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Abstract. A first-order theory T has the Schröder-Bernstein (SB) property

if any pair of elementarily bi-embeddable models are isomorphic. We prove

that T has an expansion by constants with the SB property if and only if T is
superstable and non-multidimensional. We also prove that among superstable

theories T , the class of a-saturated models of T has the SB property if and

only if T has no nomadic types (see Definition 3.1 below).

1. Introduction

The classical Schröder-Bernstein theorem asserts that ifA andB are bi-embeddable
sets, i.e., there exist injections f : A→ B and g : B → A, then there is a bijection
between them. It is natural to extend this concept to classes (K,Mor), where K is
a class of algebraic structures and Mor is a distinguished class of injections between
elements of K. We say that (K,Mor) has the Schröder-Bernstein (SB) property
if any pair of bi-embeddable structures in K (with respect to Mor) are isomor-
phic. In this paper, we discuss the SB property for classes K that are subclasses of
Mod(T ), the class of models of a complete, first-order theory T . Throughout this
paper, Mor will always be taken to be the class of elementary embeddings (which
are necessarily injective). Thus, we say that a theory T has the SB property if
any two elementarily bi-embeddable models of T are isomorphic. As examples, the
theory of algebraically closed fields of any characteristic has the SB property, but
the theory of dense linear order does not.

One motivation for considering the SB property is that it should be a nice litmus
test for our understanding of the models of T : Once we have a sufficiently good
understanding of these models (knowing that they are classified by some reasonable
collection of invariants, or, conversely, knowing that they are “wild” in a suitably
precise sense), then we ought to be able to say whether or not T has SB. For in-
stance, by the results of Morley in [4], if T is countable and ℵ1-categorical (e.g.,
algbraically closed fields of any characteristic), then the models of T are classified
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by a single cardinal number invariant (a dimension) which is preserved by elemen-
tary embeddings. This implies that such a T has the SB property. In general, it
seems that SB is a fairly strong tameness property, but it is strictly weaker than
uncountable categoricity.

Given that we are interested in relating SB to the classification of models of
T , it is not surprising that we use tools from the so-called classification theory
of Shelah (now more commonly called stability theory), developed in the 1970’s
and expounded in [9]. One of the main ideas there was the use of dividing lines
amongst theories T (such as superstability, NDOP, NOTOP) to separate those T
whose classes of models do admit some kind of classification from those for which
this is hopeless. Another idea from [9] that is very useful for the present paper is
the development of a local dimension theory for certain classes of elements within
a model using the independence notion known as nonforking.

The Schröder-Bernstein property for first-order theories seems to have first been
considered by Nurmagambetov in [5] and [6], where he showed that for totally
transcendental theories it is equivalent to nonmultidimensionality. Various other
results around SB were proved in the first author’s thesis [1], such as:

Theorem 1.1. If T is not superstable, then T does not have SB. Furthermore, if
T is unstable, then for any cardinal κ, there is an infinite collection of κ-saturated
models of T which are pairwise bi-embeddable but pairwise nonisomorphic.

Our previous paper [2] gives a characterization of which countable weakly min-
imal theories have the SB property, and this characterization is precise enough to
show that for any fixed T the SB property is absolute under forcing extensions of
the set-theoretic universe (which does not seem obvious a priori). We still do not
have a satisfactory characterization of which theories have SB in general.

In the current paper, we address two questions: When is it the case that T has
SB after naming a set of constants (which we call “eventual SB”), and when do the
sufficiently saturated models of T have the SB property?

We give a simple complete characterization of eventual SB in Theorem 4.2: It is
equivalent to superstability plus nonmultidimensionality. As for SB for κ-saturated
models, with Theorem 3.11 we succeed in characterizing SB for a-saturated models
when T is superstable. This result, coupled with Theorem 1.1, imply that the only
remaining case to consider is when T is strictly stable. To extend our methods to
such theories would require additional knowledge about the prevalence of regular
types.

