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In the early days of the development of model theory it was considered
natural and was certainly beneficial to assume that the theories under in-
vestigation were in a countable language. The primary advantage of this
assumption was the presence of the Omitting Types Theorem of Grzegor-
czyk, Mostowski, and Ryll-Nardzewski [1], which generalized arguments of
Henkin [3] and Orey [8]. Following this, Vaught [13] gave a very pleasing
analysis of the class of countable models of such a theory. This led to Mor-
ley’s categoricity theorem [7] for certain classes of uncountable models of
theories in a countable language.

The landscape was completely altered by the subsequent work of Shelah
(see e.g. [11]). He saw that the salient features of Morley’s proof did not
require the assumption of the language being countable. Indeed, many of
notions that were central to Shelah’s work, including unstability, the fcp,
the independence property and the strict order property, are local. That
is, a theory possesses such a property if and only if some formula has the
property. Consequently, the total number of formulas in the language is
not relevant. Still other notions, such as superstability, are not local but
can be described in terms of countable fragments of the theory. That is, a
theory of any cardinality is superstable if and only if all of its reducts to
countable fragments of the theory are superstable. Using a vast collection of
machinery, Shelah was able to answer literally hundreds of questions about
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the class of uncountable models of certain theories. Most1 of his arguments do
not depend on the cardinality of the underlying language. In particular, he
gave a proof of  Loś’ conjecture, that the analogue of Morley’s theorem2 holds
for theories in languages of any size. Somewhat curiously, whereas Shelah’s
methods were very good in classifying uncountable models of a theory, they
had considerably less to say about the countable models of a theory.

The ‘party line’ changed as a result of this – A general belief was that
if one were concerned with uncountable models of a theory, then the count-
ability of the language should not be relevant. In what follows we give two
examples where this is not the case. In both examples the countability of
the language allows us to apply classical methods of Descriptive Set Theory
in order to prove theorems about the uncountable models of a theory. The
first section is by now folklore. It is included to set notation and to indicate
that rudimentary descriptive set theory plays a role in the basic underpin-
nings of model theory. The second section highlights the overall argument
of [2] wherein new dividing lines are given to complete the classification of
the uncountable spectra of complete theories in countable languages. The
third section highlights the main result of [4], which proves a structure the-
orem for saturated models of a stable theory in a countable language. One
consequence of the main theorem is that one dividing line in Shelah’s at-
tempt at describing the class of ℵ1-saturated models of a countable theory is
redundant (Corollary 3.6(2)).

This article is definitely intended to be a survey. Many definitions, al-
though standard, are not given and proofs of theorems are merely sketched.
The reader who is interested in more rigor is referred to [2] for the material
in Section 2 and to [4] for Section 3. Throughout the article, classical de-
scriptive set-theoretic results are referred to as ‘Facts.’ It is noteworthy that
all of the facts needed here are relatively soft.

1 Stone spaces and T eq

Fix a complete theory T in a language L. For a fixed choice of variables
x̄ = 〈x1, . . . , xn〉, the quotient of all L-formulas ϕ(x̄) whose free variables are

1One place where countability of the theory is useful is his analysis of theories with
NOTOP, the negation of the omitting types order property.

2Specifically, if a theory in a language of size κ is categorical in some cardinality greater
than κ, then it is categorical in all cardinals greater than κ.
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among x̄ modulo T -equivalence is a Boolean algebra. Its associated Stone
space Sx̄ consists of the complete types in the variables x̄. The Stone space is
naturally topologized by declaring the set of subsets Uϕ to be a basis, where
each Uϕ = {p ∈ Sx̄ : ϕ ∈ p}.

It is routine to verify that each of the spaces Sx̄ is compact, Hausdorff,
and totally disconnected. Many model theoretic concepts translate easily
into this setting. As examples, for any model M of T , the set of types in Sx̄

realized in M is dense, and a type p is isolated in Sx̄ if and only if it contains
a complete formula (i.e., is a principal type).

