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Abstract

We define an easily verifiable notion of an atomic formula having
uniformly bounded arrays in a structure M . We prove that if T is a
complete L-theory, then T is mutually algebraic if and only if there
is some model M of T for which every atomic formula has uniformly
bounded arrays. Moreover, an incomplete theory T is mutually alge-
braic if and only if every atomic formula has uniformly bounded arrays
in every model M of T .

1 Introduction

The notion of a mutually algebraic formula was introduced in [1], and the
notions of mutually algebraic structures and theories were introduced in [3].
There, many properties were shown to be equivalent to mutual algebraicity,
e.g., a structure M is mutually algebraic if and only if every expansion (M,A)
by a unary predicate has the non-finite cover property (nfcp) and a complete
theory T is mutually algebraic if and only if it is weakly minimal and trivial.
Whereas these characterizations indicate the strength of the hypothesis, they
do not lead to an easy verification that a specific structure is mutually alge-
braic. The purpose of this paper is two-fold. Primarily, we obtain equivalents
of mutual algebraicity that are easily verifiable. Most notably, we introduce
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the notion of a structure or a theory having uniformly bounded arrays and
we prove that for structures M in a finite, relational language, M is mutually
algebraic if and only if M has uniformly bounded arrays. This result plays
a key role in [4], where the authors describe the growth rates of hereditary
classes of structures in a finite, relational language. The other purpose is to
develop a ‘Ryll-Nardzewski characterization’ of mutual algebraicity, which is
accomplished in Theorem 6.1. A theory T is mutually algebraic if, for every
restriction to a finite sublanguage, for every model M and integer n, there
are only finitely many quantifier-free n-types over M that support an infinite
array.

2 Preliminaries

Let M be any L-structure and let ϕ(z) be any L(M)-formula. We say that
ϕ(z) is mutually algebraic if there is an integer k such that for any proper
partition z = xˆy (i.e., each of x, y are nonempty) M |= ∀x∃≤kyϕ(x, y).
Then, following [3], a structureM is mutually algebraic if every L(M)-formula
is equivalent to a boolean combination of mutually algebraic L(M)-formulas,
and a theory T is mutually algebraic if every model of T is a mutually
algebraic structure. The following Theorem, which has the advantage of
looking only at atomic formulas, follows easily from two known results.

Theorem 2.1. Let M be any L-structure. Then M is mutually algebraic if
and only if every atomic formula R(z) is equivalent to a boolean combination
of quantifier-free mutually algebraic L(M)-formulas.

Proof. First, assume M is mutually algebraic. The fact that every
atomic R(z) is equivalent to a boolean combination of quantifier-free mutu-
ally algebraic L(M)-formulas is the content of Proposition 4.1 of [2]. For
the converse, let MA∗(M) denote the set of L(M)-formulas that are boolean
combinations of mutually algebraic formulas. This set is clearly closed un-
der boolean combinations, and is closed under existential quantification by
Propositon 2.7 of [3]. Thus, if we assume that every atomic formula is in
MA∗(M), it follows at once that every L(M)-formula is in MA∗(M), hence
M is mutually algebraic.

We will obtain a slight strengthening of Theorem 2.1 with Corollary 7.4(2).
Whereas Theorem 2.1 placed no assumptions on the language, the main body
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of results in this paper assume that the underlying language is finite rela-
tional. In Section 7 we obtain equivalents to mutual algebraicity for struc-
tures in arbitrary languages.

Henceforth, for all results prior to Section 7, assume L has finitely
many relation symbols, finitely many constant symbols, and no
function symbols.

For L as above, fix an integer n so that every atomic formula is at most
n-ary. As every quantifier-free type p(w) is determined by its family of re-
strictions {p�wi

: wi a subsequence of w of length at most n}, choose a specific
n-tuple z = (z1, . . . , zn) of distinct variable symbols. Throughout, we con-
centrate on understanding spaces of quantifier-free types p(x), where x is a
non-empty subsequence of z.1

Fix an L-structure M . For a non-empty subsequence x ⊆ z and a subset
B ⊆ M , let QFx(B) denote the set of all quantifier-free L-formulas ϕ(x, b)
whose free variables are among x and b is from B. Whereas we require
x to be a subsequence of z, there are no limitations on the length of the
parameter sequence b. By looking at the subsets of M lg(x) they define, we
can construe QFx(B) as a boolean algebra. Let Sx(B) denote its associated
Stone space, i.e., the set of quantifier-free x-types over B that decide
each ϕ ∈ QFx(B). As usual, each of the Stone spaces Sx(B) are compact,
Hausdorff, and totally disconnected when topologized by positing that the
sets {Uϕ(x,b) : ϕ(x, b) ∈ QFx(B)}, where Uϕ(x,b) = {p ∈ Sx(B) : ϕ(x, b) ∈ p},
form a basis. Moreover, because L is finite relational, it follows that each
Sx(B) is finite and every p ∈ Sx(B) is determined by a single ϕ(x, b) ∈ p
whenever B is finite.

Definition 2.2. Fix a non-empty x ⊆ z, a subset B ⊆M and an integer m.
An x-type p ∈ Sx(B) supports an m-array if there is a pairwise disjoint
set {di : i < m} of (distinct) realizations of p in M . p supports an infinite
array if M contains an infinite, pairwise disjoint set of realizations of p. For
each finite D ⊆ M , let Nx,m(D) be the (finite) number of p ∈ Sx(D) that
support an m-array.

The following definition is central to this paper, and forms the connection
with [4]. A local formulation, which relaxes the restriction on the language
is given in Section 7.

1The presentation of free variables in a type is delicate, owing to the fact that ‘mutual
algebraicity’ is not preserved under adjunction of dummy variables.
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Definition 2.3. A structure M in a finite, relational language has uniformly
bounded arrays if there is an integer m > 0 such that for every non-empty
x ⊆ z, there is an integer N such that Nx,m(D) ≤ N for all finite D ⊆ M .
When such an N exists, we let Narr

x,m denote the smallest possible such N .

It is easily seen that the properties described above are elementary. In
particular, if m and the (finite) sequence 〈Narr

x,m : x ⊆ z〉 witness that M has
uniformly bounded arrays, then the same m and sequence 〈Narr

x,m : x ⊆ z〉
witness that anyM ′ elementarily equivalent toM also has uniformly bounded
arrays. Because of this, we say that a complete theory T in a finite, relational
language has uniformly bounded arrays if some (equivalently all) models M
of T have uniformly bounded arrays.

3 Supportive and array isolating types

Throughout this and the next few sections, fix a complete theory T in a finite,
relational language L. Also fix an ℵ1-saturated model M of T , which is a
‘monster model’ in the sense that all sets of parameters are chosen from M.
The reader is reminded that all formulas and types mentioned are quantifier-
free.

Definition 3.1. For x a subsequence of z and B countable, Suppx(B) is
the set of all p ∈ Sx(B) that support an infinite array. Let Supp(B) be the
disjoint union of the spaces Suppx(B) for all subsequences x ⊆ z.

Lemma 3.2. Suppose x is a subsequence of z, B is countable, and p ∈ Sx(B).

1. The type p ∈ Suppx(B) if and only if for every m ∈ ω and every
θ(x, b) ∈ p, there is an m-array of solutions to θ(x, b).