A motivating example to keep in mind is the complete theory T of the additive
group (Z; +). It turns out that T is the theory of all torsion-free abelian groups G
such that [G : pG] = p for every prime p (this follows from a more general result
by Szmielew in [10]). Hence any model G of T can be decomposed as G = H ⊕Qκ

where H ≤ Ẑ. The theory T is “classifiable” according to Shelah’s dichotomies.
In fact, T is superstable, non-multidimensional, and weakly minimal; see [8]). The

a-saturated models of T are simply the models of the form G = Ẑ⊕Qκ where the
cardinal κ is infinite, and it is not hard to see that the class of these models has
the SB property. Furthermore, T has the eventual SB property since we can add

constants for every element in a copy of Ẑ in some model. However, the class of all
models of T is more complex, and this does not have the SB property (this follows
from the main theorem of [2]).
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Section 2 introduces some concepts and tools necessary for the main results
(countable local pre-weight and low substructures). Along the way, we give a new
characterization of the a-prime models in any superstable theory (Theorem 2.6).
Section 3 gives the characterization of SB for a-saturated models in a superstable
theory, and Section 4 gives the characterization of eventual SB (whose proof depends
heavily on our analysis of a-saturated models in previous sections).

Throughout the paper, we will assume that T is a complete superstable
theory unless otherwise noted, though in a few results we note that T is super-
stable for emphasis. Given a complete theory T , we always work within a sufficiently
saturated model C of T (for our purposes, (2|T |)+-saturated is enough). Our nota-
tion is mostly standard and follows [7] and [9], where the interested reader can find
definitions for the terms we use from stability theory (“superstable,” “regular type,”
etc.). As in [7], we call a structure a-saturated in place of Shelah’s ‘Faℵ0-saturated,’
and we call a model a-prime instead of ‘Faℵ0 -prime over ∅.’ When describing dimen-
sions of regular strong types inside models, the notation dim(p,A,M) = κ means
that p is based on A and that any maximal A-independent set of realizations of p|A
inside M has size κ.

It is noteworthy that none of the results in this paper have any dependence on
the cardinality of the language.

2. a-prime models of superstable theories

In this section we focus on the a-prime and a-saturated models of a superstable
theory. Recall (from [7]) that a model is a-saturated if it realizes every strong type
over a finite subset, and that a model is a-prime just in case it is a-saturated and
embeds into any other a-saturated model of its complete theory. We will freely use
well-known facts about a-prime and a-saturated models from [7] and [9].

We first focus on proving a characterization of the a-prime models in any super-
stable theory (Proposition 2.6) which is important for our subsequent results. Note
that the main use of superstability in the proof of this proposition is the “ubiquity
of regular types.” In the remainder of the section, we introduce low substructures
and some lemmas on dimensions in a-saturated models that will be useful later.

Our first definition is a variation on the classical notion of pre-weight (see [7] or
[9]) which measures the size of a set by how many distinct independent elements
can fork with it.

Definition 2.1. A set B has countable local pre-weight if for every finite set A,
every stationary, regular type p ∈ S(A), and every A-independent set I ⊆ p(C),
there is a countable I0 ⊆ I such that (I \ I0) |̂

A

B.

Remark 2.2. In the definition above, “local” refers to the fact that we require that
the elements of I come from a single regular type. Classically, weight differs from
pre-weight in that the weight is the supremum of the pre-weights of all nonforking
extensions. Whereas Theorem 2.6 shows that the a-prime model of a superstable
theory has countable local pre-weight, Example 2.13 shows that it need not have
countable local weight.

Lemma 2.3. Suppose that M is any a-prime model and p ∈ S(∅) is stationary and
regular. For any countable set A and for any A-independent set I of realizations of



4 J. GOODRICK AND M. C. LASKOWSKI

p|A, there is no uncountable, pairwise disjoint family {Ei : i ∈ ω1} of subsets of I
such that Ei 6 |̂

A

M for each i.

