolation of p-semiregular types, in the spirit of [5] or more recently
[6].

First, an easy remark :

Remark 4.3 In general, if there is a B-definable group G acting
transitively on a complete type q over B, then q is isolated over B:
Let e realize q, consider the formula ϕ(x) ∈ L(Be) : ∃g ∈ G x = g.e.
Then ϕ(x) holds if and only if x |= q. So q is isolated by a formula
over e. On the other hand , q is B-invariant, so in fact, q is isolated
by a formula over B.

Let us now recall some definitions and notation.

Definition 4.4 Let B = acl(B) and q be a (partial) type over B
and r a complete type over B. We say that r is q-internal over B if
there is D ⊃ B such that for every e |= r|D, e ∈ dcl(q()̧).

Proposition 4.5 ([7] or [8]) Let B = acl(B) ⊃ M , q ∈ S(B), q 6⊥
M , but q ⊥a M . Let p ∈ S(M) such that q 6⊥ p. Then for all a |= q,
there is a′ ∈ dcl(Ba) \ dcl(B) such that tp(a′/B) is p-internal.

Lemma 4.6 Let B = acl(B) ⊇ M , q ∈ S(B), q 6⊥ M , but q ⊥a M .
Let p ∈ S(M) be regular such that q 6⊥ p and suppose that q is p-
semiregular. Then a⌣

B
p(C) for any a realizing q.
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Proof. Let a realize q and let E ⊆ p(C) be finite. Let E1 ⊆ E
be a maximal M -independent subset of E, and let E2 be a maxi-
mal subset of E1 satisfying E2⌣

M
B. Note that E2 realizes a Morley

sequence (p|B)(k) of the non-forking extension of p to B.

Claim. wp(E/E2B) = 0.

Proof. First, choose any e ∈ E1 \ E2. Because maximality im-
plies that eE2 ⌣/

M
B, tp(e/BE2) is a forking extension of a regular

type, hence wp(e/E2B) = 0. It follows that wp(E1/E2B) = 0 as
well. Now choose any e ∈ E \ E1. By the maximality of E1, e⌣/

M
E1

so wp(e/E1) = 0. Thus, wp(e/E1B) = 0. As this holds for every
e ∈ E \ E1, wp(E/E1B) = 0. Combining the two arguments yields
wp(E/E2B) = 0. ✷

Because tp(E2/B) does not fork over M and q ⊥a M , we have
that a⌣

B
E2. As q is p-semiregular, that a⌣

B
E follows immediately

from the Claim. ✷

Theorem 4.7 (Binding group) ([7] 7.4.8 or [8] 2.2.20) Let B =
acl(B) q ∈ S(B), p ∈ S(B) such that q is p(C)-internal.Let G :=
Aut(q(C)/B ∪ p(C)). Then G and its action are infinitely definable
in the following sense: there is G1 an infinitely definable group over
B and a B-definable action of G1 on q(C) such that, as permutation
groups of q(C) over C, G and G1 are isomorphic. If a⌣

B
p(C) for all

a realizing q, then G and hence also G1 act transitively on q(C).

Note that by stability, the group G is also the group of restrictions
to q(C) of the automorphisms of C fixing p(C) ∪B pointwise. Recall
that G is infinite if and only if q is not algebraic over p(C)) ∪B.

We can always suppose that the action is faithful (that is, that
the subgroup of G1 which fixes all of q(C) pointwise is trivial).

The next proposition tells us that we can always suppose that G
is connected.

Proposition 4.8 If the infinitely definable group G and its con-
nected component G0 are defined over B = acl(B) and G acts de-
finably transitively on the type q over B, then so does its connected
component G0.

Proof. Let Q denote the set of realizations of the type q in C

and let B = ∅.
As G0 is a subgroup of G, everything is clear except that G0 acts
transitively on Q. We obtain this via two claims and a brief argument.

13



Claim 1. There is some pair (e, e∗) realizing q⊗ q and some h ∈ G0

such that h.e = e∗.
Proof. Choose a set of representatives R ⊆ G(C) such that

every g ∈ G can be written as ch for some c ∈ R and h ∈ G0, i.e.,
R contains an element of every G0-coset of G. As the index [G : G0]
is bounded, we may choose R of bounded size (2ℵ0 if the language is
countable). Choose any e realizing q|R and any e′ realizing q|Re.

By the transitivity of the action, as both e, e′ realize q, choose
g ∈ G such that g.e = e′. By choice of R, choose c ∈ R and h ∈ G0

such that g = ch.
Now, as c ∈ R, both g and h are equi-definable over R. Thus,

g.e and h.e are equi-definable over Re. As g.e = e′ and e′⌣
∅
Re, we

conclude that h.e ⌣
∅
Re. Thus, e∗ := h.e satisfies the Claim. ✷

Claim 2. For every (e, e′) realizing q ⊗ q there is h ∈ G0 such that
h.e = e′.

Proof. Homogeneity of C/B. Fix (e, e∗) and h as in Claim 1,
and let (e1, e2) be any other realization of q⊗ q. Choose an automor-
phism σ of C, fixingB pointwise with σ(e) = e1 and σ(e

∗) = e2. Then,
as G and the action are B-definable, σ(h) ∈ G0 and σ(h).e1 = e2. ✷

To complete the proof of the Lemma, choose any e, f ∈ Q. Choose
e∗ realizing q|{e, f}. By Claim 2, choose h1 ∈ G0 such that h1.e = e∗

and choose h2 ∈ G0 such that h2.e
∗ = f . Then h2h1 ∈ G0 and

h2h1.e = f , so G0 acts transitively on Q.
✷

The following results give a sufficient condition for a non locally
modular type to be isolated. These results will be used as part of
the forthcoming work of the authors on the analysis of weight one
models in classifiable theories.

The following definition appears already in [5].

Definition 4.9 We say that q ∈ S(B) is c-isolated (following Hrushovski-
Shelah in [5]) if there is a formula θ(x) ∈ L(B), q ⊢ θ(x) such that
R∞(θ(x) = R∞(q) = α and furthermore, for any r ∈ S(B), such that
r ⊢ θ(x), R∞(r) = α.

Proposition 4.10 Let q ∈ S(B) be p-strongly semiregular and c-
isolated via the formula ϕ(x) and let G1 be an infinitely definable
group over B, with a B-definable faithful transitive action of G1 on
q(C). Then q is isolated.
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Proof. By the usual construction, find a B-definable overgroup
of G1, H, a B-definable set X containing q, and a B-definable (faith-
ful) transitive action of H on X which extends the action of G1 on
q(C), and such that X ⊂ ϕ(C).

So X has the property that every type over B in X has same
R∞ rank as q, say α, that every type in X is p-simple, of p-weight
at most equal to k, the p-weight of q, and that q is the unique type
in X of p-weight exactly k. We show that X isolates q.

Claim 1. Let e realize q, and let h ∈ H be independent from e over
B, then h.e also realizes q.

Proof. Then e and h, h−1 are also independent over B. If d =
h.e, then d and e are interdefinable over B,h, h−1. As X ⊂ ϕ(C),
t(d/B) is p-simple of p-weight at most k. As e is independent from
h, h−1 over B, it remains of p-weight k. By interdefinablity, d and
e must have same p-weight over B,h, h−1, that is k. It follows that
t(d/B) must already have p-weight k over B, and hence must be
equal to q. ✷

Claim 2. Let h be any element of H, not necessarily independent
from e, and let d = h.e. Then d realizes q.

Proof. Let g be a generic in H, independent from h, e ( and
hence from h, e, d) over B. It follows that g−1h and e are independent
over B : g−1

⌣
Bh
e by choice of g, hence (g−1h)⌣

Bh
e. As g−1 is generic

and independent from h, g−1h is also generic independent from h, so
it follows that g−1h and e are independent over B. Hence by Claim
1, f := (g−1h).e realizes q.