2. If p has infinitely many solutions, then there is a (possibly empty)
proper subsequence xu ⊆ x and a realization a of p such that tp((a \
au)/Bau) supports an infinite array, where au is the subsequence of a
corresponding to xu.

Proof. (1) is easily seen by compactness. For (2), choose an infinite
set {ai : i ∈ ω} of distinct realizations of p. If some infinite subset forms
an array, then take xu = ∅ and p itself supports an infinite array. If this
is not the case, then by the ∆-system lemma, there is an infinite I ⊆ ω, a
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non-empty subsequence xu of x and a fixed root r such that (ai)u = r and
ai ∩ aj = r for distinct i, j ∈ I. Then tp((ai \ r)/Br) supports an infinite
array whenever i ∈ I.

It follows from Lemma 3.2(1) that Suppx(B) is a closed, hence compact
subspace of Sx(B). If we endow Supp(B) with the disjoint union topology
(i.e., U ⊆ Supp(B) is open if and only if (U ∩Suppx(B)) is open in Suppx(B)
for every x ⊆ z) then Supp(B) is compact as well.

When our base set is a countable model, Suppx(M) is easily identified.

Lemma 3.3. If M � M is countable, then p ∈ Sx(M) supports an infinite
array if and only if (xi 6= a) ∈ p for all xi ∈ x and all a ∈M . In particular,
if c ∩M = ∅, then tp(c/M) ∈ Suppx(M).

Proof. Clearly, if (xi = a) ∈ p for any xi and any a ∈ M , then p
does not support a 2-array. For the converse, choose any realization c of
p with c ∩M = ∅. To show that p supports an infinite array, we employ
Lemma 3.2(2). Choose any θ(x, h) ∈ p (so h is from M). We will construct
an infinite array of solutions to θ(x, h) inside M . The construction is easy
once we note that for any finite subset F ⊆M , c is a witness in M to

∃x(θ(x, h) ∧
∧
xi∈x

∧
a∈F

xi 6= a)

As M �M, we have some d ∈M lg(x) realizing θ(x, h) disjoint from F .

Next, we explore extensions of types p ∈ Supp(B). By compactness, it
is easily seen that whenever B ⊆ B′ are countable, then every p ∈ Supp(B)
has an extension to some q ∈ Supp(B′). Abusing notation somewhat, let
Supp(M) denote the set of global types with the property that every re-
striction to a countable set supports an infinite array. An easy compactness
argument shows that every p ∈ Supp(B) has a ‘global extension’ to some
p ∈ Supp(M). In general, a type p ∈ Supp(B) has many such global exten-
sions, but we focus on when this is unique.

Definition 3.4. A quantifier-free formula ϕ(x, e) is array isolating if there
is exactly one global type p ∈ Suppx(M) with ϕ(x, e) ∈ p. Call a global type
p ∈ Suppx(M) array isolated if it contains some array isolating formula. Let
AIx(M) denote the set of array isolated global x-types and let AI(M) be the
disjoint union of AIx(M) over all subsequences x ⊆ z. For p ∈ AI(M), p|B
denotes the restriction of p to a type in Supp(B).
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The following Lemma is immediate. We will get a stronger conclusion in
Section 5 under the additional assumption that Suppx(M) is finite.

Lemma 3.5. Suppose p ∈ Suppx(M) is array isolated as witnessed by the
array isolating ϕ(x, e). Then any q ∈ Sx(B) containing ϕ(x, e) is either equal
to p|B or does not admit an infinite array.

Proof. If q 6= p|B supported an infinite array, then any global extension
q ⊇ q would be distinct from p. This contradicts ϕ(x, e) being array isolating.

Definition 3.6. Say that p ∈ AIx(M) is based on B if p∩QFx(B) contains an
array isolating formula ϕ(x, e), the interpretation cM ∈ B for every constant
symbol, and, moreover there is an infinite array {ai : i ∈ ω} ⊆ Blg(x) of
pairwise disjoint realizations of ϕ(x, e).

Clearly, if p is based on B, then it is also based on any B′ ⊇ B. If B is
a model, then the second and third clauses are redundant, that is:

Lemma 3.7. If M � M, p ∈ AIx(M) and p ∩ QFx(M) contains an array
isolating formula ϕ(x, e), then p is based on M .

Proof. As M �M, every cM ∈M . Now, fix an array isolating formula
ϕ(x, e) ∈ p ∩QFx(M) and we recursively construct an infinite array of real-
izations of ϕ(x, e) inside M as follows. First, let B0 = e and let p0 = p|B0.
As the language L and B0 are finite, p0 is isolated by a formula over B0. As
M � M, choose a realization a0 of p0 inside M . Then put B1 = B0 ∪ {a0},
let p1 = p|B1, and continue for ω steps.

There is a tight analogy between array isolated types p based on B and
strong types over B in a stable theory, but in general they are not equivalent.
Indeed, as we are restricting to quantifier free types, a typical restriction p|B
is not even a complete type with respect to formulas with quantifiers. We
show that every p ∈ AI(M) is B-definable for any B on which it is based.

Lemma 3.8. Suppose ϕ(x, e) is an array isolating formula and θ(x, y) ∈
QFxy(∅). There is an integer m = m(ϕ(x, e), θ) such that for all d ∈ Mlg(y),

exactly one of ϕ(x, e) ∧ θ(x, d) and ϕ(x, e) ∧ ¬θ(x, d) admits an m-array.

Proof. As ϕ(x, e) admits an infinite array, at least one of the two for-
mulas will as well. However, if such an m did not exist, then for each m there

6



would be a tuple dm such that both ϕ(x, e)∧θ(x, dm) and ϕ(x, e)∧¬θ(x, dm)
admit an m-array. Thus, by the saturation of M, there would be a tuple d

∗

such that both ϕ(x, e)∧ θ(x, d∗) and ϕ(x, e)∧¬θ(x, d∗) admit infinite arrays,
contradicting ϕ(x, e) being array isolating.

Definition 3.9. Fix any p ∈ AIx(M) and any set B on which it is based.
Choose an array isolating formula ϕ(x, e) ∈ p∩QFx(B) and an infinite array
{ai : i ∈ ω} ⊆ Blg(x) of realizations of ϕ(x, e). For any θ(x, y) ∈ QFxy(∅) let

dpxθ(x, y) :=
∨

s∈(2m
m )

∧
i∈s

θ(ai, y)

where m = m(ϕ(x, e), θ) is chosen by Lemma 3.8.

Visibly, dpxθ(x, y) ∈ QFy(B). Its relationship to θ(x, y) and p is ex-
plained by the following Lemma.

Lemma 3.10. Suppose p ∈ AI(M) is based on a countable set B and ϕ(x, e)
and {ai : i ∈ ω} are chosen as in Definition 3.9. The following are equivalent
for any θ(x, y) ∈ QFxy(∅) and any d ∈Mlg(y):

1. M |= dpxθ(x, d);

2. θ(x, d) ∈ p;

3. For all countable B′, p|B′ ∪ {θ(x, d)} supports an infinite array; and

4. The partial type p|B ∪ {θ(x, d)} supports an array of length m =
m(ϕ(x, e), θ).

Proof. (1) ⇒ (2): As M |= dpxθ(x, d), some m-element subset of {ai :
i < 2m} is an m-array of realizations of ϕ(x, e) ∧ θ(x, d). By choice of
m, Lemma 3.8 implies that ϕ(x, e) ∧ θ(x, d) supports an infinite array, so
θ(x, d) ∈ p.