Proof. By way of contradiction, suppose an uncountable family {Ei : i ∈ ω1}
existed. We can clearly assume that each Ei is finite. For each i choose a finite
tuple ai from A and a finite bi from M such that Ei 6 |̂ ai bi for each i. As A is

countable, there is a specific a∗ such that ai = a∗ for uncountably many i. Thus,
by reindexing, we may assume that every ai = a∗. Let N = M [a∗] be the a-prime
model over M ∪ {a∗}. As a∗ is finite, N is also a-prime over ∅. Choose a maximal,
independent set J ⊆ p(N). As N is a-prime, J is countable.

Next, for each i, choose a finite J(i) ⊆ J so that a∗bi |̂ J(i)
J . Arguing as above,

we may assume that there is a single J∗ so that J(i) = J∗ for every i. Furthermore,
since J∗ is finite and the sets {Ei} are independent, by eliminating at most finitely
many i we may additionally assume that Ei |̂ J∗ for each i.

Now we obtain a contradiction by fixing any remaining i. As N is a-saturated, we
can choose E′i ⊆ N such that stp(E′ia

∗biJ
∗) = stp(Eia

∗biJ
∗). Since every element

of E′i realizes p(N) and is independent of J∗, the maximality of J implies that J
dominates E′i over J∗. Since Ei is independent from J∗ and forks with a∗bi over ∅,
it follows that Ei, and hence E′i, forks with a∗bi over J∗. Combining this with the
domination described above implies that a∗bi 6 |̂ J∗ J , which is a contradiction.

Lemma 2.4. Suppose that M is any a-prime model and p ∈ S(∅) is stationary and
regular. For any countable set A and for any A-independent set I of realizations of
p|A, there is a countable I∗ ⊆ I such that (I \ I∗) |̂

AI∗
M .

Proof. We first argue that for any countable set A there is a countable I0 ⊆ I
such that (I \ I0) |̂

A
M . To see this, given a countable set A, call a subset E ⊆ I

a minimal witness to forking if E 6 |̂
A
EM , but any proper subset of E is free from

M over A. It is clear that every minimal witness is finite, and that if we set I0 to
be the union of all the minimal witnesses, then (I \ I0) |̂

A
M . Thus, it remains to

prove that I0 is countable.
However, if I0 were uncountable, then we would have uncountably many minimal

witnesses {Ei}. By the ∆-system lemma, there would be a finite set G ⊆ I and
an uncountable family {Ei : i ∈ ω1} such that Ei ∩ Ej = G for distinct i, j. But
then, apply Lemma 2.3 with A′ = A ∪ G, I ′ = I \ G, and the family {Fi}, where
Fi = Ei \G and obtain a contradiction.

Now, to prove the Lemma, suppose we are given a countable set A. Form a
sequence I0 ⊆ I1 ⊆ . . . of countable subsets of I by applying the result in the first
paragraph successively to the countable sets A, A∪ I0, A∪ I1, et cetera. Then the
set I∗ =

⋃
In satisfies our demands.

Proposition 2.5. Every a-prime model has countable local pre-weight. In fact,
given any sets B ⊆ A with B finite and A countable, and for any stationary,
regular p ∈ S(B), then for every B-independent set I ⊆ p(C), there is a countable
set I∗ ⊆ I such that (I \ I∗) |̂

AI∗
M .

Proof. First, as A is countable, there is a finite I0 ⊆ I such that I \ I0 is AI0-
independent. Thus, by replacing I by I \ I0 and A by A ∪ I0, we may additionally
assume that I is A-independent.
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Next, let N = M [B] be a-prime over M ∪ B. Then N is also a-prime. But
furthermore, as B is finite, N is also a-prime over B. Thus, if we work over B and
apply Lemma 2.4, we obtain the requisite I∗.

In fact, the countability of local pre-weight characterizes the a-prime models
among the class of all a-saturated models.

