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Abstract

We work in the context of ω-stable theories. We obtain a natural,

algebraic equivalent of ENI-NDOP and discuss recent joint proofs with

S. Shelah that if an ω-stable theory has either ENI-DOP or is ENI-

NDOP and is ENI-deep, then the set of models of T with universe ω

is Borel complete.

In 1983 Shelah, Harrington, and Makkai proved Vaught’s conjecture for
ω-stable theories [11]. In that paper they determined which ω-stable theories
have fewer than 2ℵ0 countable models and proved a strong structure theorem
for models of such a theory. As in most verifications of Vaught’s conjecture
for specific classes, little attention was paid to countable models of ω-stable
theories have ‘many’ models. It is curious that following the publication of
[11] in 1984, the investigation of the class of countable models of an arbitrary
ω-stable theory lay fallow for many years.1

One explanation for this hiatus may have been a lack of test questions.
How could one describe the complexity of a class of countable structures
beyond asserting that there are 2ℵ0 nonisomorphic ones? A remedy was pro-
vided by the collective works of Becker, Kechris, Hjorth, Friedman, Stanley,

∗Partially supported by NSF grant DMS-0300080
1We understand that recently Martin Koerwien has been working independently on

similar problems.
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and others (see e.g.[1, 3, 5]) who, building on earlier work of Vaught [12],
developed the concept of the Borel complexity of a class of countable struc-
tures. Whereas the full technology is much more general, we focus on a
special case. For a given (countable) vocabulary τ , we concentrate on the
Polish space S(τ) of τ -structures with universe ω and subspaces thereof.2

Call a subspace K of S(τ) invariant if K is closed under isomorphism. It
is well known that any invariant set K can be viewed as the set of models
with universe ω of some Lω1,ω-sentence ϕ in the vocabulary τ . If K and K ′

are invariant sets, possibly in different vocabularies, we say that K is Borel
reducible to K ′ if there is a Borel function from K to K ′ such that

A ∼= B if and only if f(A) ∼= f(B)

for all A,B ∈ K. An invariant K is Borel complete if every invariant K ′ is
Borel reducible to it. We call a theory T Borel complete if the set of models
of T with universe ω is Borel complete.

It is easily seen that the set of graphs (either symmetric or directed) with
universe ω is Borel complete. Somewhat more surprisingly, Friedman and
Stanley [3] proved that the set of subtrees of <ωω is Borel complete. This
paper presents some recent results of Saharon Shelah and the author that
identify certain classes of ω-stable theories as being Borel complete. It should
be noted that there a number of open questions remain in this area. While
we verify that some classes of ω-stable theories are Borel complete, we do not
have a full characterization. Also, it is easy to see that if T is Borel complete,
then its class of countable models has unbounded Scott heights in ω1. At
present we do not know whether the converse holds for ω-stable theories.

We set the stage by recalling three facts about ω-stable theories:

• Prime models exist over arbitrary sets A. They are unique up to iso-
morphism over A and are atomic over A.

• Types over models are based and stationary over finite subsets. That
is, for any p ∈ S(M) there is a finite A ⊆ M such that p is the unique
nonforking extension in S(M) of the restriction p|A.

2To aid clarity, in certain places we shall freely replace ω by another fixed countable

universe, e.g., ω
2 or <ω

ω.
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• Strongly regular types are ubiquitous and are well-behaved. In partic-
ular, if M is a model and p 6⊥ M , then p 6⊥ q for some strongly regular
q ∈ S(M). Moreover, if q, r ∈ S(M) are both strongly regular and
nonorthogonal, then dim(q, N) = dim(r, N) for any N extending M .

Our approach is to modify definitions occurring in Shelah’s ‘top down
analysis’ of superstable theories to distinguish between classes of countable
models. The main difference is that there is no cardinal gap between ‘in-
finite’ and ℵ0. Thus, for example, if a theory is strong enough to require
that the dimension of a certain regular type be infinite in any model of the
theory, then it is futile to use its dimension to distinguish between noniso-
morphic countable models of the theory. This can have a drastic impact on
the complexity of the models of a theory. An extreme example is the ‘stan-
dard checkerboard example’ of an ω-stable theory having the dimensional
order property (DOP). It has the maximal number of uncountable models
(as does any stable theory with DOP) but is actually ℵ0-categorical.