(2) ⇒ (3): Choose any countable B′. If θ(x, d) ∈ p, then as p|B′ ∪
{θ(x, d)} is a countable subset of p, it supports an infinite array.

(3)⇒ (4): Trivial.
(4)⇒ (1): Assume that M |= ¬dpxθ(x, d). Then some m-element subset

of {ai : i < 2m} witnesses that ϕ(x, e) ∧ ¬θ(x, d) supports an m-array.
By Lemma 3.8, ϕ(x, e) ∧ θ(x, d) cannot support an m-array. Consequently
p|B ∪ {θ(x, d)} cannot support an m-array (and thus cannot support an
infinite array).
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4 Free products of array isolated types

Throughout this section, T is a complete theory in a finite, relational lan-
guage and M is an ℵ1-saturated model, from which we take our parameters.

In this section we describe how to construct a ‘free join’ of array iso-
lated types. Suppose x, y are disjoint, non-empty subsequences of z, p(x) ∈
AIx(M), and q(y) ∈ AIy(M). We show that there is a well-defined r(x, y) ∈
Suppxy(M) constructed from this data. We begin with lemmas that unpack
our definitions.

Lemma 4.1. Suppose p(x),q(y) are as above and B is a countable set on
which both p and q are based. For any θ(x, y, b) ∈ QFxy(B) and any c
realizing p|B,

θ(c, y, b) ∈ q|Bc if and only if dqyθ(x, y, b) ∈ p|B

Proof. First, assume θ(c, y, b) ∈ q|Bc. Then q|B ∪ {θ(c, y, b)} ⊆ q,
hence it supports an infinite array. By Lemma 3.10 applied to θ(c, y, b) (i.e.,
taking d := cb),

M |= dqyθ(c, y, b)

Taking w to be a sequence of variables for b, since dqyθ(x, y, w) ∈ QFxw(B),
b is from B, and c realizes p|B, we conclude that dqyθ(x, y, b) ∈ p|B.

The converse is dual, using ¬θ in place of θ.

Lemma 4.2. Suppose p(x),q(y) are as above and B is a countable set on
which both p and q are based. For any θ(x, y, b) ∈ QFxy(B) and any c, c′

realizing p|B, θ(c, y, b) ∈ q|Bc if and only if θ(c′, y, b) ∈ q|Bc′.

Proof. By Lemma 4.1, each statement is equivalent to dqθ(x, y, b) ∈
p|B, which does not depend on our choice of c.

Extending this,

Lemma 4.3. Suppose p(x),q(y) are as above and B is a countable set on
which both p and q are based. For any θ(x, y, b) ∈ QFxy(B) and any c, c′

realizing p|B, for any d realizing q|Bc and d
′

realizing q|Bc′, the following
three notions are equivalent:

1. M |= θ(c, d, b);
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2. M |= dpx[dqyθ(x, y, b)]; and

3. M |= θ(c′, d
′
, b).

Proof. Because of the duality in the statements, it suffices to prove
(1) ⇔ (2). First, assume (1) holds. As d realizes q|Bc, we infer θ(c, y, b) ∈
q. So, by Lemma 3.10, M |= dqyθ(c, y, b). As dqyθ(x, y, b) ∈ QFxy(B)

and c realizes p|B, we conclude that dqyθ(x, y, b) ∈ p and hence M |=
dpx[dqyθ(x, y, b)]. Showing that (¬1) implies (¬2) is dual, using ¬θ in place
of θ.

We now define the free product of array supporting global types.

Definition 4.4. Suppose x, y are disjoint subsequences of z, p ∈ AIx(M)
and q ∈ AIy(M). Then the free product r = p× q is defined as

r(x, y) := {θ(x, y, b) ∈ QFxy(M) : M |= dpx[dqyθ(x, y, b)]}

Because of Lemma 4.3, r(x, y) is also equal to the set of all θ(x, y, b) ∈
QFxy(M) such that for some/every B on which both p and q are based and

b is from B, for some/every c realizing p|B and for some/every d realizing
q|Bc we have M |= θ(c, d, b). It is easily seen from this characterization that
r(x, y) ∈ Suppxy(M).

Next, we show that the free join is symmetric. We begin with a Lemma.

Lemma 4.5. Suppose x, y are disjoint subsequences of z, p(x) ∈ AIx(M),
q(y) ∈ AIy(M). Then for every countable set B on which both types are based,
for every c realizing p|B, d realizing q|B, and for every θ(x, y, b) ∈ QFxy(B)

such that M |= θ(c, d, b),

θ(x, d, b) ∈ p|Bd if and only if θ(c, y, b) ∈ q|Bc

Proof. Assume by way of contradiction that θ(x, d, b) ∈ p|Bd, but
θ(c, y, b) 6∈ q|Bc, with the other direction being dual.

Write θ as θ(x, y, w). As both p and q are based on B, choose array
isolating formulas ϕ(x, e) ∈ QFx(B) and ψ(y, e′) ∈ QFy(B) for p and q, re-
spectively. Let m = max{m(ϕ(x, e), θ(x; yw)),m(ψ(y, e′), θ(y;xw))}. (Note
the different partitions of θ.)

As B is countable, choose infinite arrays {ci : i ∈ ω} and {dj : j ∈ ω} for
p|B and q|B, respectively. By Lemma 4.1 we have that θ(x, dj, b) ∈ p|Bdj
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for each j and that θ(ci, y, b) 6∈ q|Bci for each i. By passing to infinite
subsequences, we may additionally assume these sets are pairwise disjoint
(i.e., ci ∩ dj = ∅ for all i, j). Choose a number K >> m. Form a finite,
bipartite graph with universe C ∪D, where C = {ci : i < K} and D = {dj :
j < K} with an edge E(ci, dj) if and only if M |= θ(ci, dj, b). We will obtain
a contradiction by counting the number of edges in two different ways.

On one hand, because θ(ci, y, b) 6∈ q|Bci, q|B ∪ {θ(ci, y, b)} does not
support an infinite array for each ci. By our choice of m, it cannot support
an array of length m either. Because any m-element subset of D is an array
of length m, we conclude that for every ci, there are fewer than m many dj
such that M |= θ(ci, dj). Thus, the number of edges of the graph is bounded
above by Km. On the other hand, for any dj, as p|B ∪{θ(x, dj, b)} supports
an infinite array, q|B ∪{¬θ(x, dj, b)} cannot support an infinite array, hence
cannot support an array of size m. Thus, the edge-valence of each dj is at
least (K −m), implying that our graph has at least K(K −m) edges. As K
is much larger than m, this is a contradiction.

Corollary 4.6. Suppose x, y are disjoint subsequences of z, p ∈ AIx(M), and
q ∈ AIy(M). Then p×q = q×p. That is, for any set B on which both p,q
are based and for any θ(x, y, w) ∈ QFxyw(∅), the formulas dpx[dqyθ(x, y, w)]
and dqy[dpxθ(x, y, w)] in QFw(B) are equivalent.

Proof. Choose any θ(x, y, b) ∈ p × q with b ∈ Mlg(w). Choose any
countable set B containing b on which both p and q are based. Choose c
realizing p|B and d realizing q|Bc. By the equivalent definition of p × q,
(c, d) realizes p×q, hence M |= θ(c, d, b). Thus, by Lemma 4.5, c also realizes
p|Bd. Hence (c, d) also realizes q× p, so θ(x, y, b) ∈ q× p as well.