Proposition 2.6. The following are equivalent for an a-saturated model M of a
superstable theory:

(1) M is a-prime over ∅;
(2) Every infinite, indiscernible set in M is countable;
(3) For all finite B ⊆ M , every stationary, regular p ∈ S(B) has countable

dimension;
(4) M has countable local pre-weight.

Proof. The equivalence of (1) and (2) is given in IV 4.18 of [9], noting that
any finite tuple is trivially Faℵ0-atomic over ∅. (2) implies (3) is immediate.

To see that (3) implies (2), suppose that there is an uncountable indiscernible
set I ⊆ M . Let q = Av(I,M). By superstability there is a regular type p non-
orthogonal to q. Since M is a-saturated, possibly by replacing p by a non-orthogonal
regular type, we may assume that p is based and stationary on a finite B ⊆ M .
Again by superstability, there is a finite I0 ⊆ I on which q is stationary and
moreover, by padding B with a finite Morley sequence in p, we may additionally
assume that the types p′, q′ ∈ S(BI0), that are parallel to p, q respectively, are not
almost orthogonal. From this and the fact that p′ has weight one, it is clear that
M must contain an uncountable Morley sequence in p′.

Finally, (4) implies (3) is obvious, and the implication (3) implies (4) is the
content of Proposition 2.5.

Definition 2.7. Given an a-saturated model N , M is a low substructure of N if
M � N , M is a-prime, and dim(p,M,N) ≥ ℵ0 for every regular type p ∈ S(M).

Lemma 2.8. Every a-saturated model has a low substructure.

Proof. It suffices to prove that every a-prime model has a low substructure.
By the uniqueness of a-prime models, it suffices to construct a single a-prime model
N that has a low substructure.

Toward this end, fix M any a-prime model. Let Γ ⊆ S(M) be any maximal
subset of pairwise orthogonal weight one types over S(M). Let

I =
⋃
p∈Γ

Ip

be independent over M such that each Ip is a Morley sequence of length ω built
from p, and let N be a-prime over M ∪ I. By construction, dim(q,M,N) ≥ ℵ0 for
every q ∈ S(M), so it suffices to show that N is a-prime over ∅. By Lemma 2.6, it
suffices to show that as a set, N has countable local pre-weight. To see this, choose
any finite set A, any stationary, regular r ∈ S(A), and any Morley sequence J built
from r. There is at most one p ∈ Γ non-orthogonal to r. Choose M ′ � N to be a-
prime over M ∪Ip if such a p ∈ Γ exists, or else let M ′ = M if r ⊥ p for every p ∈ Γ.
Note that in either case, tp(N/M ′) is orthogonal to r. Since M is a-prime it has
countable local pre-weight, so there is a countable J0 ⊆ J with M |̂

AJ0
J . By the
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construction of M ′, it follows that there is a countable J1, J0 ⊆ J1 ⊆ J , satisfying
M ′ |̂

AJ1
J . As tp(N/M ′) is orthogonal to r, N |̂

AJ1
J , so N has countable local

pre-weight.

Lemma 2.9. Suppose that N is an a-saturated model, X ⊆ N is any set, and
p, q ∈ S(X) are stationary, regular types that are not almost orthogonal. Then
dim(p,X,N) = dim(q,X,N).

Proof. We first prove that for each c ∈ p(N), there is d ∈ q(N) that forks
with c over X. To see this, by non-almost orthogonality, for any such c there is
d0 ∈ q(C) forking with c over X. Choose B ⊆ X finite such that p and q are
based on B and c 6 |̂

B
d0. As N is a-saturated, we can find d ∈ N such that

stp(d/Bc) = stp(d0/Bc). To see that d realizes q, it suffices to show that d |̂
B
X.

However, if it forked, then r = stp(d/X) would be a forking extension of a strong
type parallel to q. But then, by regularity r would be orthogonal to p, which would
be a contradiction.

Now let I ⊆ p(N) be any maximal X-independent set. From the argument
above, for each c ∈ I, choose dc ∈ q(N) that forks with c over X. It follows
immediately from the fact that regular types have weight one that the mapping
c 7→ dc is injective, and moreover that J = {dc : c ∈ I} is X-independent. Thus,
dim(p,X,N) ≤ dim(q,X,N). By symmetry, this suffices to prove the lemma.