If, in addition, we assume that the language L is countable, then each of
the spaces Sx̄ can be endowed with a complete metric, hence it is a Polish
space.3

Fact 1.1 Every Polish space is either countable (in which case the isolated
types are dense) or it contains a perfect subset.

Theorem 1.2 For T a complete theory in a countable language,

1. T has a countable saturated model if and only if Sx̄ is countable for all
x̄; and

2. T has a prime (atomic) model if and only if the isolated types of Sx̄ are
dense for all x̄.

In order to ‘beautify’ these statements and to provide a natural setting
for arguments such as Shelah’s existence theorem for semiregular types, one
commonly passes from the theory T to its expansion T eq. Specifically, let
E denote the set of all L-formulas E(x̄, ȳ) that are equivalence relations in
models of T . We form the language Leq by adjoining to L a new unary
predicate symbol UE and a new function symbol fE for each E ∈ E . Then
each model M of T has a canonical expansion and extension to an Leq-
structure Meq which can be described as follows:

The universe of Meq is the disjoint union of the interpretations of the
UE ’s, where for each 2n-ary relation E, UE(Meq) = {ā/E : ā ∈ Mn}. We
identify the original structure M with U=(Meq). For each 2n-ary E ∈ E , fE

is interpreted as the canonical mapping from U=(Meq)n onto UE(Meq) given
by ā 7→ ā/E.

3Unlike some texts, we allow Polish spaces to have isolated points.
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We let T eq denote the theory of any Meq and denote the Stone space
of T eq to consist of all complete Leq 1-types that contain exactly one for-
mula of the form UE(x). Since powers of M embed naturally into Meq (for
each n, Mn is identified with Un(Meq), where Un corresponds to the 2n-ary
equivalence relation of componentwise equality) S can be thought of as be-
ing a ‘disjoint union’ of the spaces Sx̄, together with Stone spaces of other,
nontrivial quotients.

This space S is not compact, but it is locally compact and Hausdorff.
Furthermore, if the original language L is countable, then so is Leq and S is
a Polish space. So, the ‘beautification’ of Theorem 1.2 above is immediate:

Theorem 1.3 For T a complete theory in a countable language,

1. T has a countable saturated model if and only if S is countable; and

2. T has a prime (atomic) model if and only if the isolated types of S are
dense.

We note in passing that the classical theorem of Vaught asserting that
for a complete theory T in a countable language, if T has a countable satu-
rated model then T has an atomic model follows immediately from this and
Fact 1.1.

Fact 1.4 (Baire Category Theorem) Polish spaces are not meagre (i.e.,
they are not the countable union of nowhere dense sets).

From this and the characterizations given above, one can easily obtain
the following strengthenings of the omitting types theorem:

Theorem 1.5 Let T be a complete theory in a countable language.

1. If Γ ⊆ S is meagre and no p ∈ Γ is isolated, then there is a model M
of T omitting each p ∈ Γ;

2. If, in addition, T does not have a prime model, then there are 2ℵ0

nonisomorphic countable models omitting every p ∈ Γ.

The proof of (1) is merely a Henkin construction with conditions added
to ensure that no type in Γ gets realized. For (2) one performs a Henkin
construction on a tree of models indexed by 2<ω. The continuum models
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are described by branches through the tree. At any stage of the construc-
tion, one has assigned ‘formula-much’ information to finitely many nodes in
the tree with the understanding that any model that is coded by a branch
passing through the node will satisfy the formula. Conditions are included
to ensure that each branch will produce a model of the theory that omits
every type in Γ. Additional conditions ensure that distinct branches give rise
to nonisomorphic models. In spirit, the proof is like arguments employing
Sacks forcing. Variations of this technique are used in the verification of
Proposition 2.4 in the next section.

2 The uncountable spectrum of a theory

Given a complete theory T in a countable language, it is natural to ask how
many nonisomorphic models of T are present in any cardinality κ. Whereas
the case of κ = ℵ0 is still problematic, a full answer is known when κ is
uncountable. As notation, let I(T, κ) denote the number of pairwise noniso-
morphic models of T of size κ. For a theory T , its uncountable spectrum is
the mapping κ 7→ I(T, κ) for κ > ℵ0.