5 Finitely many mutually algebraic types sup-

porting arrays

We continue our assumption that M is an ℵ1-saturated model of a complete
theory T in a finite, relational language. We begin by recording two con-
sequences of Suppx(M) being finite. Note that simply by adding repeated
elements to tuples, Suppx(M) being finite implies Suppx′(M) finite for all
non-empty subsequences x′ ⊆ x.
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Lemma 5.1. Fix x ⊆ z and assume that Suppx(M) is finite. Then Suppx(M) =
AIx(M) and, moreover, every p ∈ AIx(M) is based on every M �M.

Proof. As Suppx(M) is always a closed subspace of Sx(M), it is com-
pact. Thus, if it is finite, every p ∈ Suppx(M) is isolated. For the moreover
clause, write Suppx(M) = {p1, . . . ,pn} and choose array isolating formulas
ϕi(x, ei) for each pi. By repeated use of Lemma 3.8, let m∗ be the maximum
of all m(ϕi(x, ei), R(x, y)) among all pi ∈ Suppx(M) and all atomic R ∈ L.
Then M is a model of the sentence

∃w1 . . . ∃wn[{ϕi(x,wi) : 1 ≤ i ≤ n} are pairwise inconsistent and,
for all atomic R ∈ L, for all z, and for all 1 ≤ i ≤ n, exactly
one of ϕi(x,wi) ∧ R(x, z) and ϕi(x,wi) ∧ ¬R(x, z) supports an
m∗-array].

Thus, any M �M also models this sentence. Choose witnesses e∗1, . . . e
∗
n from

M . Then, for each i, there is a unique type in Sx(M) containing ϕi(x, e
∗
i )

and supporting an infinite array. By a second use of M � M, each ϕi(x, e
∗
i )

array isolates a global type p ∈ Suppx(M). As |Suppx(M)| = n, we conclude
that every p ∈ Suppx(M) is array isolated by some L(M)-formula. In light
of Lemma 3.7, it follows that each p is based on M .

As a consequence of Lemma 5.1, if Suppx(M) is finite and M � M is
countable, then every p ∈ Sx(M) that supports an infinite array contains
an array isolating formula, hence has a unique supportive extension p ∈
Suppx(M). Thus, for any extension q ∈ Sx(Mc) of p, either q = p|Mc or else
q does not support an infinite array. In fact, even more is true.

Definition 5.2. A type q ∈ Sx(Mc) has a finite part if there is some non-
empty x′ ⊆ x and some θ(x′, c, h) ∈ q for which M |= ∃<∞x′θ(x′, c, h).

Lemma 5.3. Suppose Suppx(M) is finite and M �M is countable. For any
p ∈ Suppx(M), if a type q ∈ Sx(Mc) extends p|M but q 6= p|Mc, then q has
a finite part.

Proof. We argue by induction on lg(x), so assume that the statement
holds for all proper x′ ( x. By way of contradiction, choose p ∈ Suppx(M),
and q ∈ Sx(Mc) with p|M ⊆ q, q 6= p|Mc, but q has no finite part. We will
obtain a contradiction to Lemma 3.5 by showing that q supports an infinite
array. Toward that goal, choose any θ(x, c, h) ∈ q. By Lemma 3.2(1), it
suffices to find an infinite array of realizations to θ(x, c, h).
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As q has no finite part, by taking x′ = x, q has infinitely many realiza-
tions. Thus, by Lemma 3.2(2), there is a proper subsequence xu ⊆ x and
a realization a of q such that tp((a \ au)/Mcau) supports an infinite array.
Trivially, if xu is empty, then this type is q itself, q supports an infinite array.
So we assume xu is non-empty. Write x = yˆxu and for clarity, write r for
au and b for (a \ r), so a = bˆr.

Let q∗(y) := tp(b/Mcr). We know that b
′
ˆr realizes q whenever b

′
realizes

q∗. Let p∗(y) ∈ Suppy(M) be any global type extending q∗. As Suppy(M) is
finite, by Lemma 5.1 p∗ is based on M . Choose an array isolating formula
ϕ(y, e) ∈ p∗ with e from M , along with an infinite array {bi : i ∈ ω} ⊆M lg(y)

of realizations of ϕ(y, e). As ϕ(y, e)∧θ(y, r, c, h) ∈ q∗, Lemma 3.8 implies that
all but finitely many bi realize θ(y, r, c, h), so by elimination and reindexing,
assume they all do.

On the other hand, let qu(xu) := tp(r/Mc). As q does not have a finite
part, neither does qu. As xu is a proper subsequence of x, our inductive
hypothesis implies that qu must support an infinite array. Let {rj : j ∈ ω} be
such an array. Note that as tp(rj/Mc) = tp(r/Mc) and θ(bi, xu, c, h) ∈ qu, it
follows that θ(bi, rj, c, h) holds for all i, j ∈ ω. From this, as both {bi : i ∈ ω}
and {rj : j ∈ ω} are infinite arrays, it is easy to meld subsequences of these
to produce an infinite array {bkrk : k ∈ ω} of realizations of θ(y, xu, c, h).

Next, we add mutual algebraicity to the discussion of supportive and
array isolating types.

Definition 5.4. For x ⊆ z non-empty, a global, supportive type p ∈ Suppx(M)
is quantifier-free mutually algebraic (QMA) if p contains a mutually algebraic
formula ϕ(x) ∈ QFx(M). Let QMAx(M) denote the set of QMA types in
Suppx(M). Let QMA(M) be the (finite) disjoint union of the sets QMAx(M).

The goal of this section will be to deduce consequences from QMA(M)
being finite.

Lemma 5.5. If QMAx(M) is finite, then every p ∈ QMAx(M) is array
isolated, i.e., p ∈ AIx(M).

Proof. Fix any p ∈ QMAx(M). Choose a mutually algebraic ϕ0(x, e0) ∈
p. For each q ∈ QMAx(M) distinct from p, choose a formula ϕq(x, eq) ∈
p \ q. Then the formula ϕ0(x, e0) ∧

∧
q 6=p ϕq(x, eq) array isolates p.
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Definition 5.6. Fix any non-empty x ⊆ z. A partition P = {x1, . . . , xr} of
x satisfies (1) each xi non-empty and (2) Every x ∈ x is contained in exactly
one xi. For w ⊆ {1, . . . , r}, let xw be the subsequence of x with universe⋃
{xi : i ∈ w}.

For c ∈ (M)lg(x), a partition P of x naturally induces a partition {c1, . . . , cr}
of c. For w ⊆ {1, . . . , r}, cw is the subsequence of c corresponding to xw.

Definition 5.7. Fix any x ⊆ z, any countable M �M, and c ∈ (M\M)lg(x).
A maximal mutually algebraic decomposition of c over M is a partition P =
{x1, . . . , xr} of x for which the induced partition {c1, . . . , cr} of c satisfies the
following for each i ∈ {1, . . . , r}:

• ci realizes a mutually algebraic formula ϕ(xi) ∈ QFxi
(M); but

• For any proper extension xi ( u ⊆ x, the subsequence d of c induced
by u does not realize any mutually algebraic formula ψ(u) ∈ QFu(M).