Proposition 2.10. Suppose M0,M1 are both low substructures of an arbitrary a-
saturated model N . If p ∈ S(M0) and q ∈ S(M1) are non-orthogonal regular types,
then dim(p,M0, N) = dim(q,M1, N).

Proof. By the definition of a low substructure, M0 and M1 are both a-prime
and each dimension is infinite. If the dimensions are both countable, they are equal.
Thus, by symmetry, assume that dim(p,M0, N) = κ > ℵ0. It suffices to show that
dim(q,M1, N) = κ. To see this, first choose a finite B ⊆M0 on which p is based and
stationary. As M0 is a-prime, dim(p,B,M0) is countable, hence dim(p,B,N) = κ
as well. Let I ⊆ N be a maximal B-independent set of realizations of p|B. By
Proposition 2.5 there is a countable I0 ⊆ I such that (I \ I0) |̂

BI0
M1. By adding

at most finitely many additional points to BI0, we may assume that the types
parallel to p and q over M1BI0 are not almost orthogonal. Thus, by Lemma 2.9, as
|I \ I0| = κ, it follows that dim(q,M1BI0, N) = κ. But then, as BI0 is countable,
it follows that dim(q,M1, N) = κ and we finish.

Lemma 2.11. T superstable. If f : M → N is any elementary embedding of
a-saturated models, and if M0 is a low substructure of M , then f(M0) is a low
substructure of N .

Proof. Clearly, f(M0) � N and is a-prime, since it is isomorphic to M0.
Furthermore, if q ∈ S(f(M0)) is regular, then as p := f−1(q) is a regular type
over M0, p has infinite dimension in M , hence q has infinite dimension in N . Thus,
f(M0) is a low substructure of N .

Corollary 2.12. Suppose that T is superstable, M0 is a low substructure of an
a-saturated model M , and that f : M →M is an elementary endomorphism. If p ∈
S(M0) is regular and non-orthogonal to f(p), then dim(p,M0,M) = dim(f(p), f(M0),M).
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Proof. This follows immediately from Proposition 2.10 and Lemma 2.11.

We close this section with a remark about Definition 2.1. For the moment, say
that a set B has countable local weight if for any set A independent from B, any
stationary, regular p ∈ S(A), and any I ⊆ p(C), there is a countable I0 ⊆ I such
that (I\I0) |̂

A
B. The following example shows that having countable local weight

is too much to expect for the universe of an a-prime model, even if the theory is
weakly minimal and unidimensional.

Example 2.13. The a-prime model of Th((Z,+)) does not have countable local
weight. In fact, the a-prime model (G,+, . . . ) of any weakly minimal group in a
countable language that has a family of 2ℵ0 strong types over ∅, each describing
cosets of the principal generic type p does not have countable local weight.

Proof. Let (G,+, . . . ) be the a-prime model of such a theory. As the language
is countable, we can inductively find a sequence {qα : α ∈ ω1} of strong types
that are ‘almost independent over ∅’ i.e., for any choices of bα realizing qα, the set
B = {bα : α ∈ ω1} is independent over ∅.

As G is a-saturated, we can choose such a set B ⊆ G as described above. Let
A = {aα : α ∈ ω1} be free from G over ∅, with each aα realizing qα. Now let
I = {cα : α ∈ ω1}, where each cα := bα − aα realizes the principal generic type p.
It is easy to see that I is A-independent, but I1 6 |̂ AG for any non-empty I1 ⊆ I.

3. The SB-property for a-saturated models

In this section, we use the results of the previous section to characterize which
superstable theories have the SB property for a-saturated models: they are precisely
the ones without nomadic types (see Definition 3.1 and Theorem 3.11). It turns
out that this condition is slightly stronger than being non-multidimensional (nmd),
and so we found it useful to first establish some facts about a-prime models in any
superstable nmd theory.