But, by c isolation of q, g and f are also independent over B:
Note that d and f are interdefinable over Bg, as f = g−1.d, hence
they must have same ∞-rank over Bg. By our choice of g, g ⌣

B
d,

hence R∞(d/Bg) = R∞(d/B) = α = R∞(f/Bg) = R∞(f/B). It
follows that f and g are independent over B. Thus, by Claim 1, g.f
must realize q, but g.f = d. ✷

As the action of H on X is transitive, we have shown that any
element in the formula X must realize q, that is, that the type q is
isolated. ✷

Corollary 4.11 Let T be classifiable and p regular non-locally mod-
ular. If q ∈ S(B) (B = acl(B)) is p-semiregular, c-isolated and
q ⊥a M , then q is isolated.

Proof. First by Theorem 3.2, q is p-strongly semiregular. By clas-
sifiability, q 6⊥ M (Fact labelNDOP); by Proposition 4.5 and the
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binding group Theorem (Proposition 4.7), there is an infinitely de-
finable group G, defined over B which acts transitively on q(C). It
now follows by Proposition 4.10 that q is isolated. ✷

Note that we have used two conditions on the type q to prove
isolation: the strong p-semiregularity condition goes up to non forking
extensions, but the c-isolation does not necessarily.

Let us finish this section by mentioning another way to prove
isolation, without group actions, in the case of a strongly regular
type. It is not clear if this could be generalized to the case of strong
p-semiregularity.

Proposition 4.12 T superstableM ⊆na C. Suppose B is algebraically
closed with M ⊆ B, tp(c/B) is strongly regular depth zero, and that
tp(c/B) ⊥a M . Then either tp(c/B) ⊥M or tp(c/B) is isolated.

Proof. If tp(c/B) is trivial, tp(c/B) ⊥a M implies that tp(c/B) ⊥
M . So we can suppose that tp(c/B) is non trivial.

Suppose that tp(c/B) := q is non-orthogonal to M . Let p be a
regular type based over M . As q ⊥a M , in particular, over B, q is
almost orthogonal to p(ω). By Fact 7.16 choose ϕ ∈ q that is p-simple,
such that p-weight is defined and continuous in ϕ. As q is strongly
regular, by strengthening ϕ we may additionally assume q is the only
type over B containing ϕ of positive p-weight.

Now choose n least such that there are ā = (a1, . . . , an) with each
ai realizing ϕ and tp(ā/B) is not almost orthogonal to p(ω). We know
that such a finite n exists, since q non-orthogonal to p implies that
some q(ℓ) is not almost orthogonal to p(ω). Remark: Here, however,
we are minimizing n without assuming ā is B-independent.

Note that n ≥ 2. Indeed, if a1 realizes q, then a1/B is almost
orthogonal to p(ω) by assumption. On the other hand, if a1 realizes
ϕ but not q, then wp(a1/B) = 0, so a1 cannot fork over B with any
any independent set of realizations of p.

Once n is fixed, choose k such that ā/B is not almost orthogonal
to p(k). To save writing, let n = m+ 1 and r(ȳ) := (p|B)(k). Choose
a specific realization c̄ of r such that ā ⌣/

B
c̄, and choose an L(B)-

formula θ(x, ȳ) ∈ tp(āc̄/B) witnessing the forking. Let

γ(x0) := ϕ(x0) ∧ drȳ
[

∃x1 . . . ∃xm(
∧

ϕ(xi) ∧ θ(x0, x1, . . . , xm, ȳ))
]

As B is algebraically closed, γ is over B. We argue that γ isolates q.
To see this, choose any b0 realizing γ. Choose d̄ realizing r|Bb0,

and choose witnesses b1, . . . , bm. Thus, the n elements b0, . . . , bm each
realize ϕ and θ(b̄, d̄) holds. We argue that in fact, every bi realizes
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q. Let I = {i ≤ m : bi realizes q}. Let b̄I be the subsequence of b̄
induced by I. By way of contradiction, assume |I| < m+ 1 = n. By
the minimality of n, we must have b̄I ⌣

B
d̄. But also, by our choice

of ϕ, if i 6∈ I, then wp(bi/B) = 0. Thus, wp(b̄/Bb̄I) = 0. But d̄ is a
Morley sequence in p, hence d̄/Bb̄I is p-semiregular. Thus, b̄ ⌣

Bb̄I
d̄. It

follows by transitivity that b̄ ⌣
B
d̄, which is contradicted by θ(b̄, d̄). ✷

Corollary 4.13 Let T be classifiable, M⊆na C, M ⊂ B and tp(c/B)
be regular non locally modular. Suppose that tp(c/B) ⊥a M . Then
either tp(c/B) ⊥M or tp(c/B) is isolated.

Proof. By classifiability of T , tp(c/B) is then also strongly regular
and depth zero. So the above Proposition applies. ✷

5 Constructible, minimal models over

realizations of non-locally modular types

The basic definitions and facts about locally modular regular types
can be found in the appendix (Section 7.1).

5.1 Witnesses to non-modularity

Definition 5.1 Let M be any model (not necessarily an a-model)
and let p ∈ S(M) be regular. A quadruple (a, b, c, d) is 4-dependent
if

1. Any three elements realize p(3), but

2. wp(abcd/M) = 3.

A witness to non-modularity for p over M is a set of parallel lines,
i.e., some 4 − dependent quadruple (a, b, c, d) such that clp(Mab) ∩
clp(Mcd) = clp(M).

The following proposition follows from Section 7.1 of the ap-
pendix:,

Proposition 5.2 Over any a-model M , if p ∈ S(M) is a regular
type, then p is non-locally modular if and only if there is a witness
to non-modularity for p over M .
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Lemma 5.3 Suppose M is any countable model, and p ∈ S(M) is
regular, but not locally modular. There is an ǫ-finite set E (E is
contained in the algebraic closure of some finite set) such that for any
countable model M ′ containing M ∪ E, there is a witness (a, b, c, d)
to non-modularity over M ′.

Proof. Let M∗ ⊇ M be any a-model, and let q denote the
non-forking extension of p to M∗. As q is not locally modular, it
follows from Proposition 5.2 that there is a witness (a, b, c, d) to
non-modularity over M∗. Choose a countable, ǫ-finite E over which
tp(abcd/M∗) is based and stationary. To see that E suffices, choose
any countable M ′ containing M ∪E. As M∗ is sufficiently saturated,
we may assume that M ′ �M∗. We argue that (a, b, c, d) is a witness
to non-modularity over M ′. To see this, note that abcd⌣

M ′

M∗. Thus,

(a, b, c, d) is 4-dependent with respect to the non-forking extension
of p to M ′. For the final clause, let C := dcl(M ′abcd)∩ clp(M

′). Note
that abcd⌣

C
M∗ and stp(abcd/C) is p-semi-regular by Criterion 7.12.

Thus, clp(M
∗ab) ∩ clp(M

∗cd) = clp(M
∗) implies that clp(Cab) ∩

clp(Ccd) = clp(C) by Proposition 7.20. However, clp(C) = clp(M
′),

clp(Cab) = clp(M
′ab), and clp(Ccd) = clp(M

′cd), so we finish. ✷

5.2 A definable witness to non-modularity

In this section we assume throughout that T is classifiable.
By Lemma 5.3, if p ∈ S(B) is any non-locally modular stationary,

regular type over a countable set B, then there is a countable M
containing B with a witness to non-modularity (a, b, c, d) over M
(relative to the non-forking extension of p to M). We first explore
how definable such a witness is. For this, we recall some theorems of
Hrushovski and Shelah in [4].

Theorem 5.4 If T is classifiable, B is algebraically closed, and p ∈
S(B) is a regular, non-locally modular type, then there is a formula
θ ∈ p such that (recall Definition 7.7):

1. θ is p-simple of p-weight one

2. p-weight is defined and continuous inside θ

3. p is strongly regular via the formula θ, i.e., for every C ⊇ B and
every e ∈ θ(C), if wp(e/C) > 0, then tp(e/C) is the non-forking
extension of p to C.