Lemma 5.8. For any x ⊆ z and every countable M � M, every c ∈ (M \
M)lg(x) admits a unique maximal mutually algebraic decomposition over M .

Proof. First, by Lemma 3.3, both tp(c/M) and tp(c′/M) for any sub-
sequence c′ ⊆ c support infinite arrays. Next, as every formula ϕ(x) in one
free variable is mutually algebraic, every singleton c ∈ c realizes a mutually
algebraic formula. For each x ∈ x, choose a subsequence xi of x containing
x such that ci realizes a mutually algebraic formula in QFxi

(M) and is max-
imal i.e., there is no proper extension x′ ) xi for which c′ realizes a mutually
algebraic formula in QFx′(M). Clearly, {x1, . . . , xr} covers x. The fact that
it is a partition follows from the fact that if xi, xj are not disjoint and ϕ(xi),
ψ(xj) are each mutually algebraic, then their conjunction (ϕ ∧ ψ)(xixj) is
mutually algebraic as well (see e.g. Lemma 2.4(6) of [2]).

It is easily checked that if {c1, . . . , cr} is a maximal mutually algebraic
decomposition of c over M , then for any w ⊆ {1, . . . , r}, the subset {ci : i ∈
w} is a maximal, mutually algebraic decomposition of cw over M .

We are now able to state and prove the following.

Proposition 5.9. Suppose that QMA(M) is finite. Then, for every subse-
quence x ⊆ z, every p ∈ Suppx(M) is equal to a free product q = p1×· · ·×pr

of types from QMA(M). In particular, each Suppx(M) is finite.
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Proof. As the whole of QMA(M) is finite, choose a finite D such that
for every x ⊆ z and every q ∈ QMAx(M), there is a mutually algebraic
formula γ(x) ∈ q ∩QFx(D). Choose a countable M �M with D ⊆M .

We prove the Proposition by induction on x, i.e., we assume the Proposi-
tion holds for all proper subsequences x′ of x and prove the result for x. To
base the induction, first note that if x ∈ z is a singleton, then as every for-
mula ϕ(x) is mutually algebraic, every q ∈ Suppx(M) is also in QMAx(M),
which we assumed was finite.

Now, suppose x is a subsequence of z, lg(x) ≥ 2, and the Proposition
holds for every proper subsequence x′ of x. In particular, as Suppx′(M) is
finite, Lemma 5.1 implies that each q ∈ Suppx′(M) is based on M and is also
in AI(M).

Choose any q∗ ∈ Suppx(M). Towards showing that q∗ is a free product of
types from QMAx(M), choose any c ∈ (M \M)lg(x) realizing q∗|M . Suppose
the partition P = {x1, . . . , xr} of x yields the maximal, mutually algebraic
decomposition c1ˆ . . . ˆcr of c over M .

There are now two cases. First, if r = 1, then tp(c/M) contains a mu-
tually algebraic formula, so q∗ ∈ QMAx(M) and we are finished. So as-
sume r ≥ 2. As notation, for each 1 ≤ j ≤ r, let wj be the subsequence
x1 . . . xj−1xj+1 . . . xr of x and let dj be the corresponding subsequence of c.
As each dj is a proper subsequence of c, our inductive hypothesis implies that
tp(dj/M) contains an array isolating formula. Let qj be the (unique) global
extension of tp(dj/M) to AIwj

(M). By our inductive hypothesis again, each
qj = (p1 × . . .pj−1 × pj+1 × . . .pr). As each pj is also array isolated, by
iterating Lemma 4.5 finitely often it follows that there is a unique supportive
type r∗(x) which is equal to qj(wj)× pj(xj) for every 1 ≤ j ≤ r.

In light of the characterization of free products following Definition 4.4,
in order to conclude that q∗ = qr×pr = r∗, it suffices to prove the following
Claim.

Claim. dr realizes qr|Mcr.

Assume this were not the case. We obtain a contradiction by showing
that the whole of tp(c1, . . . , cr/M) contains a mutually algebraic formula
ϕ(x). As tp(dr/M) = qr|M , but tp(dr/Mcr) 6= qr|Mcr, Lemma 5.3 allows
us to choose a maximal subsequence cu of dr and δr(xu, cr, br) ∈ tp(cu/Mcr)
(br from M) with only finitely many solutions. As tp(ci/M) is mutually
algebraic for each i, it follows from the maximality of u that there is a non-
empty subset w ⊆ {1, . . . , r − 1} such that cu = cw. To ease notation, say
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w = {1, . . . , s} for some s ≤ r − 1. We argue that s = r − 1. If this were
not the case, then {c1, . . . , cs, cr} would be a maximal mutually algebraic
decomposition over M of the subsequence c1ˆ . . . ˆcsˆcr whose corresponding
variables x1 . . . xsxr form a proper subsequence of x. Thus, by our inductive
hypothesis, tp(c1 . . . cscr/M) would equal (p1 × · · · × ps × pr)|M , which is
contradicted by the formula δr(x1, . . . , xs, xr, br) ∈ tp(c1 . . . cscr/M). Thus,
we conclude that s = r − 1. Hence, δr(wr, cr, br) has only finitely many
solutions.

Next, choose any j < r. Now the presence of the formula δr implies that
q∗ 6= r∗, hence q∗ 6= qj×pj. From this, it follows that tp(dj/Mcj) 6= qj|Mcj.
So, arguing just as above but replacing r by j throughout, we conclude there
is a formula δj(x, bj) ∈ tp(c/M) for which δj(wj; cjbj) has only finitely many
solutions.

Thus, if we choose a mutually algebraic formula γj ∈ tp(cj/D) for each
j ≤ r, we conclude that the formula

ϕ(x1, . . . , xr, b1 . . . br) =
∧
j≤r

(
γj(xj) ∧ δj(wj, xj, bj)

)
is mutually algebraic with free variables x and is in tp(c/M). This contradicts
our assumption that tp(c/M) was not mutually algebraic. This completes
the proof of the Claim as well as the Proposition.

Conclusion 5.10. If QMA(M) is finite, then so is Supp(M). Moreover,
for any x ⊆ z, any countable M � M, and any c ∈ (M \M)lg(x), tp(c/M)
is determined by the maximal mutually algebraic partition P = {x1, . . . , xr}
and the corresponding set {p1, . . . ,pr} of QMAxi

(M) types.

6 Mutual algebraicity and unbounded arrays

The whole of this section is devoted to the statement and proof of Theo-
rem 6.1. It can be construed as a kind of ‘Ryll-Nardzewski theorem’ for
Stone spaces of quantifier-free types.

Theorem 6.1. Suppose T is a complete theory in a finite, relational lan-
guage, all of whose atomic formulas have free variables among z, and let M
be an ℵ1-saturated model of T . The following are equivalent.

1. T has uniformly bounded arrays;
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2. For all subsequences x ⊆ z, Suppx(M) is finite;

3. For all subsequences x ⊆ z, every global supportive type p ∈ Suppx(M)
is array isolated;

4. Whenever M � N are models of T , for all subsequences x ⊆ z, there
are only finitely many types in Sx(M) realized in (N \M)lg(x);

5. For all models M and all subsequences x ⊆ z, only finitely many types
in Sx(M) both contain a mutually algebraic formula and support an
infinite array; and

6. T is mutually algebraic.

Proof. We begin by showing that (2)⇔ (3)⇔ (4). Fix any non-empty
subsequence x ⊆ z. The key observation for showing (2) ⇔ (3) is that if
X is any compact, Hausdorff space, then X is finite if and only if every
element a ∈ X is isolated. Suppose that (2) holds. To establish (3), note
that Suppx(M) as a subspace of Sx(M), the Stone space of all quantifier free
types is closed, and hence compact. As (2) implies it is finite as well, every
p ∈ Suppx(M) must be isolated in the subspace, hence array isolated.