The fundamental modifications all appear in [11] but we develop them
in the general setting of ω-stable theories without restricting to those having
few countable models. In this instance, rather than looking at all strongly
regular types over a model, they suggested identifying those that are ‘even-
tually non-isolated’. Such types can have finite dimension in a countable
model, so specifying the dimension of such a type gives positive information.
More precisely, call a complete type p ∈ S(M) ENI if p is strongly regular
and there is a finite A ⊆ M on which p is based, stationary, and noniso-
lated. In [11] they suggested a variant of DOP, called ENI-DOP, which had
a technical definition, but was just what was needed to translate Shelah’s
original proofs that ‘DOP implies complexity’ to the context of countable
models. We now see that the definition (or more precisely its negation ENI-
NDOP) can be stated much more naturally in an algebraic context. Call
three models {M0, M1, M2} an independent triple of models if M0 = M1∩M2

and M1
M̂0

M2.

Definition 1 An ω-stable theory T has ENI-NDOP if the prime model over
any independent triple of ω-saturated models is ω-saturated. We say T has
ENI-DOP if it fails to have ENI-NDOP.

That is, an ω-stable theory T has ENI-NDOP if and only if the a-prime
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model over any independent triple of a-models is atomic over the triple.3

Phrased in this way, it is insightful to compare this property with the status
of NOTOP (the negation of the omitting types order property) in the super-
stable setting: In [9] Shelah proves that a superstable theory with NDOP
satisfies NOTOP if and only if the a-prime model over an independent triple
of a-models is atomic over the triple. Thus, in the ω-stable context, this is
precisely ENI-NDOP. As well, it is useful to note that a routine Downward
Löwenheim-Skolem argument shows that it is equivalent to restrict to count-
able models. Thus, an ω-stable theory T has ENI-NDOP if and only if the
prime model over any independent triple of countable, saturated models is
saturated.

Before continuing, let us prove that this definition is the equivalent to the
more technical version appearing in [11].

Proposition 2 An ω-stable theory T has ENI-DOP if and only if there is
an independent triple {M0, M1, M2} of ω-saturated models, a model N prime
over M1M2, and an ENI type p ∈ S(N) such that p ⊥ M1 and p ⊥ M2.

Proof. (Sketch) First, assume that {M0, M1, M2} is an independent
triple of ω-saturated models for which the prime model N over M1M2 is
not ω-saturated. Choose p ∈ S(N) to be the nonalgebraic type of smallest
Morley rank such that there is a finite A ⊆ N on which p is based and
stationary and p|A is omitted in N . That p is strongly regular follows from
the minimality condition. Since p|A is omitted in N it is surely nonisolated;
hence p is ENI. If p 6⊥ Mi for some i ∈ {1, 2}, then choose a strongly regular
q ∈ S(Mi) such that p 6⊥ q. Choose a finite B ⊆ Mi on which q is based and
stationary, and let N0 � N be prime over AB. Let p′, q′ ∈ S(N0) be types
parallel to p and q, respectively. Now dim(p′, N) = dim(q′, N) = ω, where
the first equality follows from p 6⊥ q (see e.g., [2]) and the second equality
follows from the ω-saturation of Mi. But this contradicts p|A being omitted
in N .

Conversely, suppose that {M0, M1, M2} is any independent triple of mod-
els, N is any prime model over M1M2, and p ∈ S(N) is an ENI type or-
thogonal to both M1 and M2. We find a finite subset B∗ ⊆ N for which
p|B∗ is omitted in N . First, choose a finite B ⊆ N on which p is based and

3In an ω-stable theory the a-models are precisely the ω-saturated models.
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stationary and p|B is not isolated. Choose finite sets A1 ⊆ M1 and A2 ⊆ M2

such that taking B∗ = BA1A2, we have

B∗

Â1A2

M1M2 and B∗
^

B∗∩M0

M0

A computation similar to the proof of (c) ⇒ (d) in Lemma X, 2.2 of [9] shows
that p|B∗ ` p|B∗M1M2. Since p|B∗ is not isolated, cB∗ is not atomic over
M1M2 for any c realizing p|B∗ (hence p|B∗M1M2). Thus p|B∗ is omitted in
N .