Lemma 5.5 Suppose that p ∈ S(M) is regular and (a, b, c, d) is a
4-dependent sequence of realizations of p. Then there is a symmetric
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formula S(x1, . . . , x4) ∈ tp(abcd/M) such that for any (b′, c′, d′) re-
alizing p(3) and for any element a′ realizing S(x1, b

′, c′, d′), we have
(a′, b′, c′, d′) is 4-dependent.

Proof. For a given ordering of the variables, let S0 be the con-
junction of

∧4
i=1 θ(xi) with formulas in tp(a, b, c, d) demonstrating

that each variable has p-weight zero over the other three. Then, for
any three coefficients, which we write as (x2, x3, x4) for definiteness, if
(b′, c′, d′) realizes p(3) and S0(a

′, b′, c′, d′) holds, then tp(d′/Mb′c′a′)
forks over Mb′c′. As tp(d′/Mb′c′) is a non-forking extension of p,
this implies wp(a

′/M) > 0. Combined with θ(a′), this implies that
tp(a′/M) = p. Easy p-weight computations show that (a′, b′, c′, d′) is
4-dependent. To find a symmetric S, take the disjunction of the 24
S0’s, with respect to each ordering of (x1, . . . , x4). ✷

Next, among all 4-dependent quadruples (a, b, c, d), we want to
distinguish those that are witnesses to non-modularity over M . This
will require some Lemmas.

Lemma 5.6 Suppose p ∈ S(M) is a regular, non-locally modular
type and (a, b, c, d) is a witness to non-modularity over M . Then for
every e realizing p|Mabcd and for every f ∈ θ(C) that satisfies b ∈
clp(Maef), we have (c, d, e, f) realizes p(4) and wp(ab/Mcdef) = 0.

Proof. First, since θ(f) holds, tp(f/M) is p-simple. As b re-
alizes p, b⌣

M
ae, but b ∈ clp(Maef), we must have wp(f/M) > 0,

hence tp(f/M) = p. Thus, all six elements a, b, c, d, e, f realize p.
Next, note that wp(abcdef/M) = 4, since wp(abcd/M) = 3 (by 4-
dependence), e⌣

M
abcd, and wp(f/Mabcde) = 0 by exchange. Next,

we show that wp(cdef/M) = 4, i.e., that (c, d, e, f) realizes p(4). By
way of contradiction, assume that this were not the case, i.e, that
wp(cdef/M) ≤ 3. We compute the following p-weights:

• wp(ef/Mabcd) = 1 [it is ≥ 1 because of e, but < 2 since f ∈
clp(Mabe)].

• wp(ef/Mcd) = 1 [it is ≥ 1 from the former line, but if it was
= 2, then we would have wp(cdef/M) = 4].

• wp(ef/Mab) = 1 [it is > 0 because of e, but < 2 because
f ∈ clp(Mabe)].

Thus, as both stp(ef/clp(Mab)) and stp(ef/clp(Mcd)) are p-semi-
regular, we have

ef ⌣
clp(Mab)

abcd and ef ⌣
clp(Mcd)

abcd
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Hence,

Cb(ef/Mabcd) ⊆ clp(Mab) ∩ clp(Mcd) = clp(M)

with the last equality holding since (a, b, c, d) is a witness to non-
modularity. This would imply ef ⌣

clp(M)
abcd, which contradicts f ∈

clp(Mabe).
Finally, since wp(abcdef/M) = wp(cdef/M) = 4, it follows im-

mediately that wp(ab/Mcdef) = 0. ✷

For the Corollary that follows, note that if (a, b, c, d) is 4-dependent,
then there is anM -definable formula β(x2, a, c, d) ∈ tp(b/Macd) that
implies both θ(x2) and wp(x2/Macd) = 0.

Corollary 5.7 Suppose (a, b, c, d) is a witness to non-modularity
over M and fix any formula β(x2, a, c, d) ∈ tp(b/Macd) as above.
Then there is an M -definable δ(x1, x2, x3, x4, y, z) such that

R(x1, . . . , x4) := dpy∀z [(θ(z) ∧ β(x2, x1, y, z)) → δ(x1, . . . , x4, y, z)]

is in tp(abcd/M).

Proof. Immediate, by Lemma 5.6 and compactness. ✷

We now consider the negation of the condition.

Lemma 5.8 Suppose that p ∈ S(M) is a regular, non-locally mod-
ular type and (a, b, c, d) is 4-dependent, but is not a witness to non-
modularity over M . Then there are realizations e of p|abcd and f of
p such that stp(ef/Mab) = stp(cd/Mab), yet wp(ab/Mabcd) 6= 0.

Proof. Choose e realizing p|Mabcd and choose any f such that
ef and cd have the same strong type over clp(Mab) and ef ⌣

clp(Mab)
cd.

By superstability, there is a finite g such that clp(Mg) = clp(Mab)∩
clp(Mcd). Now tp(g/M) is p-simple and, since (a, b, c, d) is 4-dependent
but not a witness to non-modularity, wp(g/M) = 1. Next, as wp(cd/M) =
2 and cd ⌣/

clp(M)
g, we have wp(cd/Mg) ≤ 1. As Mg ⊆ clp(Mab) we

have stp(ef/Mg) = stp(cd/Mg), so wp(ef/Mg) ≤ 1 as well. Thus,
wp(cdefg/M) ≤ 3, hence wp(cdef/M) ≤ 3. But, since wp(abcd/M) =
3 and e realizes p|abcd, we have wp(abcdef) ≥ 4. It follows that
wp(ab/Mcdef) > 0. ✷

Proposition 5.9 Suppose that p ∈ S(M) is a regular, non-locally
modular type, and that (a, b, c, d) is a witness to non-modularity over
M . Then there is a symmetric formula R∗ ∈ tp(abcd/M) such that
for any (b′, c′, d′) realizing p(3) and any a′, if R∗(a′, b′, c′, d′), then
(a′, b′, c′, d′) is a witness to non-modularity over M .
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Proof. Fix an enumeration (x1, . . . , x4) of the variables. Choose
a formula S(x1, . . . , x4) ∈ tp(abcd/M) as in Lemma 5.5 and choose
β(x2, a, c, d) ∈ tp(b/Macd) as in the note preceding Corollary 5.7.
Take R(x1, . . . , x4) from Corollary 5.7 and let R′ := S ∧ R. Now, if
(b′, c′, d′) realizes p(3) and a′ satisfies R′(x1, b

′, c′, d′), then (a′, b′, c′, d′)
is 4-dependent by Lemma 5.5, and hence is a witness to non-modularity
by Lemma 5.8. We obtain a symmetric R∗ by taking a disjunction
over all orderings of (x1, . . . , x4). ✷

Corollary 5.10 If T is classifiable, then for any model M and any
p ∈ S(M) that is not locally modular, there is a witness (a, b, c, d) to
the non-modularity of p over M .

Proof. Choose any triple (abc) realizing p(3) and choose any a-
model M∗ � M independent from abc over M . By Proposition 5.2
there is a witness (a′, b′, c′, d′) to the non-modularity of p|M∗ over
M∗. As tp(abc/M∗) = tp(a′b′c′/M∗), there is d such that (a, b, c, d)
is a witness to the non-modularity of p|M∗ over M∗. Choose R∗ ∈
tp(a, b, c, d/M∗) as in Proposition 5.9, and let e be a finite subset
from M∗ over which tp(abcd/M∗) is based and which contains the
parameters over whichR∗ is defined. Write R∗ as R∗(x1, . . . , x4, e). So
tp(abce/M) implies ∃x4R

∗(a, b, c, x4, e). As abc⌣
M
e, it follows from fi-

nite satisfiability that there is some e′ ∈M with ∃x4R
∗(a, b, c, x4, e

′).
Choose any d witnessing this and check that (a, b, c, d) is a witness
to the non-modularity of p over M . ✷

5.3 Depth-zero like types and minimality

The following Lemma is routine, but it is interesting that its proof
does not require NDOP (although the verification that a non-trivial
regular type has depth zero does).