The following theorem appears in [2]:

Theorem 2.1 1. Among all theories in countable languages, there are
exactly twelve ‘species’ of uncountable spectra (some of which involve a
parameter);

2. Fix a countable language L. The equivalence relation on complete L-
theories of ‘having the same uncountable spectrum’ is Π1

1
in the stan-

dard topology of complete L-theories.

In other words, the determination of the uncountable spectrum of T can
be made by analyzing which countable configurations of elements embed into
models of T . Thus, despite the fact that the uncountable spectrum involves
classes of uncountable models, the determination of which species the map
κ 7→ I(T, κ) belongs to reduces to questions about the class of countable
models of T . It is because of this that methods of Descriptive Set Theory
proved useful in the proof of Theorem 2.1. In addition to the facts men-
tioned in the previous section, two more classical results, respectively due to
Mazurkiewicz (see e.g., [10]) and Silver [12] are relevant:
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Fact 2.2 1. A Gδ subspace of a Polish space is Polish.

2. A Borel equivalence relation on a Borel subset of a Polish space has
either countably many or 2ℵ0 equivalence classes.

Much of the work in computing uncountable spectra was done by Shelah.
His analysis proceeds in a ‘top-down’ fashion. First, he described the theories
having the maximal spectrum (i.e., I(T, κ) = 2κ for all uncountable κ). It
turns out that the uncountable spectrum is maximal unless T is superstable
and, for any triple of models4 M0, M1, M2, if {M1, M2} are independent over
M0, then there is a prime and minimal model over their union, which we de-
note by M1

⊕
M0

M2. Using these algebraic facts Shelah provided a structure
theorem for the class of uncountable models of theories whose spectrum is
not maximal: Any uncountable model of such a theory is prime and mini-
mal over a well-founded, independent tree of countable submodels. As there
are at most 2ℵ0 nonisomorphic countable models, an upper bound on the
number of nonisomorphic models of size κ can be computed from a bound
on the depth of the trees that can occur. If the theory admits trees of infi-
nite depth, then Shelah is able to use coding tricks (using certain levels of
the tree as ‘markers’) to obtain a matching lower bound. So we concentrate
on countable theories in which every uncountable model is prime and mini-
mal over an independent tree of countable models in which each branch has
length at most some fixed finite number d. For such theories, the naive upper
bound on the number of nonisomorphic models of size ℵα alluded to above
is id−1(|ω + α|2

ℵ0 ).
In order to find lower bounds on I(T,ℵα) we consider the following sce-

nario: Fix 1 ≤ n < d and an increasing chain

M := M0 ⊂na M1 ⊂na . . . ⊂na Mn−1

of countable models satisfying wt(Mi+1/Mi) = 1 and (when i > 0) Mi+1/Mi

is orthogonal to Mi−1. We wish to describe the set of chains N of length n+1
extending M and count the number models of a fixed uncountable cardinality
that are prime and minimal over a tree of countable models, every branch of
which is isomorphic to some N .

Accordingly, we call a countable model N a leaf of M if wt(N/Mn−1) = 1
and N/Mn−1 is orthogonal to Mn−2. Leaves of M are connected with the

4It is equivalent to require that M0, M1, M2 be countable models.
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space of types

R(M) : {p ∈ S(Mn−1) : p regular and p ⊥ Mn−2}

(when n = 1 we delete the final condition). Indeed, if a realizes a type in
R(M) and N is dominated by Mn−1∪{a}, then N is a leaf of M. Conversely,
every leaf of M realizes at least one type in R(M). Unfortunately, the
correspondence between leaves of M and R(M) is not tight. It is possible
for a single leaf to contain realizations of several types in R(M), and it is
possible that the same type in R(M) can be realized in several nonisomorphic
leaves.