Examples of ω-stable theories with ENI-DOP include differentially closed
fields (see e.g., Marker’s [8] in this volume) and a variant of the standard
checkerboard example: Let L = {U, R, fn}n∈ω and let T guarantee that any
M |= T satisfies

• R(a, b, c) → (U(a) ∧ U(b) ∧ ¬U(c));

• Each fn : U(M)2 → ¬U(M);

• {R(a, b, z) : (a, b) ∈ U(M)2} forms a partition of ¬U(M); and

• If n 6= m and (a, b) ∈ U(M)2, R(a, b, fn(a, b)) and fn(a, b) 6= fm(a, b).

If {M0, M1, M2} is an independent triple of saturated models, a ∈ U(M1) \
M0, and b ∈ U(M2) \ M0, then the type p(a, b, z) = {R(a, b, z)} ∪ {z 6=
fn(a, b) : n ∈ ω} is omitted in any atomic model over M1 ∪ M2, so T has
ENI-DOP.

Our definition of ENI-DOP makes the following Theorem conceptually
easy:

Theorem 3 If T is ω-stable with ENI-DOP, then T is Borel complete.

Proof. (Sketch) Suppose T is ω-stable with ENI-DOP. It is an easy
exercise in coding to show that the class of countable bipartite graphs is Borel
complete, so it suffices to find a Borel reduction from this class into the class
of countable models of T . By the comment following Definition 1, choose an
independent triple {M, N, Q} of countable saturated models of T such that
the prime model M∗ over N∪Q is not saturated. Choose a type p ∈ S(M∗) of
minimal Morley rank that has a finite subset A ⊆ M∗ on which p is based and
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stationary, yet p|A is omitted in M∗. The minimality of rank ensures that p
is strongly regular, hence ENI. Choose an independent set {Ni : i ∈ ω}∪{Qj :
j ∈ ω} over M where tp(Ni/M) = tp(N/M) and tp(Qj/M) = tp(Q/M) for
all i, j ∈ ω. For each pair (i, j) ∈ ω2 tp(NiQj/M) = tp(NQ/M) so there is
an automorphism σi,j of the monster satisfying σi,j(N) = Ni, σi,j(Q) = Qj,
and σi,j = id on M . Let M∗

i,j = σi,j(M∗), let pi,j be the corresponding
conjugate of p, and let N0 be prime over

⋃

i,j M
∗
i,j.

Now suppose that we are given a bipartite graph G = (ω2, EG). Define a
model NG =

⋃

n Nn of T , where N0 is as above and, given Nn let In = {ai,j :
(i, j) ∈ EG} be an independent set over Nn, where each ai,j is a realization
of pi,j|Nn and choose Nn+1 to be prime over Nn ∪ In. The model N0 does
not depend on the graph G, but every Nn for n ≥ 1 does. Since T is ω-
stable the isolated types over any set are dense and the prime model over
any set is constructible. Thus, for each n, given an enumeration of Nn ∪ In

and an enumeration of the L(NnIn)-formulas, the atomic diagram of Nn+1 is
determined. It follows via coding that the mapping G 7→ NG can be made to
be Borel. For any pair (i, j), our construction yields that

dim(pi,j,NG) =

{

ω if (i, j) ∈ EG

0 if (i, j) 6∈ EG

Furthermore, it is easily checked that if G ∼= H, then NG
∼= NH. Determining

when nonisomorphism is preserved is more challenging. If pi,j is based and
stationary on (Ni ∪Qj) \M , then nonisomorphism will indeed be preserved.
However, in the general case, pi,j might depend on parameters from M as
well. The ‘patch’ is to define a coarser relation on the space of bipartite
graphs. Namely, we say G ∼ H if and only if G \ FG

∼= H \ FH for some
finite subsets FG ⊆ G and FH ⊆ H. We prove that the space of bipartite
graphs remains Borel complete with respect to the relation ∼, and that the
mapping above satisfies NG

∼= NH implies G ∼ H. It follows that T is Borel
complete.