Lemma 5.11 Suppose T is superstable,M⊆naN , and {ci : i < n} ⊆
N are M -independent, with tp(ci/M) regular of depth zero for each
i. Let M∗ � N be any model dominated by {ci : i < n} over M .
Then:

1. M∗ is minimal over M ∪ {ci : i < n};

2. M∗⊆naN ;

3. If q is regular and q 6⊥M∗, then q 6⊥M .

Proof. We argue by induction on n. For n = 0, M∗ = M , so
there is nothing to prove. Assume the Lemma holds for sets of size
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n, and choose c0 . . . , cn from N satisfying the hypotheses. Let M∗

be dominated by {ci : i ≤ n} over M . To see that M∗ is minimal,
choose any M ′ � M∗ containing M ∪ {ci : i ≤ n}. Let M0 � M ′ be
dominated by {ci : i < n} over M . As M⊆naM

′, we can apply the
Lemma to conclude that bothM0⊆naM

′ and that any regular type q
non-orthogonal toM0 is non-orthogonal toM . Now chooseM1 �M ′

to be dominated by cn over M0, by inductionM1⊆naM
∗. In order to

show thatM∗ is minimal over M ∪{ci : i ≤ n}, it certainly suffices to
prove thatM1 =M∗. If this were not the case, then there would be a
regular type q = tp(d/M1) realized in the difference. As tp(cn/M0) is
a non-forking extension of tp(cn/M), it is regular and of depth zero.
Thus, by definition of depth zero, q 6⊥ M0. Thus, by the inductive
hypothesis, q is non-orthogonal to M . So, by the 3-model Lemma
(Fact 7.4) applied to the triple (M,M1,M

∗), there would be e ∈M∗

such that tp(e/M) is regular and non-orthogonal to q, with e⌣
M
M1.

As {ci : i ≤ n}, this implies e⌣
M
c0, . . . , cn, which contradicts M∗

being dominated by {ci : i ≤ n} over M . Thus, M∗ is minimal over
M{ci : i ≤ n}, proving (1).

Next, by Fact 7.3 there is a model N ′⊆naN that contains and
is dominated by M∗ over M . Such an N is clearly dominated by
{ci : i ≤ n} over M , so the previous paragraph applies to N ′. Thus,
N ′ =M∗, so M∗⊆naN , which gives (2).

Finally, choose any regular q non-orthogonal to M∗ = M1. As
tp(cn/M0) has depth zero, q is non-orthogonal to M0, hence is non-
orthogonal to M by our inductive assumption. ✷

The following definition extends the concept of depth zero to both
finite, independent tuples of depth zero types as well as to types
dominated by such tuples.

Definition 5.12 A strong type p is depth-zero like if every regular
type q non-orthogonal to p is of depth zero.

As examples, if a regular type p has depth 0, then any p-semiregular
type q is depth zero-like. The following Proposition uses classifiability
to obviate the need for M⊆na C in Lemma 5.11(1).

Proposition 5.13 Suppose p is depth zero-like.

1. If T is superstable and M is an a-model on which p is based,
then for any realization b of p|M , every model N that is domi-
nated by b over M is minimal over Mb.

2. If T is classifiable, then (1) holds for every model M on which
p is based.

22



Proof. (1) First, only assume T is superstable. Fix an a-model
M on which p is based and a realization b of p|M . We first argue that
if a regular type q is non-orthogonal to any a-prime model M [b] over
Mb, then q is non-orthogonal to M . To see this, choose a maximal
M -independent set {c1, . . . , cn} ⊆M [b] with tp(ci/M) regular. Then
M [b] = M [c1, . . . , cn] and as each tp(ci/M) is of depth zero, we
finish by Lemma 5.11(3). Next, we argue that the same holds for
any model N0 ⊇ Mb dominated by b over M . Choose any regular q
non-orthogonal to N0. By superstability, choose a finite d ∈ N0 such
that q 6⊥ Mbd. As bd is dominated by b over M , choose an a-prime
M [b] over Mb that contains d. Then q is non-orthogonal toM by the
argument above.

Now, choose any model N that is dominated by b over M . To
see that N is minimal over Mb, choose any N ′ � N containing Mb
and assume by way of contradiction that N ′ 6= N . By superstabil-
ity, choose c ∈ N \ N ′ such that q = tp(c/N ′) is regular. As N ′ is
dominated by b over M , it follows from the previous paragraph that
q 6⊥M . By the 3-model Lemma (Fact 7.4) , there is c∗ ∈ N−M that
does not fork with N ′ over M . As b ∈ N ′ we conclude that c∗⌣

M
b,

which contradicts N being dominated by b over M .
(2) Now assume that T is classifiable. Fix any modelM on which

p is based and fix a realization b of p|M . Suppose N is dominated by
b over M . To show that N is minimal over Mb, choose any N0 � N
containing Mb. To see that N0 = N , choose any c ∈ N and we
will conclude that c ∈ N0. To start, choose any a-model M∗ � M
with b⌣

M
M∗. Note that N continues to be dominated by b over M∗.

By PMOP, let N2 be constructible over N ∪M∗. Thus, N2 is also
dominated by b over M∗. It follows from (1) that N2 is minimal over
M∗b. Also, c ∈ N2.

As N0 � N , by PMOP again we can find N1 � N2 that is con-
structible over N0∪M

∗. The minimality of N2 over M
∗b implies that

N2 = N1, hence c ∈ N1. As N1 is atomic over N0M
∗, we have that

tp(c/N0M
∗) is isolated. However, as cN0 is dominated by b over M ,

the fact that b⌣
M
M∗ implies that cN0 ⌣

M
M∗. As M � N0, the Open

Mapping Theorem implies that tp(c/N0) is isolated, hence c ∈ N0.
✷

5.4 The main theorem

Proposition 5.13 suggests the following notation. IfM⊆na C and {ci :
i ≤ n} are M -independent and realize regular, depth zero types over
M , then the notation M(c0, . . . , cn) refers to any model dominated
by c0 . . . , cn over M . Thus, even when tp(b/M) = tp(c/M) are the
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same regular type, the notations M(b) and M(c) represent possibly
different isomorphism types of models dominated over M by b or c,
respectively. If the theory is classifiable, then given any M(c), we let
M(c)(4) denote the prime model over four M -independent copies of
M(c). (It exists by PMOP and, via the Proposition above, it is both
prime and minimal over

⋃

i<4M(ci). Thus, the isomorphism type of

M(c)(4) over M is uniquely determined by M(c).
Proposition 5.14 is the most technical result of this paper.

Proposition 5.14 Suppose T is classifiable, M⊆na C, p ∈ S(M) is
regular and there is a witness to the non-modularity of p over M .
Then for any realizations b, c of p and any choice of models M(b)
and M(c) as above, M(b) embeds into M(c)(4) over M .

Proof. Without loss of generality, we may assume b and c are in-
dependent. Fix choices forM(b) andM(c). Choose d realizing p|Mbc
and choose M(d) to be isomorphic to M(c) over M . Let M(bcd) de-
note the prime model over M(b)M(c)M(d). As there is a witness to
the non-modularity of p overM and as (b, c, d) realizes p(3), by Propo-
sition 5.9 there is a “definable” one, and hence there is a ∈ M(bcd)
such that (a, b, c, d) is a witness to non-modularity over M . Since
M⊆naM(bcd), we can use Fact 7.3 to findM(a) �M(bcd). Note that
M(a)⊆naM(bcd) by Lemma 5.11. As M(a),M(b),M(c) � M(bcd),
by PMOP there is a prime modelM∗ �M(bcd) overM(a)M(b)M(c).
Clearly, M∗ is dominated by abc over M and (a, b, c) realizes p(3), so
we can write it as M(abc).