For a subset Y of leaves, a Y -tree is an independent tree in which every
branch is isomorphic to M⌢〈N〉 for some N ∈ Y , and a model of T is a
Y -model if it is prime and minimal over a Y -tree. In order to get a lower
bound on the number of Y -trees of a certain cardinality we examine subsets
of leaves with certain ‘separation properties.’ Specifically, we call a family Y
of leaves of M diffuse if

N ⊕Mn−1
V 6∼=V N ′ ⊕Mn−1

V

for all distinct N, N ′ ∈ Y and all Y -models V . Similarly, a set Y of leaves is
diverse if N

⊕
Mn−2

V 6∼=V N ′
⊕

Mn−2
V , again for all distinct N, N ′ ∈ Y and

all Y -models V . (It is not hard to show that a diffuse family is diverse.) The
following is the content of Propositions 5.6 and 5.8 of [2].

Proposition 2.3 If there is a diffuse set Y of leaves of cardinality 2ℵ0, then
for any α > 0 there are min{2ℵα, in−1(|ω + α|2

ℵ0 )} nonisomorphic Y -models
of size ℵα. If such a Y is diverse then there are at least min{2ℵα , in+1}
nonisomorphic Y -models of size ℵα.

Our method for computing the uncountable spectra will be to translate
dichotomies occurring from descriptive set theory into dichotomies among
theories, which will be expressed in terms of the existence or nonexistence of
large diffuse or diverse sets of leaves. As an example, if {pi : i ∈ κ} ⊆ R(M)
are pairwise orthogonal and Y = {Ni : i ∈ κ} is a set of leaves of M such
that each Ni realizes pi, then Y is diffuse (see e.g., 3.6 of [2]). We will see
below that R(M) is a Borel subset of S(Mn−1) and that nonorthogonality
is a Borel equivalence relation. Hence, by Silver’s theorem the number of
nonorthogonality classes (i.e., the size of a maximal diffuse family obtained
in this fashion) is either countable or has size 2ℵ0.
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In the case when the theory T is totally transcendental (equivalently
ℵ0-stable) choosing types from different nonorthogonality classes is the only
way of obtaining diffuse sets of leaves. When T is t.t. any leaf N realizes
a strongly regular type p ∈ R(M). In addition, this type p is realized in
any leaf that realizes a type that is nonorthogonal to p. Moreover, for any
a realizing such a type p, there is a prime model over Mn−1 ∪ {a}. Thus,
there is a canonical choice of a leaf N among all possible leaves that realize a
certain nonorthogonality class. Hence the size of a maximal diffuse family of
leaves is precisely the number of nonorthogonality classes realized in R(M).
As noted above this number is finite, countably infinite, or 2ℵ0.

When T is superstable but not t.t. there are other mechanisms for pro-
ducing diffuse or diverse sets of leaves. It might be that a leaf N does not
realize any strongly regular types. Furthermore, even if N does realize a
strongly regular type there need not be a prime model over Mn−1 and a real-
ization of the type. The effect of one of these ‘failures’ depends on whether
the nonorthogonality class consists of trivial or nontrivial regular types. The
following Proposition, which is the content of Propositions 3.21, 5.6 and 5.8
of [2], illustrates the effect of such failures. The constructions of the large
families of leaves are similar to the construction of a large family of countable
models in Theorem 1.5(2) in this paper.

Proposition 2.4 Fix a type q ∈ R(M), a realization a of q, and an un-
countable cardinal ℵα. Suppose that either there is a perfect set of types
in R(M) nonorthogonal to q or there is no prime model over Mn−1 ∪ {a}.
Then:

1. If q is trivial then there is a diffuse set Y of leaves of size 2ℵ0 (hence
there are min{2ℵα, in−1(|ω + α|2

ℵ0 )} nonisomorphic Y -models of size
ℵα); and

2. If q is nontrivial then there is a diverse set Y of leaves of size 2ℵ0 (hence
there are at least min{2ℵα, in+1} nonisomorphic Y -models of size ℵα).