We continue to assume that T is superstable unless otherwise specified.

Definition 3.1. A non-algebraic strong type p is nomadic if there is an automor-
phism f ∈ Aut(C) such that the n-fold iterate f (n)(p) ⊥ p for each integer n.

It is easy to see that if a superstable theory T has a nomadic type, then it has
a regular nomadic type. As well, it is easily seen (using e.g., Lemma 1.4.3.3 of [7])
that any type p that is orthogonal to ∅ is nomadic, so that any multidimensional
theory has nomadic types. However, even some nmd theories have nomadic types:

Example 3.2. Let T be the theory of a collection {Ei : i ∈ N} of refining equiv-
alence relations (Ei+1(x, y) ⇒ Ei(x, y)) such that E0 has exactly two classes and
each Ei-class splits into two Ei+1-classes. Then T has quantifier elimination and
is complete, superstable (in fact, weakly minimal), and nmd, and T has a unique
1-type p(x) over ∅. If f ∈ Aut(C) is chosen so that it permutes the Ei-classes in a
single cycle of order 2i+1, then p ⊥ f(p) ⊥ f2(p) ⊥ . . ., so p is nomadic.

Among nmd theories, then the existence of nomadic types can be obviated by
eliminating automorphisms of acl(∅):

Lemma 3.3. Suppose T is nmd. If, in Ceq, acl(∅) = dcl(∅), then T has no nomadic
types.
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Proof. By the observation above, it suffices to show that no stationary, regular
p ∈ S(A) is nomadic via any automorphism f ∈ Aut(C). In fact, we show that
p 6⊥ f(p) for any such p and f . To see this, let A′ = f(A), and choose A′′ having
the same strong type as A over ∅, but with A′′ free from A ∪ A′ over ∅. Note
that by our assumptions, tp(A/acl(∅)) = tp(A′′/acl(∅)) = tp(A′/acl(∅)). Let p′′ be
the (regular) type conjugate to p over A′′. Because T has nmd, p 6⊥ ∅, so by e.g.,
Lemma 1.4.3.3 of [7], p 6⊥ p′′ and f(p) 6⊥ p′′. Thus, p 6⊥ f(p) by the transitivity of
nonorthogonality among regular types.

Lemma 3.4. Suppose that T is nmd and M � M∗ � N , where M and N are
a-saturated and M∗ is any model that is not equal to N . Then there is c ∈ N \M
such that tp(c/M) is regular and c |̂

M

N .

Proof. By superstability and the fact that M∗ 6= N , there is a regular q ∈
S(M∗) that is realized in N (see e.g., Proposition 8.3.2 of [7]). Since T has nmd, q
is not orthogonal to M . So, since M is a-saturated, the existence of such a c follows
immediately by Proposition 8.3.6 of [7].

Proposition 3.5. Suppose that T is nmd and that N |= T is any model with an
a-saturated elementary submodel M . Then N is a-saturated.

Proof. Let N∗ = M [N ] be any a-prime model over M ∪N = N . If N 6= N∗,
then by Proposition 3.4 there would be c ∈ N∗\M with c |̂

M
N , which contradicts

the fact that N∗ is dominated by N over M .

Thus, for any set B that contains an a-saturated model M , any model N con-
taining B is automatically a-saturated. Hence, the notions of ‘prime over B’ and
‘minimal over B’ are equivalent to the notions ‘a-prime over B’ and ‘a-minimal over
B’, respectively. These observations will be used extensively in the next section.1

Proposition 3.6. Suppose that T is nmd and that M � N are both a-saturated and
J is any maximal, M -independent subset of N consisting of realizations of regular
types over M . Then N is a-prime and a-minimal over M ∪ J .

Proof. Let M∗ � N be any a-prime model over M ∪ J . To see that N is both
a-prime and a-minimal over M ∪ J , it suffices to prove that M∗ = N . If this were
not the case, then by Lemma 3.4 there would be c ∈ N \M∗ such that tp(c/M) is
regular and c |̂

M
M∗, which would contradict the maximality of J .