Claim 1. M∗ =M(bcd).
Proof. If not, then choose g ∈M(bcd) \M∗ to realize a regular

type q. By Lemma 5.11 we have q 6⊥ M , so by the 3-model Lemma
(Fact 7.4) there would be h ∈ M(bcd) such that tp(h/M) is regular
and non-orthogonal to q, with h⌣

M
M∗. This h is dominated by bcd

over M , so tp(h/M) must be non-orthogonal to p. But then h, a, b, c
are independent realizations of regular types non-orthogonal to p,
which is impossible since wp(M(bcd)/M) = 3. ✷

So M∗ is equal to both M(abc) and M(bcd). Next, let M(ab) �
M(abc) be the unique model that is prime over M(a) ∪M(b). For
the moment we work over M(ab). Choose e to realize p|Mabcd fix an
isomorphism

Φ :M(abc) →M(abe)

fixingM(ab) pointwise. As both d andM(d) are contained inM(abc),
we let f := Φ(d) and M(f) := Φ(M(d)). Let N∗ be prime over
M(abc)∪M(abe) over M(ab). Note that N∗ is dominated by ce over
M(ab).
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We now use the fact that (a, b, c, d) is a witness to non-modularity.
By construction, ef and cd have the same type over M(ab), so
it follows from Lemma 5.6 that {c, d, e, f} are independent over
M . It follows that the four models M(c),M(d),M(e),M(f) are M -
independent, and the construction shows that they are pairwise iso-
morphic over M .

As each ofM(c),M(d),M(e),M(f) are contained in N∗, let N �
N∗ be prime over M(c) ∪ M(d) ∪ M(e) ∪ M(f). Note that N is
isomorphic to M(c)(4) over M and M(b) � M(ab) � N∗. Thus, the
Proposition is proved once we establish the following claim.

Claim 2. N = N∗.
Proof. If not, then choose g ∈ N∗ \N with q := tp(g/N) regu-

lar. By Lemma 5.11, q is non-orthogonal toM . Thus, by the 3-model
Lemma (Fact 7.4), there is h ∈ N∗ \M such that tp(h/M) is regular
and non-orthogonal to q, with h⌣

M
N . We split into cases depending

on the non-orthogonality class of q.
First, assume that q is non-orthogonal to p. On one hand, {h, c, d, e, f} ⊆

N∗ consist of 5 independent realizations of regular types non-orthogonal
to p. On the other hand, wp(M(ab)/M) = 2 and wp(N

∗/M(ab)) = 2,
so wp(N

∗/M) = 4, which is a contradiction.
Finally, assume that q is orthogonal to p. Then clearly tp(h/M(ab))

does not fork over M . But N∗ is dominated by ce over M(ab), and
by the orthogonality, h ⌣

M(ab)
ce. Thus, by transitivity, h⌣

M
N∗, which

is absurd since h ∈ N∗ \M . ✷

Corollary 5.15 T classifiable. SupposeM⊆na C is countable, tp(c/M) =
p, and p has a witness to non-local modularity overM . Then for each
n, Qn := {q ∈ Sn(Mc) : d̄c is dominated by c over M and d̄ |= q }
is countable.

Proof. Fix n. For any q ∈ Qn, choose a realization d̄q of q and
let Nq be any countable, ℓ-constructible model over Mcd̄q. Note that
Nq is dominated by d̄qc (and hence by c) overM . By Proposition 5.14,
choose an embedding fq : Nq → M(c)(4) fixing M pointwise. If Qn

were uncountable, there would be distinct q 6= q′ with fq(d̄qc) =
fq′(d̄q′c). As both fq and fq′ fix M pointwise, fq(c) = fq′(c) realizes
p, which would imply q = q′, a contradiction. ✷

Theorem 5.16 T classifiable. SupposeM⊆na C is countable, tp(c/M) =
p, and p has a witness to non-local modularity over M . Then there
is a constructible, minimal model over Mc.
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Proof. Assume by way of contradiction that there is no con-
structible model over Mc. As Mc is countable, there is a finite b̄
such that tp(b̄/Mc) is isolated, and a consistent formula θ(x) over
Mcb̄ that has no complete extension ϕ(x) ⊢ θ(x) over Mcb̄. Fix such
a b̄ and θ. Choose a consistent formula ψ(x) ⊢ θ(x), also over Mcb̄ of
smallest R∞-rank. As there is no complete ϕ ⊢ ψ, there are 2ℵ0 types
in S1(Mcb̄) containing ψ. Because of the minimality of R∞(ψ), if d
realizes any one of these types, then, as in the proof of Lemma 5.3 in
[9], db̄c is dominated by b̄c over M . However, tp(b̄/Mc) isolated im-
plies b̄c is dominated by c over M . Thus, tp(db̄/Mc) ∈ Qn+1 (where
n = lg(b̄)) for every such d, contradicting Corollary 5.15. Thus, there
is a constructible model N over Mc. As N is dominated by c over
Mc, its minimality over M follows from Lemma 5.11(1). ✷

The following is the main result of this section.

Theorem 5.17 Suppose that T is classifiable and M is any model.
If p ∈ S(M) is regular but not locally modular and b is any realization
of p then every model N containing M that is dominated by b over
M is both constructible and minimal over Mb.

Proof. As N is dominated by b over M , it is minimal over Mb
by Proposition 5.13(2).

Now first assume that N and hence M are countable. Choose, by
Lemma 5.3, a countable M∗ �M with N ⌣

M
M∗ such that M∗⊆na C

and for which there is a witness to non-local modularity over M∗.
By PMOP, there is a countable N∗ that is prime over N ∪M∗. By
Theorem 5.16, there is S, constructible minimal over M∗b, S � N∗.
We claim that N∗ = S. As N and M∗ are independent over M , and
N is dominated by b over M , N is also dominated by b over M∗. As
N∗ is prime over M∗ ∪N (and M∗ is a model) it is dominated by N
over M∗, hence it is dominated by b over M∗, and by Lemma 5.11,
N∗ is minimal over M∗b, hence N∗ = S. As N ⊂ N∗, N (as a set)
must be atomic over M∗b. By the Open mapping theorem, it follows
that N is already atomic over Mb. As N is a countable model, it is
constructible over Mb.

Now suppose M � N are arbitrary such that b ∈ N , tp(b/M)
is regular and not locally modular, and N is dominated by b over
M . Consider the pair (N,M) in a language with a predicate U for
M . Take a countable elementary substructure in the pair language,
(N ′,M ′) � (N,M) with b ∈ N ′. It follows that, in the original lan-
guage, N ′ and M are independent over M ′.

As N ′ ⊂ N , b dominates N ′ over M . By the independence of N ′

and M over M ′, b also dominates N ′ over M ′. From the paragraph
above,N ′ is constructible overM ′b by a construction sequence which,

26



by PMOP, remains a construction sequence over Mb. Now takes N∗,
a constructible model over N ′ and M , inside N . As N is minimal
over Mb, N∗ = N so N is constructible over Mb. ✷

Corollary 5.18 T classifiable. Suppose that M � N and N/M has
weight one, non-orthogonal to a non-locally modular type p. Then N
is both constructible and minimal overMb for any element b ∈ N\M .

Proof. Recall thatN/M having weight one means that wt(b/M) =
1 and N is dominated by b over M for any b ∈ N \M . Choose any
such b. As b/M is not orthogonal to p, there is a ∈ dcl(Mb) \M that
is p-simple of positive p-weight (Fact 7.8). As a ∈ N and as N/M
has weight one, it follows that tp(a/M) is regular, non-orthogonal to
p. Thus, by Theorem 5.17, N is constructible and minimal over Ma.
As a ∈ dcl(Mb), it follows that N is constructible and minimal over
Mb as well. ✷

6 When domination implies isolation

We begin this section with a recasting of Theorem 5.17.

Corollary 6.1 Suppose that A is any set, p ∈ S(A) is a regular,
stationary, non-locally modular type, and b is any realization of p.
Then for any e, if be is dominated by b over A, tp(e/Ab) is isolated.

Proof. Let M⊆na C be free from b over A and choose an ℓ-
constructible model N ⊇ Mbe over Mbe. As be is dominated by b
over M , hence N is dominated by b over M . By Theorem 5.17, N is
constructible, hence atomic over Mb, so tp(e/Mb) is isolated. Also,
e⌣
Ab
Mb, hence tp(e/Ab) is isolated by the Open Mapping Theorem.

✷

This result suggests the following definition.