Verifying that (3) ⇒ (2) uses the converse of this. Fix x ⊆ z. Applying
(3) to the model M yields that every element of Suppx(M) is isolated. As
Suppx(M) is compact and Hausdorff, it must be finite.

(2) ⇒ (4) is easy. Assume (2). It suffices to prove (4) for all countable
M � N . As M is ℵ1-saturated, we may assume N � M. But now, by
Lemma 3.3, for any c ∈ (N \M)lg(x), tp(c/M) supports an infinite array. As
any p ∈ Suppx(M) extends to some p ∈ Supp(M), there are only finitely
many such types.

Next, suppose (2) fails. Choose x ⊆ z and a countable, infinite Y ⊆
Suppx(M). For each pair p 6= q, choose a formula ϕpq(x, epq) ∈ p\q. Choose
a countable M � M containing {epq : p 6= q ∈ Y }. Thus, {p|M : p ∈ Y }
is a countably infinite set of types, each of which support an infinite array.
As M is ℵ1-saturated, each such p|M is realized by some c ∈ Mlg(x). That
c ∩M = ∅ follows from the fact that p|M supports an infinite array.

Continuing on, we consider (2) ⇒ (5). It suffices to prove this for M
countable, and we may assume M � M. As any p ∈ Sx(M) supporting an
infinite array has an extension to Suppx(M), (5) follows from (2).

(5)⇒ (2) is immediate from Conclusion 5.10.
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(2)⇒ (1). By (2), for each x ⊆ z, let N(x) := |Suppx(M)|. As (2)⇒ (3),
every p ∈ Supp(M) is array isolated. For each x ⊆ z and each p ∈ Suppx(M),
choose an array isolating formula ϕp(x, ep) ∈ p and let D ⊆M be finite and
contain all ep for all p ∈ Supp(M). It is easily seen that for every x ⊆ z and
every countable D ⊆ B ⊆ M, Sx(B) has exactly N(x) types that support
an infinite array. Moreover, each such q ∈ Suppx(B) has a unique restriction
q|D ∈ Suppx(D) and a unique extension q ∈ Suppx(M).

Towards finding an appropriate m as in Definition 2.3, fix x ⊆ z and
partition each atomic R(z) ∈ L as R(x,w). For each p ∈ Suppx(M) with
array isolating formula ϕp(x, ep) ∈ p, let m(p, x) be the maximum of the
2|L| numbers m(ϕp(x, ep),±R(x,w)) obtained by Lemma 3.8. That is, apply
the Lemma 2|L| times, once for each R ∈ L, and once for each ¬R for R ∈ L.

The point is that if B is countable, D ⊆ B ⊆M, and q ∈ Sx(B) contains
some ϕ(x, ep) and supports an m(p, x)-array, then for every R(x, b), R(x, b) ∈
q if and only if ϕp(x, ep) ∧ R(x, b) supports an m(p, x)-array if and only if
ϕp(x, ep)∧R(x, b) supports an infinite array if and only if R(x, b) ∈ p. Thus,
q ⊆ p.

On the other hand, let θ(x) :=
∧
{¬ϕp(x, ep) : p ∈ Suppx(M)}. Since

there is no q ∈ Sx(D) with θ ∈ q that supports an infinite array, compactness
yields an integer m∗(x) such that no q ∈ Sx(D) with θ ∈ q supports an m∗(x)-
array. Clearly, for any B ⊇ D, no q ∈ Sx(B) with θ ∈ q could support an
m∗(x)-array either.

Choose an integer m that is greater than all m∗(x) and all m(p, x) for
x ⊆ z and p ∈ Suppx(M). Combining the statements above, we see that for
any countable B ⊇ D and any x ⊆ z, exactly N(x) types in Sx(B) support
m-arrays. Thus, M (and hence T by elementarity) has uniformly bounded
arrays.

(1)⇒ (2) is also easy. Assume T has uniformly bounded arrays. Choose
m and 〈Narr

x,m : x ⊆ z〉 from the definition. To establish (2), we claim that
|Suppx(M)| ≤ Narr

x,m for each x ⊆ z. To see this, fix x ⊆ z and assume by
way of contradiction there is a finite Y ⊆ Suppx(M) with |Y | > Narr

x,m. For
each pair p 6= q from Y , choose some ϕpq(x, epq) ∈ p \ q and let D ⊆ M
be finite, containing all these epq. Thus, the set {p|D : p ∈ Y } are distinct
elements of Sx(D). As each restriction p|D supports an infinite array, each
supports an m-array, contradicting our definition of Narr

x,m.
Thus, conditions (1)–(5) are equivalent.
(6) ⇒ (5): Suppose T is mutually algebraic. Then by Theorem 3.3 of

[3], T is weakly minimal, trivial, has nfcp, and moreover, any expansion of
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any model of T by unary predicates also has an nfcp theory. By way of
contradiction, fix M , x ⊆ z, and an infinite set of distinct mutually algebraic
types {pi : i ∈ ω} ⊆ Suppx(M). As there are only finitely many permutations
of x, we may assume that for distinct i, j ∈ ω, no permutation of a realization
of pi realizes pj. As the language is finite relational, choose the set F of L-
formulas as in Proposition A.2. By the pigeon-hole principle and relabelling,
choose an L-formula ϕ(x,w) ∈ F such that for every i ∈ ω, there is hi ∈
M lg(w) such that ϕ(x, hi) ∈ pi and ϕ(x, hi) is mutually algebraic. Note that
since T has nfcp, there is an M -definable formula µ(w) such that for any
h ∈M lg(w), M |= µ(h) if and only if ϕ(x, y) is mutually algebraic.

Let M � M be |M |+-saturated. We will obtain a contradiction by
constructing an expansion M+ = (M, U, V,W ) by unary predicates that
has the finite cover property. From the saturation of M, choose k-tuples
{aji : i ∈ ω, j ≤ i} (where k = lg(x)) such that aji realizes pi(x) but

acl(Maji ) ∩ acl(Maj
′

i′ ) = M unless i = i′ and j = j′. Let A =
⋃⋃
{aji :

i ∈ ω, j ≤ i} and let B = {bji : i ∈ ω, j ≤ i} be the subset of A consisting of
the ‘first coordinates’ i.e., bji = (aji )0 for all i, j.

Let M+ be the expansion of M by interpreting UM+
= A, V M+

= B, and
WM+

= M . Let

P (x) :=
∧
x∈x

U(x) ∧ ∃w
[ ∧
w∈w

W (w) ∧ µ(w) ∧ ϕ(x,w)
]

Note that M+ |= P (aji ) for all i ∈ ω, j ≤ i. Also, if bji ∈ B and M+ |=
P (bji , a2, . . . ak), then by mutual algebraicity, {a2, . . . , ak} ⊆ acl(Maji ), so
(bji , a2, . . . , ak) is a permutation of aji . Let x′ = (x2, . . . , xk), y′ = (y2, . . . , yk),
and put

E(x, y) := ∃x′∃y′[P (x, x′)∧P (y, y′)∧(∀w ∈ W )
∧
R∈L

R(x, x′, w)↔ R(y, y′, w)]

E is an M+-definable equivalence relation on B = V M+
, and M+ |= E(bji , b

j′

i′ )
if and only if i = i′. Thus, E has arbitrarily large finite classes, which
contradicts Th(M+) having nfcp.