Thus, we may restrict our attention to ω-stable theories with ENI-NDOP.
Although [11] concentrates on theories with few countable models, it is al-
ready implicit in [11] that any countable model of such a theory admits a
tree decomposition. We pause to make these notions precise. Throughout, a
tree is a nonempty, downward closed subset of <ωω. For η 6= 〈〉, η− denotes
the immediate predecessor of η.
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Definition 4 Fix M any model. A partial decomposition D of M is a set of
pairs D = {(Mη, aη) : η ∈ T D} indexed by a tree T D satisfying:

1. M〈〉 is an atomic substructure of M and {aν : lg(ν) = 1} is a maximal
independent over M〈〉 set of realizations of strongly regular types qν ∈
S(M〈〉);

2. For each nonempty η ∈ T , Mη is atomic over Mη− ∪ {aη} and {aν : ν
an immediate successor of η} is a maximal independent over Mη set of
realizations of strongly regular types qν ∈ S(Mη) satisfying qν ⊥ Mη− .

A decomposition of M is a partial decomposition such that M is prime
over

⋃

{Mη : η ∈ T }.

Note that there is no restriction placed on a〈〉. It is included to minimize
the complexity of the definition. There is a natural partial order on partial
decompositions of M , namely D1 ≤ D2 if and only if T D1 is a subtree of
T D2 and (MD1

η , aD1

η ) = (MD2

η , aD2

η ) for each η ∈ T D1, which gives rise to the
notion of a ‘maximal’ partial decomposition.

As noted above the following theorem really only uses ideas present in
[11], which in turn follow from ideas in Chapter XI of [9].

Theorem 5 Suppose T is ω-stable with ENI-NDOP. Then every countable
model M |= T has a decomposition. Moreover, every maximal partial decom-
position of M is a decomposition of M .

One has tremendous flexibility in choosing a decomposition of a given
model M of such a theory. One can freely choose any atomic submodel
for M〈〉. Next, there are several choices of maximal independent sequences
of realizations of strongly regular types over M〈〉. Then, for each aν with
lg(ν) = 1 one can freely choose an atomic model over M〈〉 ∪{aν}, etc. While
it is true that atomic submodels of M over a given set are isomorphic over the
set, this does not make them unique. It is an excellent exercise for the reader
to see the vast freedom one has in constructing maximal decompositions of
the countable saturated model of the theory in Example 11.

This example suggests that if we want the complexity of the decomposi-
tion of a model M to reflect the complexity of the isomorphism type of M ,
we should restrict our freedom in choosing a decomposition. One natural
way to do this is to insist that at each ‘choice’ we take a maximal atomic
submodel over the requisite set. This leads to a better decomposition result.
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Definition 6 Fix a model M . A partial ENI decomposition of M is a partial
decomposition of M in which tp(aη/Mη−) is ENI for every nonempty η ∈ T .
An ENI decomposition of M is a partial ENI decomposition of M where M
is prime over

⋃

{Mη : η ∈ T }.

The following theorem is proved in [6], but is likely known to others.

Theorem 7 Suppose M is a countable model of an ω-stable theory with ENI-
NDOP. Then:

1. Any partial decomposition of M in which every Mη is chosen to be
maximal atomic over the requisite set is a partial ENI decomposition
(hence maximal partial ENI decompositions of M exist); and

2. Any maximal partial ENI decomposition of M is an ENI decomposition
of M .

The reader is cautioned that even ENI decompositions of a model need
not be unique. In fact, even if the ENI depth is finite countable models
of T can have ENI decompositions of differing ENI depths. Despite this,
Theorem 10 below demonstrates that if the theory T admits a countable
model with an ENI-decomposition indexed by a nonwellfounded tree, then
the class of countable models of T is Borel complete.