Definition 6.2 A strong type p satisfies DI (read ‘domination im-
plies isolation’) if, for every set A on which p is based and stationary
and for every realization b of p|A, for every c ∈ C, if bc is dominated
by b over A, then tp(c/Ab) is isolated.

In the remainder of this section, we explore this notion in classi-
fiable theories. We begin with two results that only require stability.

Lemma 6.3 Suppose T is stable, M is a model, A ⊇M is any set,
and ϕ(x, a) isolates a type p ∈ S(A) Then:
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1. For every B⌣
M
A, p has a unique extension q ∈ S(AB) that is

also isolated by ϕ(x, a) and

2. For any c realizing ϕ(x, a), cA is dominated by A over M .

Proof.
For (1), the unique type q := {ψ(x, b, a′) : ϕ(x, a) ⊢ dryψ(x, y, a

′),
where a′ ∈ A, b ∈ B, ψ(x, y, z) over M , and r = tp(b/M)}.

For (2), choose any B satisfying B⌣
M
A. As p has a non-forking

extension to S(B), it must be the q from (1). ✷

Among depth zero-like types, the notion of DI has many equiva-
lents.

Proposition 6.4 Suppose T is classifiable. The following are equiv-
alent for a depth zero-like strong type p:

1. p is DI;

2. For every countable M on which p is based and for every b
realizing p|M , and for every n, the isolated types in Sn(Mb)
are dense;

3. For every countable M on which p is based, for every b realizing
p|M , there is a constructible model N overMb. Moreover, every
model N that is dominated by b over M is constructible over
Mb;

4. Same as (3), but for every model M on which p is based;

5. There is some a-model M on which p is based and some b real-
izing p|M for which there is a constructible model N over Mb.

Proof. We prove (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1). Then (4) ⇒ (5)
is trivial and we will show (5) ⇒ (2).

(1) ⇒ (2). Assume (1) and choose a countable M , b, and n as in
(2). Let ϕ(x, b,m) be any consistent formula with lg(x) = n. Choose
any model N that is dominated by b over M (e.g., an ℓ-constructible
one). Choose any c ∈ N realizing ϕ(x, b,m). As cb is dominated by
b over M , it follows from (1) that tp(c/Mb) is isolated.

(2) ⇒ (3). Fix M and b as in (3). As M is countable and the
isolated types are dense, it follows from Vaught that a constructible
model N over Mb exists. For the final sentence, let N∗ be any model
dominated by b over M . As N is prime over Mb, we may assume
N � N∗. But, as N∗ is minimal over Mb by Proposition 5.13(2),
N = N∗, so N∗ is constructible over Mb.

(3) ⇒ (4). Fix M and b as in (4). Choose a countable model
M0 �M such that b ⌣

M0

M . By (3), let N0 be constructible over M0b.
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Fix a construction sequence 〈ci : i < ω〉 for N0 over Mb. By iterating
Lemma 6.3, 〈ci : i < ω〉 is a construction sequence over Mb. Now,
by PMOP, let N be constructible over N0M . It follows that N is
constructible over Mb. For the final sentence, let N∗ be any model
dominated by b over M . As N is prime over Mb, we may assume
N � N∗. But then N = N∗ by minimality.

(4) ⇒ (1). Choose any set A on which p is based and stationary
and let b be any realization of p|A. Choose any element c ∈ C such
that bc is dominated by b over M . Choose any model M ⊇ A satis-
fying M ⌣

A
bc. It follows that bc is dominated by b over M . Choose

any model N dominated by bc over M . By transitivity we have that
N is dominated by b over M . Thus, by (4), N is constructible, and
hence atomic over Mb. In particular, tp(c/Mb) is isolated.

(4) ⇒ (5) is immediate.
(5) ⇒ (2). Let M∗ and b∗ be any a-model and witness exemplify-

ing (5). Given any countable M on which p is based and b realizing
p|M , the saturation of M∗ implies there is an M ′ � M∗ such that
tp(Mb) = tp(M ′b∗). Thus, without loss, assumeM �M∗ and b = b∗.
As b realizes p|M∗, we have that b⌣

M
M∗. Let ϕ(x, b,m) be any con-

sistent formula with m ∈ M . By (5), choose a constructible (and
hence atomic) N over M∗b. Choose any c ∈ N realizing ϕ(x, b,m).
Then tp(c/M∗b) is isolated, hence tp(c/Mb) is as well by the Open
Mapping Theorem. ✷

Proposition 6.5 Let T be classifiable.

1. Suppose stp(b/A) is depth zero-like and DI and bc is dominated
by b over A. Then stp(bc/A) is both depth zero-like and DI.

2. Suppose tp(bc/M) is depth zero-like and DI, and tp(c/Mb) is
isolated. Then tp(b/M) is depth zero-like and DI as well.

3. If p and q are both depth zero-like and DI, then so is p⊗ q.

Proof. (1) That stp(bc/A) is depth zero-like is clear. As for DI,
choose an a-model M and b as in Proposition 6.4(5). Without loss,
we may assume A ⊆ M , so b⌣

A
M . It follows that bc is dominated

by b over M , hence tp(c/Mb) is a-isolated. Thus, there is an a-prime
modelM [b] over Mb with c ∈M [b]. [Think of c as being the first step
of an a-construction sequence over Mb.] Then M [b] is also a-prime
over Mbc. However, M [b] is constructible over Mb, so tp(c/Mb) is
actually isolated. It follows that M [b] is constructible over Mbc, so
stp(bc/A) is DI by Proposition 6.4(5).

(2) That tp(b/M) is depth zero-like is immediate. For DI, choose
an a-model M∗ witnessing that tp(bc/M) is DI. Without loss, we
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may assume M � M∗, so bc⌣
M
M∗. It follows from Lemma 6.3 that

tp(c/M∗b) is isolated as well. As tp(bc/M∗) is DI, let N∗ be con-
structible overMbc. As tp(c/M∗b) is isolated,N∗ is also constructible
over M∗b. Thus, tp(b/M∗) is DI by Proposition 6.4(5).

(3) As both p and q are depth zero-like, it is immediate that
p ⊗ q is as well. As for DI, let M be any model on which p ⊗ q is
based and let (c1, c2) realize p ⊗ q. As both p and q are DI, there
is a constructible model N1 over Mc1 and a constructible model N2

over Mc2. As c1⌣
M
c2, by iterating Lemma 6.3 it follows that N1 is

constructible over Mc1c2 and N2 is constructible model over N1c2.
However, by PMOP there is a model N∗ that is constructible over
N1N2. It follows that N

∗ is constructible over Mc1c2, so p⊗ q is DI
by Proposition 6.4(4). ✷

We can combine several of our results in the following Corollary
which generalizes Corollary 5.18.

Corollary 6.6 T classifiable. Suppose p is a regular depth zero DI
type (for example a non-locally modular regular type) and let tp(a/M)
be p-semiregular of weight k. Then there is a constructible, minimal
model N over Ma.

Proof. Choose an a-modelM∗ independent from a over M and
choose an M∗-independent tuple c̄ = 〈ci : i < k〉 of realizations of
p|M∗ such that a and c̄ are domination equivalent over M∗.

As tp(a/M∗) is p-semiregular, it is depth-zero like. By Proposi-
tion 6.5(3) and (1), tp(c̄/M∗) is depth zero-like and DI. To show that
tp(a/M∗) is DI, by Proposition 6.5(2) it suffices to show tp(c̄/M∗a)
is isolated. First choose ϕ(y) ∈ p|M witnessing that p|M is strongly
regular. Next, for each i < k, choose a formula θi(y, x) ∈ tp(ci/M

∗a)
such that θi(y, a) forks over M

∗. Finally, as wp(a/M
∗c̄) = 0, it does

so provably: tp(a/M*) is p-semiregular so, by Fact 7.16, we can find
a formula ψ(x, ȳ) ∈ tp(ac̄/M∗) such that wp(a

′,M∗c̄′) = 0 whenever
a′c̄′ realizes ψ(x, ȳ).