Remark 6.2. The implication (6) ⇒ (5) above really relies on counting
quantifier-free mutually algebraic types that support infinite arrays. As an
example, Th(Z, S) is mutually algebraic, but there are infinitely many mutu-
ally algebraic formulas ϕn(x, y), each of which support infinite arrays. Take
ϕn(x, y) := ∃z0 . . . ∃zn[(x = z0) ∧ (y = zn) ∧

∧n−1
i=0 S(zn, zn+1)].
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(2–5) ⇒ (6): We assume all of (2–5) and prove that T is mutually alge-
braic by way of Theorem 2.1. Choose an ℵ1-saturated M |= T . As QMA(M)
is finite, choose a finite D ⊆ M so that every p ∈ QMA(M) contains a
mutually algebraic formula in QF(D), and choose a countable M � M with
D ⊆M . Fix x ⊆ z and let

Bx := {all L(M)-formulas ϕ(x) that are equivalent to boolean
combinations of quantifier-free mutually algebraic α(x′) for some
x′ ⊆ x}.

Note that since y = y is mutually algebraic and ϕ(x) := α(x′)∧
∧

y∈x\x′ y = y

is equivalent to α(x′), we can construe every quantifier-free, mutually alge-
braic α(x′) as an element of Bx.

Claim 1. If c, c′ ∈ Mlg(x) satisfy ϕ(c) ↔ ϕ(c′) for every ϕ ∈ Bx, then
tp(c/M) = tp(c′/M).

Proof. First, as x = m is mutually algebraic for each x ∈ x and m ∈M ,
it suffices to show this for all c, c′ ∈ (M \M)lg(x). In this case, as c, c′ agree
on all quantifier-free, mutually algebraic L(M)-formulas α(xu) for xu ⊆ x,
it follows that c = c1 . . . cr and c′ = c′1 . . . c

′
r have corresponding maximal

mutually algebraic decompositions over M , and moreover, by our choice of
D, tp(ci/M) = p|M if and only if tp(c′i/M) = p|M for every 1 ≤ i ≤ r and
every p ∈ QMA(M). Thus, tp(c/M) = tp(c′/M) by Conclusion 5.10.

Claim 2. Every θ(x) ∈ QFx(M) is equivalent to some ϕ(x) ∈ Bx.
Proof. Fix θ(x) ∈ QFx(M). We first show that for every e ∈ θ(M),

there is some δe(x) ∈ Bx such that M |= δe(e) and

M |= ∀x(δe(x)→ θ(x)).

To see this, let Γ(x) := {δ(x) ∈ Bx : M |= δ(e)}. By Claim 1, every e′ realiz-
ing Γ(x) also realizes θ(x), so the existence of δe(x) follows by compactness
and the ℵ1-saturation of M. Let ∆(x) = {δe(x) : e ∈ θ(M)}. A second
application of compactness and saturation implies that some finite ∆0 ⊆ ∆
satisfies

M |= ∀x(θ(x)→
∨

∆0(x))

so take ϕ(x) :=
∨

∆0(x).

That T = Th(M) is mutually algebraic now follows immediately from
Claim 2 and Theorem 2.1 applied to M .
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7 Identifying mutually algebraic structures and

theories in arbitrary languages

In this section, we use Theorem 6.1 to deduce local tests for mutual alge-
braicity without regard to the size of the language, nor the completeness of
the theory. We begin by noting, either by Lemma 2.10 of [3] or deducing it
from Lemma 2.1, that ‘mutual algebraicity’ is an elementary property, i.e.,
if M is mutually algebraic, then any elementarily equivalent M ′ is mutually
algebraic as well.

Lemma 7.1. Suppose L0 ⊆ L are finite relational languages, M is an L-
structure, and M0 is its reduct to an L0-structure.

1. If D ⊆ M is finite, every L0-type p ∈ SuppL0
x (D) has an extension to

an L-type q ⊇ p with q ∈ SuppL
x (D).

2. If M has uniformly bounded arrays, then so does M0.

Proof. (1) Choose an infinite array {ai : i ∈ ω} ⊆ (M0)
lg(x) of re-

alizations of p. As both D and L are finite, there are only finitely many
L-types in Sx(D), so there is an infinite subsequence {ai : i ∈ I} such that
tpM(ai/D) = tpM(aj/D) for all i, j ∈ I. Then tpM(ai) for any i ∈ I is as
required.

(2) Assume that M has uniformly bounded arrays. Let M be an ℵ1-
saturated model of Th(M) and let M0 be the reduct of M to L0. So M0 is
an ℵ1-saturated model of Th(M0). Suppose every L-atomic formula has free
variables among z. By applying Theorem 6.1 to Th(M), SuppL

x (M) is finite
for all subsequences x ⊆ z, and by a second application of Theorem 6.1 to
Th(M0), it suffices to establish the following Claim:

Claim. For each x ⊆ z, |SuppL0
x (M0)| ≤ |SuppL

x (M)|.

Proof. Fix x ⊆ z, and assume that SuppL
x (M) = {qi : i < N}. In order

to establish the Claim, it suffices to prove that for every finite D ⊆M0, every
L0-type p ∈ SuppL0

x (D) is a subset of some qi. To see this, choose any finite
D ⊆ M0 and any p ∈ SuppL0

x (D). By (1), there is some L-type q ⊇ p with
q ∈ SuppL

x (D). Since q has an extension to some qi ∈ SuppL
x (M), it follows

that p ⊆ qi for some i < N .
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Definition 7.2. For L an arbitrary language, fix any atomic L-formula R(z).
Let LR := {R,=}, which is visibly finite relational. Given an L-structure M ,
let MR denote the reduct of M to an LR-structure. We say R has uniformly
bounded arrays in M if the LR-structure MR has uniformly bounded arrays.

Theorem 7.3. The following are equivalent for an L-structure M in an
arbitrary language L:

1. M is mutually algebraic;

2. Every atomic R(z) has uniformly bounded arrays in M ;

3. For every atomic R(z), the reduct MR is mutually algebraic.

Proof. The equivalence of (2) and (3) follows by applying Theorem 6.1
to each of the (finite relational) LR-theories Th(MR).

For (3)⇒ (1), in order to prove that M is mutually algebraic, by Theo-
rem 2.1, it suffices to prove that every atomic R(z) is equivalent to a boolean
combination of mutually algebraic formulas. Fix an atomic R(z). By (3) and
Theorem 2.1 applied to MR, R(z) is equivalent to a boolean combination of
quantifier-free mutually algebraic LR(M)-formulas. As a mutually algebraic
formula in MR is also mutually algebraic in M , the result follows.