It turns out, however, that if one is seeking a dividing line, having non-
wellfounded ENI-decompositions is too restrictive. Example 13, which is
kind of a hybrid of Examples 11 and 12, has a bound on the complexity of
ENI-decompositions, yet the class of countable models allows for coding of
arbitrary trees.

Definition 8 A chain is a finite sequence 〈(Mi, pi) : i ≤ k〉 such that M0 �
M1 � . . .Mk and for every i < k, Mi is countable, pi ∈ S(Mi) is regular,
Mi+1 is prime over Mi and a realization of pi, and (when i > 0) pi ⊥ Mi−1.
An ENI-chain is a chain, where in addition each pi is an ENI type.

That is, a chain is a potential ‘branch’ of a decomposition tree of a model
and an ENI-chain is a branch of an ENI-decomposition tree. In terms of Borel
complexity, sharper results are obtained via the following hybrid notion that
encapsulates the essence of Example 13.
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A type p ∈ S(M) is supportive (of an ENI-type) if there is a chain
〈(Mi, pi) : i ≤ k〉 with M0 = M , p0 = p, and some pi is ENI. As well, a
supportive chain is a chain in which every pi is supportive. Thus, ENI-chains
are supportive, but not conversely. In Example 13 every ENI-chain occurring
in a decomposition is short, while there are arbitrarily long supportive chains
in the decompositions of certain models.

Definition 9 Fix an ω-stable theory T with ENI-NDOP. T is deep if there
is an ω-sequence in which every proper initial segment is a chain. (This is
consistent with Shelah’s notion of a deep theory in [9].) T is ENI-deep if there
is an ω-sequence in which every proper initial segment is an ENI-chain and
T is e− deep if there is such an ω-sequence with each proper initial segment
a supportive chain.

As every ENI-chain is supportive, an ENI-deep theory is necessarily e-
deep. But the theory in Example 13 is e-deep but not ENI-deep. In [6] we
succeed in proving the following Theorem.

Theorem 10 If T is ω-stable, has ENI-NDOP and is e-deep, then T is Borel
complete.

The proof of Theorem 10 is rather involved. At first blush, once one knows
Friedman and Stanley’s theorem that countable trees are Borel complete, it
seems like the proof should be easy. One can fix a sequence S = 〈(Mi, pi) :
i < ω〉 such that every proper initial segment is a supportive chain. It is easy
to get a Borel mapping T 7→ MT from the set of subtrees of <ωω to the class
of countable models of T having a decomposition tree indexed by T in which
every branch is isomorphic to an initial segment of S. Moreover, almost any
reasonable way of doing this will preserve isomorphism, i.e., if T ∼= T ′ then
MT

∼= MT ′ . However, the nonuniqueness of decompositions prevents one
from immediately asserting that nonisomorphism is preserved. The solution
is twofold. First, given a tree T , one ‘pads’ T , i.e., exhibits a Borel mapping
T 7→ T , where T consists of ‘many copies’ of T . Then, by adapting many of
the arguments of [10] and the method of quasi-isomorphisms described in [4]
(but allowing only finitely many exceptions instead of countably many) we
show that the composition map T 7→ T 7→ MT preserves nonisomorphism.

One other point is worth making. Whereas we are able to prove Theo-
rem 10, our arguments are rather crude. The ‘real’ question of determining
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whether two decompositions are sufficiently different as to imply nonisomor-
phism of the models they generate remains open. This issue would need to
be addressed by someone looking at e-shallow theories (i.e., not e-deep) and
attempting to determine the precise Borel complexity of the class.

We close by giving the three examples alluded to above.

Example 11 The theory of a unary function without loops.

Let L = {f}, where f is a unary function symbol and the theory T
assert that every element has infinitely many preimages and that there are
‘no loops’ i.e., ∀x(f (n)(x) 6= x) for all n ≥ 1. It is easily checked that T is
ω-stable with ENI-NDOP.