Then tp(c̄/M∗a) is isolated by

∧

i<k

ϕ(yi) ∧
∧

i<k

θi(yi, a) ∧ ψ(ȳ, a)

As tp(a/M∗) is depth zero-like and DI, an application of Proposi-
tion 6.4(3) completes the proof. ✷
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7 Appendix

In this appendix, we bring together for the reader’s convenience,
many of the basic definitions and facts from classification theory and
geometric stability theory which are used throughout the paper and
can be found for example in [7]. We assume that the reader is familiar
with stability theory, independence and the basics of superstability.
Throughout this appendix, T will be a stable theory.

Definition 7.1 • We say that M is an a-model if every strong
type over every finite B ⊆ M is realized in M . In the original
notation of Shelah ([10]) this corresponds to Fa

ℵ0
-saturation.

• LetM � N be models of T ,N is an na-extension ofM , denoted
M⊆naN , if for every formula ϕ(x, y), for every tuple a from M
and every finite subset F of M , if N contains a solution to
ϕ(x, a) not in M , then M contains a solution to ϕ(x, a) that is
not algebraic over F .

Definition 7.2 • If B ⊆ A, types p ∈ S(A) and q ∈ S(B) are
almost orthogonal, denoted p ⊥a q, if for all a realizing p and b
realizing q, if b⌣

B
A, then a⌣

B
b. p is almost orthogonal to the

set B, p ⊥a B if p ⊥a q for every q ∈ S(B).

• Two types p ∈ S(A) and q ∈ S(B) are orthogonal, denoted
p ⊥ q, if p|C ⊥a q for all C ⊇ AB. p ∈ S(A) is orthogonal to a
set B, p ⊥ B, if p ⊥ q for every q ∈ S(B).

• A set C is dominated by E over D if for all b such that b is
independent from E over D, b is independent from C over D.

• A stationary type p is regular if it is orthogonal to all its forking
extensions.

Note that if B ⊆ A and p ∈ S(A), then p ⊥a B if and only if Aa
is dominated by A over B for some/every a realizing p.

The following fact is a consequence of Lemma 5.3 in [9]:

Fact 7.3 Suppose T is superstable, M⊆naN are models of T and
M ⊆ A ⊆ N . Then theres exists a model N ′, M ⊆ A ⊆ N ′⊆naN
such that N ′ is dominated by A over M .

Fact 7.4 [The 3-model lemma] (Proposition 3.6, Chapter 8 in [7])
Suppose T superstable. Let M0 �M1 �M2 be models of T such that
M0⊆naM2. Suppose a ∈M2 and tp(a/M1) is regular non-orthogonal
to M0. Then there is b ∈M2 such that tp(b/M1) is regular and does
not fork over M0 and b is not independent from a over M1.
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7.1 p-simplicity and locally modular regular

types

Let p be any stationary regular type, which for convenience we take
to be over ∅. Consider p(C) the set of realizations of the type p, then
(p(C), clfork) forms a homogeneous pre-geometry (see e.g., Chapter
7 of [7]), where a ∈ clfork(B) means that a forks with B over ∅.

Now suppose that M is an a-model, let p|M denote the non-
forking extension of p to S(M). Call a subset X ⊆ p|M(C) closed if
whenever a ∈ p(C) does not fork over M , but a⌣/

M
X , then a ∈ X.

Because of the van der Waerden axioms, closed setsX come equipped
with a dimension dim(X), which here is equal to the cardinality of a
maximal M -independent subset I ⊆M .

Definition 7.5 The regular type p is locally modular if, for any a-
saturated M and for any closed subsets X,Y ⊆ (p|M)(C),

dim(cl(X ∪ Y )) + dim(cl(X ∩ Y )) = dim(X) + dim(Y )

Proposition 7.6 [7] Suppose that M is an a-model. The following
are equivalent for a regular type p ∈ S(M):

1. The type p is not locally modular;

2. There is a set of four realizations {a1, a2, b1, b2} of p, that are
dependent over M , yet the closures of {a1, a2} and {b1, b2} in
p|M(C) are disjoint.

In fact it will be useful to work in a wider space than (p(C), clfork).
We recall the definition of p-simplicity.

Definition 7.7 • A strong type stp(a/A) is hereditarily orthog-
onal to p if stp(a/B) is orthogonal to p for every B ⊇ A.

• A strong type stp(a/A) is p-simple if for some a-model M
independent from a over A, there is an M -independent set
{b1, . . . , bk} of realizations of p|M such that stp(a/Mb1, . . . , bk)
is hereditarily orthogonal to p. We say that stp(a/A) is p-simple
of weight k if k is least such.

• If stp(a/A) is p-simple of p-weight k we write wp(a/A) = k.

• A formula θ(x) over A is p-simple of p-weight k if every type
extending θ is p-simple and k is the maximum of {wp(a/A) :
θ(x) ∈ stp(a/A)}.

• For a p-simple θ(x) over A, we say p-weight is definable and
continuous inside θ(x) if, for all C ⊇ A and for all a real-
izing θ, if wp(a/C) = m, then there is a formula ϕ(x, c) ∈
tp(a/C) of p-weight m and a formula ψ(y) ∈ tp(c/A) such that
wp(ϕ(x, c

′)) ≤ m for all c′ realizing ψ.
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Non-orthogonality to p gives the existence of p-simple types:

Fact 7.8 (Lemma 1.17, Chapter 7 in [7]). Let X be algebraically
closed and tp(a/X) be non-orthogonal to p. Then there is e ∈ dcl(aX)
such that tp(e/X) is p-simple of positive p-weight.

Following [3] and [7], for a set C, let

D(p,C) := {a ∈ C : stp(a/C) is p-simple of finite p-weight}

We equip D(p,C) with a closure operator clp, namely for a,B from
D(p,C), a ∈ clp(B) if and only if wp(a/BC) = 0. Technically, the
closure relation clp depends on C, but much of the time we will take
C = ∅, so we do not muddy our notation by referring to it explicitly.
Because of the regularity of p, the closure space (D(p,C), clp) is well-
behaved, but formally is not a pre-geometry as the Exchange Axiom
fails.

Definition 7.9 Fix any set C. D(p,C) is modular if wp(a/C) +
wp(b/C) = wp(ab/C) +wp((clp(a) ∩ clp(b))/C) for all a, b ∈ D(p,C).

As shown for example in 7.2.4 of [7]:

Fact 7.10 The regular type p is locally modular (as defined above)
if and only if D(p,C) is modular for all sets C

7.2 p-semiregular types

Within this space, it will be useful to identify the p-semiregular types.

Definition 7.11 stp(a/A) is p-semi-regular of weight k if it is p-
simple and is (eventually) domination equivalent to p(k) for some
finite k ≥ 1, i.e., for some (equivalently, for all) a-models M inde-
pendent from a over A, there is an M -independent sequence b̄ =
〈b1, . . . , bk〉 of realizations of the non-forking extension p|M witness-
ing the p-simplicity of stp(a/A), with a and b̄ domination equivalent
over M (for any set X, X ⌣

M
a if and only if X ⌣

M
b̄.)

There is a natural Criterion for determining whether a p-simple
type is p-semiregular. This Criterion appears as either Fact 1.4 of [4]
or 7.1.18 of [7]):

Criterion 7.12 Suppose stp(a/X) is p-simple of positive p-weight,
and choose Y ⊆ dcl(aX). Then stp(a/Y ) is p-semi-regular of positive
p-weight if and only if a 6∈ acl(Y ), but wp(e/Y ) > 0 for every e ∈
dcl(aY ) \ acl(Y ).
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To get the existence of a p-semiregular type nearby a given p-
simple type, we couple this with the following easy Lemma, whose
proof only requires superstability.

Lemma 7.13 Suppose a and X are given with a finite, and Y is
chosen arbitrarily such that X ⊆ Y ⊆ acl(Xa). Then there is a finite
sequence b from Y such that Y ⊆ acl(Xb).

Proof. Recursively construct a sequence 〈bi : i〉 from Y of max-
imal length such that a⌣/

Bi

bi, where Bi := X ∪ {bj : j < i}. Clearly,

R∞(a/Bi) is strictly decreasing with i, so any such sequence has
finite length. But, for the sequence to terminate, it must be that
Y ⊆ acl(Bi∗) for the terminal i∗. ✷

Finally, we get our existence lemma.