Sorting all of this out (i.e., computing I(T,ℵα) in all of the scenarios) is
where Descriptive Set Theory comes into play. We begin with some rather
crude computations.

Lemma 2.5 Let T be a stable theory in a countable language and let M0 ⊆
M be countable models of T . Then:
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1. {p ∈ S(M) : p is trivial, weight 1} is a Gδ (i.e., Π2);

2. {p ∈ S(M) : p is almost orthogonal to M0 over M} is a Gδ;

3. {p ∈ S(M) : p is almost orthogonal to q} is a Gδ for any fixed q ∈
S(M);

4. {p ∈ S(M) : p is regular and orthogonal to M0} is Π4;

5. {p ∈ S(M) : p is not orthogonal to q} is Σ4 for any fixed q ∈ S(M).

The verifications of all of these are routine. One should note the disparity
in the complexity of determining ‘almost orthogonality’ versus ‘orthogonality’
in the statements above. The good news is that these bounds suffice to show
that R(M) is a Borel subset of S(Mn−1) and that nonorthogonality is a
Borel equivalence relation on R(M). The bad news is that Π4 and Σ4 sets
of types do not have very good closure properties. Thus, we attempt to
improve these bounds by showing that these sets have simpler descriptions
in some restricted settings.

Our analysis begins as in the t.t. case. If R(M) has 2ℵ0 nonorthogonality
classes then there is a diffuse family Y of leaves of size 2ℵ0 , so the number of
Y -models equals the naive upper bound mentioned above. Consequently, we
can ignore this case and henceforth assume that R(M) has only countably
many nonorthogonality classes.

Next, we concentrate on the trivial regular types in R(M). Note that
any trivial, weight 1 type is necessarily regular. Also, a trivial, regular type
is orthogonal to M0 if and only if it is almost orthogonal to M0. Thus, by
Lemma 2.5(1) and (2),

Rtr(M) = {p ∈ R(M) : p is trivial, regular, p ⊥ Mn−2}

is a Gδ subset of S(Mn−1) hence is a Polish space itself by Fact 2.2(1).
Let {ri : i < j ≤ ω} be a set of representatives of the nonorthogonality

classes of Rtr(M). For each i < j, let

Xi = {p ∈ Rtr(M) : p is not orthogonal to ri}

Whereas this is typically a complicated set (cf. Lemma 2.5(5)), note that
a type p ∈ Rtr(M) is an element of Xi if and only if it is orthogonal to
some (equivalently to every) type in Xk for all k < j, k 6= i. But, since
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orthogonality is equivalent to almost orthogonality for trivial types, it follows
from Lemma 2.5(3) and the countability of j that each Xi is a Gδ subset of
Rtr(M), hence is a Polish space. But now, by Fact 1.1, either each Xi is
countable, or for some i < j, Xi contains a perfect subset. In the latter
case Proposition 2.4 yields a diffuse set of leaves of size 2ℵ0 . As we have
dispensed that case, we may now assume that each Xi is a countable Polish
space. Hence by Fact 1.1, each Xi has an isolated point. In this context, an
isolated point must be strongly regular (see e.g., D.15 of [6]). So, to finish
the analysis of the trivial types, we ask whether there is any trivial, strongly
regular type p such that there is no prime model over Mn−1 and a realization
of p. If a prime model fails to exist, then by Proposition 2.4 there is a diffuse
family of size 2ℵ0 . If the requisite prime models do exist, then the set of
trivial types in R(M) acts as in the t.t. case.