Definition 3.7. Suppose that M0 � M and N are a-saturated. An elementary
embedding f : M → N is dimension preserving over M0 � M if dim(p,M0,M) =
dim(f(p), f(M0), N) for every regular p ∈ S(M0).

1These equivalences also illustrate an error in popular parlance. In the setting of superstable,
NDOP theories in a countable language, in Chapter 12 of [9] Shelah proved that NOTOP is
equivalent to the ‘(∞, 2)-existence property’. In several places, this unweildly phrase has been
replaced by ‘PMOP’, an acronym for ‘Prime Models Over Pairs.’ Although this term sounds
better, it is misleading. The results above show that for any superstable, nmd theory (even those

with OTOP, see e.g., Example 2.2 of [3]), there is a prime model over M1∪M2, where M1 and M2

are any models containing an a-saturated model. The ‘correct’ meaning of PMOP (i.e., equivalent

to (∞, 2)-existence) is that there is a t-constructible model over any independent pair of models.
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Corollary 3.8. Suppose T is nmd. If there is an elementary embedding f : M →
N between a-saturated models that is dimension-preserving over some a-saturated
M0 �M , then M ∼= N . In fact, the isomorphism can be chosen to extend f |M0 .

Proof. Fix a-saturated models M,N and an elementary embedding f : M →
N that is dimension preserving over some a-saturated M0 �M . Let Γ ⊆ S(M0) be
a maximal, pairwise orthogonal set of regular types over M0, and for each p ∈ Γ,
let Ip be a maximal, independent subset of p(M). Note that I =

⋃
p∈Γ Ip is a

maximal, M0-independent set of realizations of regular types in M . Next, for each
p ∈ Γ, let Jp be a maximal, f(M0)-independent set of realizations of f(p) in N . As
f |M0

is an isomorphism between M0 and f(M0), it follows that J =
⋃
p∈Γ Jp is a

maximal, f(M0)-independent set of realizations of regular types in N . Since f is
dimension preserving over M0, |Ip| = |Jp| for each p ∈ Γ. For each p ∈ Γ, fix any
bijection gp : Ip → Jp. By indiscernibility, for each p ∈ Γ, the map hp := f |M0 ∪ gp
is elementary, and by independence over a model, h :=

⋃
hp : M0 ∪ I → f(M0)∪ J

is elementary as well. By Proposition 3.6, M is a-prime over dom(h), while N is
a-prime over range(h). It follows from the uniqueness of a-prime models that h
extends to an isomorphism h∗ : M → N .

The proof of the following Lemma is immediate.

Lemma 3.9. If f : M → N is any elementary embedding and M0 �M is arbitrary,
then dim(p,M0,M) ≤ dim(f(p), f(M0), N) for any regular type p ∈ S(M0).

Proposition 3.10. Assume that T has no nomadic types. Suppose that M and N
are both a-saturated and f : M → N and g : N → M are elementary embeddings.
Then f is dimension preserving over any low substructure M0 of M .

Proof. Let h = g ◦ f denote the composition. Fix any low substructure M0

of M and any regular type p ∈ S(M0). Since there are no nomadic types, there is
a positive integer n so that the n-fold composition k = h(n) satisfies p 6⊥ k(p). By
Corollary 2.12 we have dim(p,M0,M) = dim(k(p), k(M0),M). But, by iterating
Lemma 3.9 we have

dim(p,M0,M) ≤ dim(f(p), f(M0), N) ≤ dim(k(p), k(M0),M)

so dim(p,M0,M) = dim(f(p), f(M0), N) as required.

Theorem 3.11. For a superstable theory T , the following are equivalent:

(1) T has the Schröder-Bernstein property for a-saturated models;
(2) there is no infinite collection of pairwise elementarily bi-embeddable, pair-

wise nonisomorphic a-saturated models of T ;
(3) T has no nomadic types.