Lemma 7.14 If stp(a/X) is p-simple of positive p-weight, then there
is a finite b from dcl(aX)∩clp(X) such that stp(a/Xb) is p-semiregular
and wp(a/Xb) = wp(a/X).

Proof. Let Y = dcl(aX) ∩ clp(X) and choose a finite b from Y
such that Y ⊆ acl(Xb). Now dcl(Y a) = dcl(Xa), so if e ∈ dcl(Y a) \
acl(Y ), we must have wp(e/Y ) > 0, lest we would have e ∈ Y . Thus,
Criterion 7.12 for p-semi-regularity applies. ✷

Next we record ways in which an existing p-semi-regular type is
persistent.

Lemma 7.15 Suppose stp(e/X) is p-semi-regular.

1. If e′ ∈ acl(eX) \ acl(X), then stp(e′/X) is p-semi-regular;

2. If stp(e/Y ) is parallel to stp(e/X), then stp(e/Y ) is p-semi-
regular of the same p-weight;

3. If X ⊆ Y ⊆ clp(X), then stp(e/Y ) is p-semi-regular of the
same p-weight.

Proof. (1) As dcl(e′X) ⊆ dcl(eX), the result follows by Crite-
rion 7.12.

(2) This is immediate, as ‘domination equivalent to p(k)’ is pre-
served.

(3) Since stp(e/X) is p-semi-regular, we automatically have e⌣
X
Y ,

so (3) follows from (2). ✷

The following fact is Theorem 2(b) in [4].

Fact 7.16 Let T be superstable, let p be a non trivial regular type
of depth zero and let stp(a/B) be p-semiregular. Then a lies in some
acl(B)-definable set D such that p-weight is continuous and definable
inside D.
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7.3 Classifiable theories and isolation

We now recall definitions and facts about isolation and constructibil-
ity.

A type p ∈ S(A) is isolated if there is some formula ϕ(x, a) ∈ p
such that ϕ(x, a) ⊢ p. A construction sequence over A is a sequence
〈aα : α < β〉 such that tp(aα/A ∪ {aγ : γ < α}) is isolated for every
α < β. A model N is constructible over A if there is a construction
sequence over A whose union is N . IfN is constructible over A then it
is both prime and atomic over A. Any two constructible models over
A are isomorphic over A. As T is countable, it follows from results
of Vaught that for A countable, there is a constructible model over
A.

If T is ℵ0-stable, then constructible models exist over every set
A. In a superstable theory it is not always true that there are con-
structible models over all sets. Indeed, one of the main goals of this
paper is to determine when constructible models over particular sets
exist.

A weaker notion is ℓ-isolation. A type p ∈ S(A) is ℓ-isolated if,
for every formula ϕ(x, y) there is a formula ψ(x, a) ∈ p such that
ψ(x, a) ⊢ p↾ϕ, the restriction of p to instances of ±ϕ(x, b) for b ∈
A. ℓ-construction sequences and N being ℓ-constructible over A are
defined analogously. An advantage is that for a superstable theory
T , ℓ-constructible models over A exist. However, there can be many
non-isomorphic ℓ-constructible models over A.

Recall the definitions of NDOP and PMOP from the introduction:

Definition 7.17 1. A superstable theory does not have the dimen-
sion order property (NDOP) if, for every independent triple M =
(M0,M1,M2) of a-saturated models, the a-prime modelM∗ overM1M2

(which exists in any superstable theory) is minimal among all a-
saturated models containing M1M2.
2. A superstable theory has prime models over pairs (PMOP) if,
for any independent triple (M0,M1,M2) of models, there is a con-
structible model over M1M2.
3. A complete theory T in a countable language is classifiable if T is
superstable, has prime models over pairs (PMOP) and does not have
the dimension order property (NDOP).

The following are essential facts:

Fact 7.18 • T has NDOP if and only if, for M = (M0,M1,M2)
any independent triple of a-saturated models and M∗ a-prime
model over M1M2, any regular type q non-orthogonal to M∗ is
either non-orthogonal to M1 or M2.
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• If T has NDOP, then any non trivial regular type must have
depth zero.

7.4 p-disjointness

Definition 7.19 Suppose a, b ∈ D(p,C). We say that a and b are
p-disjoint over C if clp(Ca) ∩ clp(Cb) = clp(C).

The next two Lemmas discuss the relationship between p-disjointness
and forking, at least when stp(ab/C) is p-semiregular.

Lemma 7.20 Suppose that stp(ab/C) is p-semiregular, C ⊆ D and
stp(ab/D) does not fork over C. Then clp(Ca) ∩ clp(Cb) = clp(C) if
and only if clp(Da) ∩ clp(Db) = clp(D).

Proof. First, assume there is a ‘bad element’ e for the triple (a, b, C),
that is e ∈ clp(Ca)∩ clp(Cb) \ clp(C). As the existence of such an e is
clearly determined by tp(ab/C), by replacingD by some independent
D∗ realizing the same strong type asD over Cab, we may assume that
abe⌣

C
D. It follows immediately that e ∈ [clp(Da)∩ clp(Db)] \ clp(D)

so e is bad for (a, b,D) as well.
Conversely, if e is a ‘bad element’ for (a, b,D), let h := Cb(De/Cab).

We first claim that h 6∈ clp(C). If it were, then as stp(ab/C) is p-semi-
regular, we would have ab⌣

C
h. But, as ab⌣

Ch
De, this would imply

ab⌣
D
e, contradicting e 6∈ clp(D). Thus, h 6∈ clp(C).

So, arguing by symmetry between a and b, it suffices to prove
that h ∈ clp(Ca). Choose a Morley sequence 〈D1e1, . . . ,Dnen〉 in
stp(De/Cab) with D1e1 = De such that h ∈ dcl(e1 . . . enD1 . . . Dn).
The standard argument yields

D1, . . . ,Dn ⌣
C
ab

As well, h ∈ acl(Cab), hence D1, . . . ,Dn ⌣
Ca
h. Because of this, it

suffices to prove that stp(h/CaD1 . . . Dn) is hereditarily orthogonal
to p, i.e., has p-weight zero. However, for each i, wp(ei/aDi) = 0, so
wp(ei/CaD1 . . . Dn) = 0 for each i. But h ∈ dcl(e1 . . . enD1 . . . Dn),
so wp(h/CaD1 . . . Dn) = 0. ✷

Lemma 7.21 Suppose that stp(ab/C) is p-semiregular and clp(Ca)∩
clp(Cb) = clp(C). Then acl(Ca) ∩ acl(Cb) = acl(C).

Proof. Choose any e ∈ acl(Ca)∩acl(Cb). As acl(Ca) ⊆ clp(Ca)
and acl(Cb) ⊆ clp(Cb), our hypothesis implies that e ∈ clp(C). How-
ever, as stp(ab/C) is p-semi-regular, this implies ab⌣

C
e. As e ∈

acl(abC), this implies e ∈ acl(C) as desired. ✷
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Thanks to Lemma 7.21 we will be able to apply the following
general result below about forking to p-disjoint p-semiregular types.

Lemma 7.22 For all a, b, C, acl(Ca)∩acl(Cb) = acl(C) if and only
if for every set X, if X ⌣

Ca
b and X ⌣

Cb
a both hold, then X ⌣

C
ab holds

as well.

Proof. To ease notation, assume C = ∅. It suffices to prove
this for finite sets X. For left to right, fix an X, and let D denote
the canonical base of tp(X/ab). On one hand, D ⊆ acl(a), and on
the other hand, D ⊆ acl(b). Thus, by our assumption, D ⊆ acl(∅),
implying that X ⌣ab.

For the converse, choose any h ∈ acl(a) ∩ acl(b). Then, for triv-
ial reasons we have h⌣

a
b and h⌣

b
a, so by our hypothesis we have

h⌣ ab. But, as h ∈ acl(ab), this implies h ∈ acl(∅). ✷
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