Now, if we are not done already (i.e., produced a diffuse family of leaves of
size continuum) then we have argued that only countably many nonorthogo-
nality classes are represented in R(M) and the set Rtr(M) is countable. Let
Q be a complete set of representatives of regular types represented in R(M).
Since we are free to work in T eq it follows from VIII 2.20 of [9] that for each
q ∈ Q there is a regular type q′ nonorthogonal to q and a formula θ ∈ q′ such
that θ is q′-simple, has q′-weight 1 and moreover q′-weight is definable inside
θ. Without loss, we may assume that q′ = q. Then the set

Zq = {p ∈ S(Mn−1) : θ ∈ p, wq(p) = 1}

is a closed subset of S(Mn−1). Note that if p ∈ Zq, then p 6⊥ q, hence
p ⊥ Mn−2, so p ∈ R(M). Conversely, if p ∈ R(M), p 6⊥ q, and θ ∈ p, then
p ∈ Zq. The analysis is now similar to the above. If Zq is uncountable for
some q then by Lemma 1.1 it contains a perfect subset, so there is a diverse
subset of size continuum by Proposition 2.4. On the other hand, if each Zq is
countable, then it contains an isolated point. That is, every nonorthogonality
class represented in R(M) has a strongly regular representative. Next, if
there is no prime model over Mn−1 and a realization of some strongly regular
type in R(M), then there is a diverse family of leaves of size 2ℵ0. Finally, if
there is always a prime model over such sets, then as in the t.t. case, we have
a canonical choice of a leaf corresponding to each nonorthogonality class of
R(M).

These considerations allow us to compute the spectrum of a theory in
almost all cases.
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3 Stable theories and the death of DIDIP

In this section we consider strictly stable theories (i.e., stable but not su-
perstable) in a countable language. The important distinction is that in a
superstable theory, any type over a model is based on a finite subset of the
model, hence by a single element if we pass to T eq. It is because of this
fact that almost all of the common stability-theoretic adjectives (see e.g.,
Lemma 2.4) give rise to Borel subsets of the Stone space. However, when T
is countable and strictly stable then types over models are based on countable
subsets of the model. Thus, from the point of view of Descriptive Set Theory,
we are forced upward into the projective hierarchy. Whereas the application
of DST in this section only requires consideration of Σ1

1 sets, it is my belief
that further theorems about strictly stable theories in countable languages
may require one to consider more complicated projective sets. The key to
the proof of Theorem 3.3, which is the main theorem of this section, is the
following classical theorem of Lusin and Sierpiński [5].

Fact 3.1 Any Σ1

1
-subset of a Polish space has the property of Baire (i.e., if

A is Σ1

1
then there is an open set U such that the symmetric difference A△U

is meagre).

Fix a strictly stable theory T in a countable language. Since T is not
superstable, results of Shelah (see e.g., [11]) demonstrate that one cannot
reasonably classify the class of all uncountable models of T , so we pass to
the subclass of ℵ1-saturated models of T .5 In this context, call a model M
ℵ1-prime over A if A ⊆ M , M is ℵ1-saturated, and M embeds elementarily
over A into any ℵ1- saturated model containing A. In [11] Shelah proves that
ℵ1-prime models exist over any sets A.

Definition 3.2 Let T be a countable theory. T has NDOP if for all triples
{M, M0, M1} of ℵ1-saturated models with M = M0∩M1 and {M0, M1} inde-
pendent over M , if N is ℵ1-prime over M0∪M1 and p ∈ S(N) is nonalgebraic,
then p is not orthogonal to some Mi.

More generally, for any infinite cardinal µ, T has µ-NDOP if for all α < µ,
all sets {M, N} ∪ {Mi : i < α} of ℵ1-saturated models such that M ⊆ Mi

for all i < α, {Mi : i < α} are independent over M and N is ℵ1-prime over

5In this setting a model is ℵ1-saturated if and only if it is F
a

ℵ1
-saturated in the termi-

nology of Shelah [11] if and only if it is an ‘a-model’ in the terminology of Pillay [9].
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⋃
{Mi : i < α}, every nonalgebraic type over N is not orthogonal to some

Mi.

Theorem 1.3 of [4] shows that it is equivalent to require that N be ℵ1-
minimal over

⋃
{Mi : i < α}, so the definition of NDOP given here coincides

with the definition given in [11]. In [11] Shelah shows that if T does not have
NDOP then T has 2κ nonisomorphic ℵ1-saturated models of size κ for all
κ ≥ 2ℵ0.