Finally, assume (1). To obtain (2), fix an atomic R(z). By Theo-
rem 2.1, choose a finite set {ϕ1(x1, e1), . . . , ϕk(xk, ek)} of mutually algebraic,
quantifier-free L-formulas for which R(z) is equivalent in M to some boolean
combination (so each xi is a subsequence of z). Expand L to L′, adding
new lg(xi)-ary relation symbols Ui and let M ′ be the definitional expansion
interpreting each Ui as ϕi(M, ei). Let L0 = {U1, . . . , Uk}, LR

0 = L0 ∪ {R},
and let M0,M

R
0 be the reducts of M ′ to L0 and LR

0 , respectively. Note that
M0 and MR

0 have the same quantifier-free definable sets, and that the reduct
of MR

0 to LR is MR.
As each L0-atomic formula is mutually algebraic, it follows from Theo-

rem 2.7 of [3] that M0 is mutually algebraic. As L0 is finite relational, by
applying Theorem 6.1 to Th(M0), M0 has uniformly bounded arrays. Since
M0 and MR

0 have the same quantifier-free definable sets, we conclude that
MR

0 also has uniformly bounded arrays. As LR
0 is finite relational, it follows

from Lemma 7.1 that MR has uniformly bounded arrays as well.

The following Corollary now follows easily. Clause 2 is a slight strength-
ening of Theorem 2.1.
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Corollary 7.4. Let L be an arbitrary language.

1. The reduct of a mutually algebraic L-structure is mutually algebraic.

2. If M is mutually algebraic, then every atomic R(z) is equivalent to a
boolean combination of mutually algebraic, quantifier-free LR-formulas.

Proof. (1) Let M be any mutually algebraic L-structure, let L0 ⊆ L be
arbitrary, and let M0 be the reduct of M to L0. Fix any atomic R(z) ∈ L0.
Applying Theorem 7.3 to M gives MR mutually algebraic. As this holds
for all atomic R ∈ L0, a second application of Theorem 7.3 implies M0 is
mutually algebraic.

(2) is also by Theorem 7.3.

Finally, we consider incomplete theories. The following Corollary follows
immediately from Theorem 7.3, as by definition, an incomplete theory T is
mutually algebraic if and only if every model M |= T is mutually algebraic.

Corollary 7.5. A possibly incomplete theory T in an arbitrary language is
mutually algebraic if and only if for every M |= T , every atomic R(z) has
uniformly bounded arrays in M .

A A basis of mutually algebraic formulas

Lemma A.1. Let T be an arbitrary L-theory, lg(x) = k, and suppose that

θ(x) :=
∧
i∈S

αi(xi) ∧
∧
j∈U

¬βj(xj)

is mutually algebraic and supports an infinite array, with each αi(xi), β(xj)
mutually algebraic and each xi, xj a subsequence of x. Then there is a subset
S0 ⊆ S of size at most k such that

⋃
i∈S0

xi = x and θ∗(x) =
∧

i∈S0
αi(xi) is

mutually algebraic.

Proof. Form a maximal sequence 〈i0, . . . , im−1〉 from S such that for
each j < m, xij is properly partitioned by

⋃
t<j xit , i.e., xij ∩

⋃
t<j xit 6= ∅

and xij \
⋃

t<j xit 6= ∅. As lg(x) = k, m ≤ k. Take S0 = {ij : j < m}, let
xm =

⋃
i∈S0

xi. By iterating Lemma 2.4(6) of [2], θ∗(xm) :=
∧

i∈S0
αi(xi) is

mutually algebraic, so to complete the proof it suffices to prove that xm = x.
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Suppose this were not the case, i.e., write x = xmˆy with y 6= ∅. Choose
an infinite array {an : n ∈ ω} of realizations of θ(x). Let b = a0�y and, for
every n ∈ ω, let cn = (an�xm)ˆb. It suffices to prove the following Claim, as
it contradicts θ(x) being mutually algebraic.

Claim. θ(cn) holds for cofinitely many n.

Towards the Claim, we first show that αi(cn�xi
) holds for every i ∈ S and

n ∈ ω. To see this, fix i ∈ S. By the maximality of the sequence defining
S0, either xi ⊆ xm or xi ∩ xm = ∅. If xi ⊆ xm, then αi(cn�xi

) holds because
cn�xi

= an�xi
and an realizes θ(x). On the other hand, if xi ∩ xm = ∅, then

cn�xi
= b�xi

= a0�xi
and a0 realizes θ(x).

To finish the proof of the Claim, it suffices to show that for any j ∈ U ,
¬βj(cn�xj

) holds for cofinitely many n. Write xj = x′ˆy′ with x′ = xj ∩ xm
and y′ = xj \ xm, and again we split into cases. If y′ = ∅, i.e., xj ⊆ xm, then
cn�xj

= an�xj
, so ¬βj(cn�xj

) since θ(an). If x′ = ∅ then cn�xj
= b�xj

= a0�xj
,

so again ¬βj(cn�xj
) since θ(a0). Finally, if both x′ and y′ are non-empty, x′ˆy′

is a proper partition of xj. Let b
′

= b�y′ . As βj(xj) is mutually algebraic,

choose an integer s such that ∃≤sx′βj(x′, b
′
). As {cn�x′ : n ∈ ω} are disjoint,

there are at most s n’s for which βj(cn�x′ , b
′
) holds, hence ¬βj(cn�xj

) holds
for cofinitely many n.

The following Proposition reaps the benefit of a finite, relational language.

Proposition A.2. Suppose M is mutually algebraic in a finite, relational
language with every atomic formula having free variables among z. There is
a finite set F = {ϕi(xi, wi) : i < m} of quantifier-free L-formulas such that
for every x ⊆ z and every p ∈ Suppx(M) that contains a mutually algebraic
formula, there is some ϕi ∈ F and ei ∈M lg(wi) such that ϕi(x, ei) ∈ p and is
mutually algebraic.

Proof. First, by Theorem 2.1, there is a finite set B = {δi(xi, ei) :
i < n} of mutually algebraic L(M)-formulas such that every atomic R ∈
L is equivalent to a boolean combination of formulas from B. It follows
that for every x ⊆ z, every γ(x) ∈ QFx(M) is also equivalent to a boolean
combination of B-formulas. Let k = lg(z) and let Bk denote the (finite) set
of ≤ k-conjunctions of formulas from B, i.e., Bk = {

∧
B0 : B0 ⊆ B and

|B0| ≤ k}. Let

F = {ϕ(x,w) : x ⊆ z and ϕ(x, h) ∈ Bk for some h ∈M lg(w)}
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To see that F is as desired, fix x ⊆ z, p ∈ Suppx(M) containing a
mutually algebraic formula γ(x), and a realization a of p. Write γ(x) as
a disjunction

∨
θ`, where each θ` is a conjunction of B-formulas and their

negations. Let θ(x) be one of the conjuncts for which θ(a) holds. Then
θ(x) ∈ p and since θ(x) ` γ(x), θ(x) is mutually algebraic. Write

θ(x) =
∧
i∈S

δi(xi, ei) ∧
∧
j∈U

¬δj(xj, ej)

with each δi(xi, ei), δj(xj, ej) ∈ B, hence mutually algebraic. Apply Lemma A.1
to θ(x), obtaining S0 ∈ [S]≤n as there. Thus, ϕ(x, h) :=

∧
i∈S0

δi(xi, ei) ∈ p
and is mutually algebraic. Visibly, ϕ(x, h) ∈ Bk, so ϕ(x,w) ∈ F as required.
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