If M is any model of T and a ∈ M , define the component of a in M to be

C(a) = {b ∈ M : f (n)(b) = f (m)(a) for some n, m ∈ ω}

It is easily checked that any two components of a model M are disjoint or
equal, and if M is countable then any two components are isomorphic. Thus,
the isomorphism type of a countable model is determined by the number
of components. In particular, T has only countably many nonisomorphic
countable models.

However, T is deep. To see this, note that if N � M , then a nonalgebraic
type p ∈ S(M) is orthogonal to N if and only if p ` f (n)(x) = a for some
a ∈ M and n ≥ 1, but p ` f (m)(x) 6∈ N for every m ∈ ω. Using this
characterization it is easy to construct an ω-chain M0 � M1 � . . . where
tp(Mn+1/Mn) ⊥ Mn−1 for all n ≥ 1 witnessing that T is deep. The reason
why deepness does not imply many models is that none of the relevant types
in such a witness are ENI, hence all relevant dimensions (other than the
number of components) are necessarily ℵ0 in any countable model of T .
More precisely, for a given model M there is a unique nonisolated complete
1-type, namely the type specifying that x is in a component disjoint from
M .

In the next example we add additional structure to make the requisite
types ENI.

Example 12 A unary function with no loops having ENI preimages.
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Let L = {f, S}, where f and S are both unary function symbols. The
theory T asserts that f is as in Example 11, S is a ‘Z-like successor func-
tion’ i.e., every element has an immediate S-successor and an immediate
S-predecessor, and S(n)(x) 6= x for all n ≥ 1. Furthermore, for any element
a of any model, f−1(a) is closed under S, i.e., ∀xf(S(x)) = f(x).

This theory is again ω-stable with ENI-NDOP, but it is also ENI-deep.
Indeed, the characterization of which types over M are orthogonal to N when
N � M is identical to the one given in Example 11. However, in this case
any chain of models witnessing that T is deep simultaneously witnesses that
T is ENI-deep. Thus, T is Borel complete by Theorem 10.

Our final example illustrates the distinction between ENI-chains and sup-
portive chains.

Example 13 An ω-stable theory T with ENI-NDOP that is e-deep but not
ENI-deep.

Let L = {P, Q, f, S}, where P and Q are unary relations dividing the
universe into two sorts. f is a unary function symbol acting on the P -
part as a unary function with no loops as in the two preceding examples.
Additionally, f describes an infinite-to-one surjection of Q onto P . So for
each element x in the P -sort, f−1(x) has infinite intersection with both P
and Q, By contrast f−1(y) = ∅ for any element y of the Q-sort. Finally, S is
a Z-like successor function on the Q-part satisfying

∀y[Q(y) → f(S(y)) = f(y)]

The theory T is ω-stable, ENI-NDOP, e-deep, but not ENI-deep. It is
illustrative to see how arbitrary subtrees of <ωω can be coded into countable
models of T . Let M0 denote the prime model of T . The isomorphism type of
M0 can be described by specifying that P (M0) consists of a single component
(hence is isomorphic to the prime model of the theory in Example 11) such
that, in addition, for every a ∈ P (M0), f−1(a) ∩ Q(M0) consists of a single
Z-chain. Let a∗ denote an arbitrary element of P (M0). Recursively define a
(Borel) injection

h : <ωω → P (M0)

to guarantee that h(〈〉) = a∗ and that h induces a bijection between {ηˆ〈n〉 :
n ∈ ω} and f−1(h(η)) ∩ P (M0) for every η ∈ <ωω.
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Now, given an arbitrary tree T ⊆ <ωω, we form a countable model MT us-
ing the function h and Z-chains in the Q-sort as ‘markers.’ Specifically, given
such a T let MT be the (elementary) extension of M0 formed by adding ex-
actly one extra Z-copy to f−1(h(η))∩Q for each η ∈ T . A moment’s thought
shows that the mapping T 7→ MT is Borel and preserves both isomorphism
and nonisomorphism, hence T is Borel complete.
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