It is easily proved by induction on α < ω that if T has NDOP then T has
ω-NDOP. Furthermore, if T happened to be superstable and had ω-NDOP,
then as every type over N is based and stationary over a finite subset of N
(hence over an ℵ1-prime model over

⋃
{Mi : i ∈ X} for some finite set X ⊆ α)

T would have µ-NDOP for all infinite cardinals µ. Arguing similarly, since
our T is strictly stable in a countable language, all types over N are based
and stationary over a countable subset. Thus, ℵ1-NDOP implies µ-NDOP
for all cardinals µ. However, at least at first glance there seems to be a gap
between the notions of NDOP and ℵ1-NDOP for such theories. Somewhat
surprisingly (as demonstrated by Corollary 3.6(2)) this gap does not exist.

Theorem 3.3 For stable theories in a countable language, if T has NDOP
then T has ℵ1-NDOP (hence µ-NDOP for all µ).

The full proof of this theorem is given in Section 5 of [4], but it is instruc-
tive to see how it follows from the Lusin-Sierpiński theorem mentioned above.
Fundamentally the proof of Theorem 3.3 is very much like the argument that
there is no Σ1

1
-definable nonprincipal ultrafilter on P(ω), so we first review

that argument. First of all, we endow P(ω) with its standard topology by
declaring the set B = {UA,B : A, B are finite subsets of ω}, where

UA,B = {X ∈ P(ω) : A ⊆ X, B ∩ X = ∅}

to be a basis of open sets. It is easily checked that P(ω) is a Polish space.
Note that a subset Y ⊆ P(ω) is a nowhere dense if and only if for all pairs of
disjoint finite sets (E, F ), there is a pair of disjoint finite sets (E ′, F ′) with
E ⊆ E ′, F ⊆ F ′ and UE′,F ′ ∩ Y = ∅.

Now suppose that V is a Σ1

1
-definable ultrafilter on P(ω). We will show

that it is principal. By Fact 3.1 there is an open subset U such that V △ U
is meager. That is, either V is meager or there is a disjoint pair (A, B) of
finite subsets of ω such that UA,B \ V is meagre. However, if V is meagre,
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say V =
⋃
{Yn : n ∈ ω} where each Yn is nowhere dense, then by iteratively

employing the characterization of nowhere denseness mentioned above, we
could find a sequence 〈(En, Fn) : n ∈ ω〉 of pairs of disjoint finite subsets
of ω such that E0 = F0 = ∅, En ⊆ En+1, Fn ⊆ Fn+1, UEn,Fn

∩ Yn = ∅ and
UFn,En

∩ Yn = ∅ for all n ∈ ω. But then, if we let X =
⋃
{En : n ∈ ω},

neither X nor (ω \X) would be elements of any Yn. In particular, neither X
nor (ω \X) would be elements of V , contradicting the assumption that V is
an ultrafilter.

We conclude that UA,B \ V = {Yn : n ∈ ω} for some finite, disjoint sets
A, B ⊆ ω and some nowhere dense sets Yn. For each n let

Y ∗

n = {X : (X ∪ A \ B) ∈ Yn}

Since any two nonempty basic open subsets of P(ω) are homeomorphic, each
Y ∗

n is nowhere dense. Now construct a sequence 〈(En, Fn) : n ∈ ω〉 of pairs of
disjoint finite subsets of ω such that E0 = A, F0 = B, En ⊆ En+1, Fn ⊆ Fn+1,
UEn,Fn

∩ Yn = ∅ and UFn,En
∩ Y ∗

n = ∅ for all n ∈ ω. Let X =
⋃
{En : n ∈ ω}

and Z = (ω\X)∪A\B. Clearly both X and Z are in UA,B. Since X ∈ UEn,Fn

for each n, X 6∈ Yn for every n, hence X ∈ V . Similarly, (ω \ X) 6∈ Y ∗
n for

all n, so Z ∈ V . Since V is a filter, X ∩ Z = A ∈ V . Since A is finite, V is
principal.