Proof. 1 ⇒ 2 is trivial. The direction 2 ⇒ 3 is proved in Theorem 4.8 of [2]
(whose statement does not mention saturation, but as noted in the proof there,
the argument can be used to produce bi-embeddable, nonisomorphic a-saturated
models). Finally, for 3⇒ 1, note that T superstable with no nomadic types implies
that T is nmd as well. Choose a-saturated models M and N and fix elementary
embeddings f : M → N and g : N →M . By Lemma 2.8, choose a low substructure
M0 of M . By Proposition 3.10, f is dimension preserving over M0, so M and N
are isomorphic by Corollary 3.8.
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It might be true that having no nomadic types implies the SB property for a-
saturated models in any stable theory; we know of no counterexample. (For a
strictly stable T , “a-saturated” means “all strong types over subsets of size less
than κr(T ) are realized.”)

4. The eventual SB property for models

Definition 4.1. A complete theory T has the eventual SB property if there is a
small set A ⊆ C such that the expansion ThA(C) formed by adding a new constant
symbol for each element of A has the SB property. (Here “small” means that
|A| < κ for some cardinal κ such that the universal domain C is κ-saturated.)

The goal of this short section is to characterize those theories with the eventual
SB property.

Theorem 4.2. The following are equivalent for a complete theory T :

(1) T has the eventual SB property;
(2) For every small subset A ⊆ C containing an a-saturated model, ThA(C) has

the SB property;
(3) T is superstable and nmd.

Proof. 2⇒ 1: Trivial.
1⇒ 3: We prove the contrapositive. If T is not superstable, then the same is true

of ThA(C) for any small set A ⊆ C, so ThA(C) does not have SB by Theorem 1.1.
The other case to consider is when T is stable and multidimensional, in which case
ThA(C) is again stable and multidimensional, and the failure of SB follows from
Theorem 4.8 of [2] (noting that any regular type p orthogonal to ∅ satisfies the
hypothesis of that result).

3 ⇒ 2: Fix a small set A containing an a-saturated model M , and choose
any pair N∗1 , N

∗
2 of bi-embeddable models ThA(C). That is, the reducts N1 and

N2 to the original language are models of T that are bi-embeddable over A. By
Proposition 3.5, both reducts N1 and N2 are themselves a-saturated. We argue that
any L(A)-elementary embedding f : N∗1 → N∗2 , when viewed as an L-elementary
embedding from N1 to N2 that fixes A pointwise, is dimension preserving over any
M1 � N1 that is a-prime over A. To see this, fix any such function f and choose
any M1 � N1 that is a-prime over A. As f is over A, f(M1), which we denote by
M2, is also a-prime over A.

Note that for each regular type q ∈ S(M) and each i = 1, 2, the fact that Mi is
dominated by A over M implies that the non-forking extension q|A is omitted in Mi.
Furthermore, as q|A is fixed by any embedding over A, Lemma 3.9 and the fact
that N∗1 and N∗2 are bi-embeddable L(A)-structures imply that dim(q, A,N1) =
dim(q, A,N2). It follows that dim(q,M1, N1) = dim(q,M2, N2) for every regular
q ∈ S(M). However, it follows from nmd and the fact that M is an a-saturated
model that any regular type p ∈ S(M1) is non-orthogonal to some regular q ∈ S(M).
Moreover, f(p) is non-orthogonal to the same type q. Thus, applying Lemma 2.9
on both sides yields

dim(p,M1, N1) = dim(q,M1, N1) = dim(q,M2, N2) = dim(f(p),M2, N2)

Thus, f is dimension-preserving over M1. By Corollary 3.8, the L-structures N1

and N2 are isomorphic via an isomorphism h extending f |A. As f fixes A pointwise,
h is an L(A)-isomorphism between N∗1 and N∗2 .
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Question 4.3. What conditions on a set A are needed to ensure that ThA(C) has
SB for a classifiable, nmd theory?
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