Towards the proof of Theorem 3.3, assume that T has NDOP and choose
ℵ1-saturated models M, N and {Mi : i ∈ ω} such that M ⊆ Mi for all
i ∈ ω, {Mi : i ∈ ω} are independent over M , and N is ℵ1-prime over
their union. As well, fix a nonalgebraic type p ∈ S(N). We will show
that p is nonorthogonal to some Mi. To accomplish this let J denote the
finite subsets of ω. We inductively build a ‘stable system’ {MA : A ∈ J}
of submodels of N such that each MA is ℵ1-prime over

⋃
{MB : B ( A}

and N is ℵ1-prime over
⋃
{MA : A ∈ J}. As notation, for any X ⊆ ω let

MX =
⋃
{MA : A ∈ J ∩ P(X)}. For any finite ∆ ⊆ L, let

W∆ = {X ⊆ ω : p 6⊥ N ′ for some N ′ � N such that N ′ is ℵ1-
prime over MX , N is ℵ1-prime over N ′ ∪Mω, and the nonorthog-
onality is witnessed by some ϕ(x, y) ∈ ∆}.

Much of the argument is devoted to showing that each W∆ is a Σ1

1
subset

of P(ω) (see Claim 5.18 of [4]). So the set W =
⋃
{W∆ : ∆ finite} is a

Σ1

1
-subset of P(ω) as well. The set W is not precisely an ultrafilter, but the

following lemma shows that it is close to being one:
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Lemma 3.4 1. For all ∆ and all X ⊆ Y ⊆ ω, if X ∈ W∆ then Y ∈ W∆;

2. For all X ⊆ ω, either X ∈ W or (ω \ X) ∈ W ;

3. (Weak intersection) If, for some ∆ and A ⊆ ω, there are sets {Xj : j ∈
ω} ⊆ W∆ such that Xj ∩ Xk = A for all j < k < ω, then A ∈ W∆.

Note that Condition (1) is trivial and (2) follows from NDOP. The veri-
fication of (3) follows easily from Proposition 2.16 of [4].

The argument now splits into cases as in the ultrafilter argument given
above. On one hand, if every W∆ is meagre then W is meagre. As in the
ultrafilter argument we construct a set X ∈ P(ω) such that X 6∈ W and
(ω \ X) 6∈ W , contradicting Condition (2). On the other hand, if some
W∆ is nonmeagre then there is a pair (A, B) of disjoint finite sets such that
UA,B \ W∆ is meagre. Now, by diagonalizing across the nowhere dense sets
spanning this difference it is easy to produce an infinite family {Xj : j ∈
ω} ⊆ UA,B ∩ W∆ as in Condition (3). But this implies that A ∈ W∆, hence
p is nonorthogonal to MA with A finite. Since NDOP implies ω-NDOP,
Theorem 1.3 of [4] implies that p is nonorthogonal to Mi for some i ∈ A and
we finish.

In [4] we obtain the following corollaries to this theorem. The first is
reminiscent of Shelah’s ‘Main Gap’ for the class of models of a classifiable
theory and the second is rather unexpected.

Definition 3.5 Let T be a stable theory in a countable language.

1. T is deep if there is an infinite elementary chain 〈Mn : n ∈ ω〉 of models
of T such that Mn+1/Mn is orthogonal to Mn−1 for all n ≥ 1.

2. T is shallow if it is not deep.

3. T has DIDIP if there is an elementary chain 〈Mn : n ∈ ω〉 of ℵ1-
saturated models of T and a type p ∈ S(N), where N is ℵ1 prime over⋃

n∈ω Mn, that is orthogonal to every Mn.

Proofs of the following Corollaries appear in [4].

Corollary 3.6 Let T be a stable theory in a countable language.

1. If T has NDOP and is shallow then every saturated model of size at least
2ℵ0 is ℵ1-prime and minimal over an independent tree of ℵ1-saturated
models of size 2ℵ0.

2. If T has NDOP and is shallow then T does not have DIDIP.
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